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Kasparov’s bivariant theory

History and Overview

Kasparov’s bivariant KK theory is an extension of K-theory and its
dual, K-homology.

Topological K-theory–Atiyah and Hirzebruch–(1950s).
Its ‘defining feature’ is Bott periodicity.
So in the complex case there are two groups K0(X) and K1(X)
associated to a topological space X.
K-theory is a generalised cohomology theory. A model for the dual
homology theory was suggested by Atiyah.
His idea was realised by Brown, Douglas and Fillmore in a special
case (1970s)
But the general definition remained elusive until Kasparov worked it
out around the beginning of the 80s.

Kasparov understood that K-theory and its dual fitted into a more
general picture in the mid 80s.



First, to go from A-H to Kasparov, we need to replace topological
spaces by commutative algebras. These algebras are the continuous
functions on the space vanishing at infinity (we restrict to paracompact
Hausdorff spaces).

This works ultimately because vector bundles over a space Y give
projective modules over the continuous functions C(Y ) so that
K-theory can be described algebraically.

Establishing the properties of K-theory of the algebra of continuous
functions requires (following Atiyah’s student Wood) the introduction of
non-commutative algebras namely matrix algebras over C(Y ).

Subsequently it was realised that these proofs for topological K-theory
‘worked also’ for noncommutative C∗-algebras. That is, we can
axiomatise K-theory without invoking commutativity.

This led to the Kasparov point of view via the work of many other
mathematicians.



I want to start with the definition which will need some unpacking.

Definition. Let A and B be C∗-algebras, with A separable. An odd
Kasparov A-B-module X consists of a countably generated ungraded
right B-C∗-module X, with π : A→ EndB(X) a ∗-homomorphism,
together with F ∈ EndB(X) such that

π(a)(F − F ∗), π(a)(F 2 − 1), [F, π(a)]

are compact adjointable endomorphisms of X, for each a ∈ A.

Additional definitions, notation...

X is a left A, right B module.

As a B-module it is a C∗-module meaning it is equipped with a
right-action and a B valued inner product: X ×X → B, written as
x, y 7→ (x|y)B ∈ B. It is conjugate linear in the first variable linear in the
second.



The inner product satisfies some additional axioms that generalise the
notion of an inner product so that the complex numbers are replaced in
a sense by the algebra (noncommutative in general) B.

For example in the case where X = B then (x|y)B = x∗y.

Rank one operators:

θx,yz = x · (y|z)B x, y, z ∈ X

Finite rank operators are finite linear combinations of rank one
operators.

Norm on X is given by ‖x‖2 = ‖(x|x)B‖.

X must be both complete and countably generated.

EndB(X) consists of the B-linear endomorphisms of X.



Compact endomorphisms: close up the finite rank operators in the
norm on continuous linear operators on X.

An adjointable operator T on X is one where there is an operator
T ∗ : X → X with

(T ∗x|y)B = (x|Ty)B.

An even Kasparov A-B-module is an odd Kasparov A-B-module,
together with a Z2 grading operator. This means we have a self-adjoint
B-linear endomorphism γ with γ2 = 1 and π(a)γ = γπ(a),
Fγ + γF = 0.

We will use the notation (AXB, F ) or (AXB, F, γ) for Kasparov
modules, generally omitting the representation π. A Kasparov module
(AXB, F ) with π(a)(F − F ∗) = π(a)(F 2 − 1) = [F, π(a)] = 0, for all
a ∈ A, is called degenerate.



We now describe the equivalence relation on Kasparov A-B-modules
which defines classes in the abelian group KK(A,B) = KK0(A,B)
(even case) or KK1(A,B) (odd case). Because of Bott periodicity
there are only these two groups.

The relation consists of three separate equivalence relations: unitary
equivalence, stable equivalence and operator homotopy.

Two Kasparov A-B-modules (A(X1)B, F1) and (A(X2)B, F2) are
unitarily equivalent if there is an adjointable unitary B-module map
U : X1 → X2 such that π2(a) = Uπ1(a)U∗, for all a ∈ A and
F2 = U F1 U

∗.

Two Kasparov A-B-modules (A(X1)B, F1) and (A(X2)B, F2) are stably
equivalent if there is a degenerate Kasparov A-B-module (A(X3)B, F3)
with (A(X1)B, F1) = (A(X2 ⊕X3)B, F2 ⊕ F3) and π1 = π2 ⊕ π3.



Two Kasparov A-B-modules (A(X)B, G) and (A(X)B, H) (with the
same representation π of A) are called operator homotopic if there is a
norm continuous family (Ft)t∈[0,1] ⊂ EndB(X) such that for each
t ∈ [0, 1] (A(X1)B, Ft) is a Kasparov module and F0 = G, F1 = H.

Two Kasparov modules (A(X)B, G) and (A(X)B, G) are equivalent if
after the addition of degenerate modules, they are operator homotopic
to unitarily equivalent Kasparov modules.

The equivalence classes of even (resp. odd) Kasparov A-B modules
form an abelian group denoted KK0(A,B) (resp. KK1(A,B)). The
zero element is represented by any degenerate Kasparov module, and
the inverse of a class [(A(X)B, F )] is the class of (A(X)B,−F ), with
grading −γ in the even case.



The deepest part of the theory developed by Kasparov is the product

KKi(A,B)×KKj(B,C) 7→ KKi+j(A,C).

It remains an unresolved issue to find a more transparent proof of the
existence of the Kasparov product.

The equivalence relation defining the KK group, in conjunction with
the Kasparov product, implies further equivalences between Kasparov
modules, such as Morita equivalence.

It leads to the notion of KK0(A,B) as a ‘morphism’ between A and B
because we have a ‘composition rule’

KK0(A,B)×KK0(B,C) 7→ KK0(A,C).



Special cases:

KK∗(C, C) is the K-group of C and for commutative C∗-algebras
which are of the form C0(Y ), Y paracompact and Hausdorff, this is the
theory first introduced by Atiyah-Hirzebruch. Historically of course
there was a direct definition of the K-theory groups by algebraic means
before Kasparov...

KK∗(A,C) is the K-homology group of A due essentially to Kasparov
but is based on Atiyah’s Ell-theory. Representatives of this group are
Hilbert spaces that are A modules. They are usually called Fredholm
modules.

More generally KK(∗, ∗) is a bifunctor that takes pairs of algebras to
abelian groups. It is covariant in the second variable and contravariant
in the first variable.

KK(∗, ∗) is ‘stable’ in the sense that if we tensor A or B by a copy of
the compact operators on a separable Hilbert space then we do not
change KK∗(A,B).



There are a number of ways to express Bott periodicity in KK-theory.
Kasparov exploited Clifford algebra periodicity (period 2 in the complex
case and period 8 in the real case) to achieve this in his first paper.

Another way is to use the suspension of an algebra A which is by
definition the algebra ΣB := C0(R, B), the continuous functions on R
with values in B and vanishing at infinity or equivalently C0(0, 1)⊗B
where the subscripted zero indicates functions vanishing at the
endpoints.

Note that Σ is a functor in our category of C∗-algebras which
introduces a shift in degree in KK(∗, ∗)

Now Bott periodicity in KK-theory can be captured by showing that if
we replace either argument in KK(A,B) by its double suspension
then we have an isomorphic group. The proof exploits stability.



Index theory is connected to the Kasparov product as we have

KKi(C, A)×KKj(A,C)→ KKi+j(C,C)

Notice that when the right hand argument in KK∗(A,B) is the
complex numbers, then a B-valued inner product is just an ordinary
inner product. So then AXC is a Hilbert space carrying a
representation of A. When A = C it is just a Hilbert space (perhaps
graded). and KK0(C,C) = Z.

Connes and Skandalis produced a proof of the Atiyah-Singer index
theorem in the Kasparov framework.

The operator F in that case arises from a Dirac-type operator acting on
sections of a vector bundle over the underlying even dimensional
manifold M . Using this F we can produce an element of the
K-homology of C(M) that is of KK0(C(M),C).



Then there is a pairing, defined using the Kasparov product, with
elements of KK0(C, C(M)), the K-theory of M . In this case one may
pair with the element of K-theory defined by the vector bundle on
which the Dirac type operator acts.

Of course in practice we want to have an explicit expression for the
pairing implied by the existence of the Kasparov product and this is
given by the usual Atiyah-Singer formula.

The classical Dirac type situation leads to an ‘unbounded Kasparov
picture’ now better known via the special case of ‘spectral triples’ as
introduced by Alain Connes.



The unbounded version

Definition. Given Z2-graded C∗-algebras A and B, an even
unbounded Kasparov A-B-module (A(X)B,D) is given by

1 A Z2-graded, countably generated, right B C∗-module XB;
2 A Z2-graded ∗-homomorphism ρ : A→ EndB(X);
3 A self-adjoint, regular, odd operator D : Dom(D) ⊂ X → X such

that [D, ρ(a)]± is an adjointable endomorphism, and
ρ(a)(1 +D2)−1/2 is a compact endomorphism for all a in a dense
subalgebra A of A.

If the module and algebras are trivially graded, then the Kasparov
module is called odd.

Proposition [Baaj-Julg] If (A(X)B,D) is an unbounded Kasparov
module, then

(
A(X)B,D(1 +D2)−1/2

)
is a Kasparov module.



Recent work by Mesland, Kaad, Lesch, ... has shown that in many
examples unbounded Kasparov modules can be used to explicitly write
down the product

KK(A,B)×KK(B,C)→ KK(A,C)

represented by explicit elements of the respective groups
[(A(X)B,D1)] ⊗̂B [(B(H)C,D2)] =

[(
A(X⊗̂BH)C,D1⊗̂1 + 1⊗̂∇D2

)]
where [(A(X)B,D)] denotes the corresponding KK-class from the
bounded transformation of Baaj-Julg.

The full unbounded Kasparov theory and its potential applications are
an area still being developed.



Kasparov theory and the bulk-edge correspondence

The application of the general theory we are looking at is to topological
insulators. These use KO-theory and hence are more complicated. We
illustrate the idea with the quantum Hall effect.

In the ‘tight binding’ model of a quantum Hall system, we have
magnetic translations Û and V̂ as unitary operators on `2(Z2). These
operators commute with the unitaries U and V that generate the
Hamiltonian H = U + U∗ + V + V ∗, where

(Ûλ)(m,n) = λ(m− 1, n), (V̂ λ)(m,n) = e−2πiφmλ(m,n− 1),

(Uλ)(m,n) = e−2πiφnλ(m− 1, n), (V λ)(m,n) = λ(m,n− 1),

These operators act on `2(Z2). We would also like to consider a
system with boundary. This uses the Hilbert space `2(Z×N). The
bulk-edge correspondence is about linking the topological properties of
the ‘bulk’ (boundary-free) system to a system with an edge.



Let S be the unilateral shift operator on `2(N) with S∗S = 1,
SS∗ = 1− Pn=0. We use the notation K(H) to denote the compact
operators on a Hilbert space H.

Kellendonk, Richter and Schulz-Baldes link ‘bulk’ (no boundary) and
edge systems via the short exact sequence

0→ C∗(Û)⊗K[`2(N)]
ψ−→ C∗(Û ⊗ 1, V̂ ⊗ S)→ C∗(Û , V̂ )→ 0,

where ψ is such that

ψ(Ûm ⊗ ejk) = (V̂ ∗)jÛmV̂ k ⊗ SjPn=0(S
∗)k

for matrix units ejk in K[`2(N)] and then extended to the full algebra by
linearity.



In this sequence the quotient algebra C∗(Û , V̂ ) is the one applicable to
the bulk (i.e. no boundary) system.

The algebra C∗(Û)⊗K[`2(N)] is an ideal in C∗(Û ⊗ 1, V̂ ⊗ S).

We think of the ideal as operators which act on `2(Z×N) and decay
sufficiently fast away from the edge Z× {0}.



Building a Kasparov module

Abstract theory tells us that short exact sequences of the type

0→ C∗(Û)⊗K[`2(N)]→ C∗(Û ⊗ 1, V̂ ⊗ S)→ Aφ → 0

give rise to a class in KK1(Aφ, C
∗(Û)). Let’s make this explicit using

unbounded Kasparov theory.

We need a C∗(Û)-valued inner product on C∗(Û ⊗ 1, V̂ ⊗ S).

First, let Ψ be some linear functional on C∗(S) ⊂ C∗(Û ⊗ 1, V̂ ⊗ S) and
consider the formula(

V̂ l1−l2Ûm1 ⊗ Sl1(S∗)l2
∣∣∣ V̂ n1−n2Ûm2 ⊗ Sn1(S∗)n2

)
:=
(
V̂ l1−l2Ûm1

)∗
V̂ n1−n2Ûm2 Ψ

[(
Sl1(S∗)l2

)∗
Sn1(S∗)n2

]
= Û−m1 V̂ n1−n2−(l1−l2)Ûm2 Ψ

[
Sl2(S∗)l1Sn1(S∗)n2

]
for m1,m2 ∈ Z and n1, n2, l1, l2 ∈ N.



Building a Kasparov module (cont.)

We want the functional Ψ to have the property that
Ψ
[
Sl2(S∗)l1Sn1(S∗)n2

]
= δl1−l2,n1−n2 and that Ψ(T ) = 0 if T is

compact. The functional

Ψ(T ) = res
s=1

∞∑
k=0

〈ek, T ek〉(1 + k2)−s/2

does the trick, where {ek} is any basis of `2(N). Therefore(
V̂ l1−l2Ûm1 ⊗ Sl1(S∗)l2

∣∣∣ V̂ n1−n2Ûm2 ⊗ Sn1(S∗)n2

)
= Û−m1 V̂ n1−n2−(l1−l2)Ûm2 δl1−l2,n1−n2

= Ûm2−m1δl1−l2,n1−n2

so we have a C∗(Û)-valued inner-product.

We also introduce the right-action of C∗(Û), where for any α ∈ Z,(
V̂ n1−n2Ûm ⊗ Sn1(S∗)n2

)
· Ûα = V̂ n1−n2Ûm+α ⊗ Sn1(S∗)n2 .



We divide out the zero-length vectors of C∗(Û ⊗ 1, V̂ ⊗ S) in the norm
induced by (· | ·)

C∗(Û)
(non-trivial!) and complete to obtain the

C∗-module Z
C∗(Û)

.

Next, we need an adjointable left-action by Aφ ∼= C∗(Û , V̂ ). We define
on generating elements

(ÛαV̂ β) ·
(
V̂ n1−n2Ûm ⊗ Sn1(S∗)n2

)
= (ÛαV̂ βV̂ n1−n2Ûm)⊗ Sn1+β(S∗)n2

= e2πiφα(n1−n2+β)V̂ β+n1−n2Ûm+α ⊗ Sβ+n1(S∗)n2

for α, β ∈ Z with β ≥ 0 and an analogous formula but with
Sn1(S∗)n2+|β| for β < 0.

A computation shows that this representation is adjointable under the
inner product (· | ·)

C∗(Û)
.



Finally, we introduce a number operator
N : Dom(N) ⊂ Z

C∗(Û)
→ Z

C∗(Û)
on generating elements as

N
(
V̂ n1−n2Ûm ⊗ Sn1(S∗)n2

)
= (n1 − n2)V̂ n1−n2Ûm ⊗ Sn1(S∗)n2 .

Proposition
(
Aφ

(Z)
C∗(Û)

, N
)

is an odd unbounded Kasparov module.

Furthermore, the corresponding class
[
(Aφ

(Z)
C∗(Û)

, N)
]

in

KK1(Aφ, C
∗(Û)) is the same as the class induced by the short-exact

sequence linking the bulk and edge algebras.

Proof relies on the singular nature of the inner-product and the
functional Ψ.



Edge spectral triple

Next we consider our edge algebra C∗(Û) acting as shift operators on
the space `2(Z).

We have a natural spectral triple in this setting given by(
C∗(Û), `2(Z),M

)
,

where M : Dom(M)→ `2(Z) is given by Mλ(m) = mλ(m).

Our spectral triple is an odd unbounded C∗(Û)-C Kasparov module
and so gives a class in KK1(C∗(Û),C).



Factorisation of bulk triple

To review, we have our bulk triple giving a class in KK(Aφ,C), the
Kasparov module representing the short exact sequence giving a class
in KK1(Aφ, C

∗(Û)) and an edge spectral triple giving a class in
KK1(C∗(Û),C).

Theorem [Bourne-C-Rennie] Under the internal Kasparov product

KK1(Aφ, C
∗(Û))×KK1(C∗(Û),C)→ KK(Aφ,C)

we have that[
(Aφ

(Z)
C∗(Û)

, N)
]
⊗̂
C∗(Û)

[
(
C∗(Û)

(`2(Z))C,M)
]

= −
[
(Aφ

(`2(Z2))C, X, γ)
]

where −[X] denotes the inverse class in the KK-group.

The proof of this Theorem relies on the explicit formula for the
Kasparov product that the unbounded picture gives us.



Pairings and the bulk-edge correspondence (QHE)

Recall that Bellissard’s expression for the Hall conductance comes
from the pairing of the K-theory class of the Fermi projection
[Pµ] ∈ KK(C, Aφ) with the bulk spectral triple; that is,

σH =
e2

h

(
[Pµ] ⊗̂Aφ

[
(Aφ

(`2(Z2))C, X, γ)
])
.

We can now use the Theorem to rewrite this as

σH = −e
2

h

(
[Pµ] ⊗̂Aφ

[
(Aφ

(Z)
C∗(Û)

, N)
]
⊗̂
C∗(Û)

[
(
C∗(Û)

(`2(Z))C,M)
])

and the bulk-edge correspondence follows immediately from the
associativity of the Kasparov product.
To see this, our ‘edge conductance’ is

−e
2

h

(
[Pµ] ⊗̂Aφ

[
(Aφ

(Z)
C∗(Û)

, N)
])
⊗̂
C∗(Û)

[
(
C∗(Û)

(`2(Z))C,M)
]
,

which is a pairing of elements in KK1(C, C∗(Û)) ∼= K1(C
∗(Û)) with

K1(C∗(Û)). Hence this is a pairing of the K-theory and K-homology
of our edge algebra.



Other Applications

We would like use our general method study other topological phases
of matter by imposing time-reversal, particle-hole or chiral symmetry.
Time-reversal and particle-hole operators act anti-unitarily on our
space and so introduce a Real structure into our system.

This means that instead of complex K-theory and (KK-theory) we
must deal with KO or KR-theory. Work by, among others, Thiang
makes this connection explicit.

Because all the central results of Kasparov theory holds for KKR and
KKO groups, we hope to refine our general method to establish a
rigorous bulk-edge correspondence for other topological insulator
systems.


