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Let us recall the definition of the String 2-group for a compact, simple
simply connected Lie group G as given by BSCS. Start with the principal
bundle (and group extension)

ΩG // PG

ev1
��
G

(1)

The mapping spaces are as follows:

PG = {I γ−→ G | γ(0) = eG}

and
ΩG = {γ ∈ PG | γ(1) = eG}.

Note that the loops in ΩG are not necessarily smooth at the identity! We
will also use the universal central extension

U(1)→ Ω̂G→ ΩG

which is a nontrivial U(1)-bundle (there are a collection of such extensions,
for various spaces of loops – we shall see a couple more later). There is

an obvious action of Ω̂G on PG, namely (α̂, γ) 7→ α · γ, where the latter
is pointwise multiplication. We thus get a Fréchet Lie groupoid (an action
groupoid) (

Ω̂G× PG⇒ PG
)
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which I shall denote by S(PG).
However, there is more going on, in that the adjoint action of PG on

ΩG lifts to an action on Ω̂G (this makes Ω̂G → PG a crossed module) We

thus get a semidirect group structure on Ω̂G× PG, and
FACT S(PG) is a (strict) group object in the category of Lie groupoids.
The multiplication functor is given by the group structure on the objects
and arrows, and so.

Thus S(PG) is what we call a strict 2-group. However:

1. Smoothness at eG is an issue because smooth functions S1 → G are
better.

2. There is no S1-action on ΩG by rotation (needed for various applica-
tions/constructions: Witten genus, Freed-Hopkins-Teleman theorem,
positive energy representations and so on)

We could deal with the first point by passing to the bundle over G given
by the space AG×S1 of connections on the trivial G-bundle on S1 (this works
as G is connected). But this doesn’t help with the second point. What we
want is an analogue of (1) of the form

LG // ?

��
G

where here LG is the Fréchet-Lie group C∞(S1, G), and, one might hope,
this bundle is somehow ‘group like’.

First, note that LG ' {R p−→ G | p(t + 1)p(t)−1 = eG ∀t ∈ R}. We thus
make the following
DEFINITION The space of quasiperiodic paths is

QG := {R p−→ G | p(t+ 1)p(t)−1 = const ∀t ∈ R},

where we give QG the topology of uniform convergence of all derivatives on
compact subsets of R.

One might picture this as an infinite ‘helix’ in G such that translation by
a constant element takes one from any point on the path to the corresponding
point on the next loop around. There are otherwise no constraints on such
paths. There is a continuous map Θ: QG→ G, Θ(p) = p(1)p(0)−1.
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PROPOSITION 1 QG → G has the structure of a nontrivial smooth
principal right LG-bundle, with action

QG× LG→ QG

(p, α) 7→ p · α.

The definition of QG and the proposition in fact work for arbitrary
locally convex Lie goups, but we won’t need this generality. Note that if
G is Milnor regular, then QG/G, where G is considered as the space of
constant paths, is diffeomorphic to AG×S1 .
FACT Pointwise mulitplication of paths does not preserve quasiperiodicity,
hence cannot give a group structure on QG. In fact the situation is even
worse:
PROPOSITION 2 For G compact and simply-connected, QG admits no
Lie group structure making QG→ G a homomorphism with kernel LG.

The proof is via classifying, using Lie theory, LG extensions on simply-
connected compact Lie groups.

Thus the näıve guess that QG could simply replace PG fails. But we can
proceed! Note that we still have the central extension U(1) → L̂G → LG,
so can form the Lie groupoid

S(QG) := (L̂G×QG⇒ QG)

arising from the action of L̂G on QG. Note that this is a bundle gerbe, just
as S(PG) was, but we won’t be needing that structure for the present. The

maps L̂G→ QG is certainly not a crossed module, but one might hope that
even if QG doesn’t fit the bill, some other construction might.
PROPOSITION 3 For G compact, simple, simply-connected, any crossed

module L̂G
t−→ H with kertsimeqU(1), cokert ' G gives a trivial 2-group

extension of G by the 2-group pt//U(1).

COROLLARY There is no strict 2-group model for StringG that uses L̂G.
So we must do something else. To proceed, we need to make several

subsidiary definitions.
DEFINITION Let Q[G = {p ∈ QG | p(n)(0) = p(n)(1) = 0 ∀n ≥ 1}. For
p, q ∈ Q[G, define p � q by p � q(t) = p(t)q(t) for t ∈ [0, 1] and then extend
to a quasiperiodic path. Finally, let L[G = LG ∩Q[G.

Note that there is a map Θ[ : Q[G→ G given by restricting Θ.
LEMMA The inclusion Q[G ↪→ QG makes Q[G → G a reduction of QG
to an L[G-bundle.
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We can then show that Ω[G := L[G/G→ Q[G/G→ G is an extension of
Lie groups. Denote Q[G/G by Q[,∗G. We have, using the central extension

Ω̂[G, an action groupoid

S(Q[,∗G) := (Ω̂[G×Q[,∗G⇒ Q[,∗G)

and in fact this is a strict 2-group, using the group structure on Q[,∗G.
PROPOSITION 4 The inclusion functor ι : S(Q[,∗G)→ S(QG) satisfies:

1. ι is a weak equivalence of Fréchet-Lie groupoids (using the pretopology
of surjective submersions of Fréchet manifolds);

2. The submersion Q[,∗G ×ι,QG,s (L̂G × QG)
t◦pr2−−−→ QG witnessing this

fact has a smooth section.

COROLLARY There is an adjoint equivalence S(Q[,∗G) � S(QG) of Lie
groupoids, and hence a coherent Lie 2-group structure on S(QG).

One application of this is as follows. Let R+(L̂G) denote the category of

positive energy representations of L̂G (these are unitary representations on
separable infinite-dimensional Hilbert spaces satisfying extra conditions). If
ModHilb,G(S(QG)) is some category of bundle gerbe Hilbert modules (with
structure group G; various options are available: Ures, U1+K etc), then there
is a functor

R+(L̂G)→ModHilb,G(S(QG))(
L̂G

ρ−→ U(Hρ)
)
7→ (QG×Hρ → QG) .

We can be agnostic at present as to the structure group the Hilbert bundles
have—actually a nontrivial decision—since the underlying bundles arising
using this functor are trivial.
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