Exercise Sheet 3 Transformation Groups

Exercise 1: Let G be a topological group, acting on itself via conjugation. For a G-space A, consider the set of G-maps $A \to G$.

a) Show that there is a map

$$TOP_G(A, G) \to Homeo_G(A), \ \vartheta \mapsto (a \mapsto \vartheta(a).a)$$

and conclude that there is an equivariant homeomorphism $A \times A \to A \times A$, $(a, b) \mapsto (\vartheta(a).b, \vartheta(a).a)$.

- b) In the case $A = \mathbb{S}^{n-1}$, G = O(n), determine all possible homeomorphisms that can arise from a).
- c) Take a non-trivial homeomorphism $\varphi : \mathbb{S}^{n-1} \times \mathbb{S}^{n-1} \to \mathbb{S}^{n-1} \times \mathbb{S}^{n-1}$ obtained from b). Denote the space

 $\mathbb{S}^{n-1} \times \mathbb{B}^n \cup_{\omega^k} \mathbb{S}^{n-1} \times \mathbb{B}^n$

by Σ_k^{2n-1} . Show that Σ_1^{2n-1} is homeomorphic to \mathbb{S}^{2n-1} .

Exercise 2: The Klein bottle K is defined as the quotient of $[0,1]^2$, obtained by identifying (x,0) with (1-x,1) and (0,y) with (1,y). Show that K is a fibre bundle with typical fibre \mathbb{S}^1 and structure group \mathbb{Z}_2 .

Exercise 3: Let $p: E \to B$ be a fibre bundle with typical fibre F and structure group K. Let $\{U_i\}_{i \in I}$ be an atlas of bundle charts and ϑ_{ij} the transition function for U_i and U_i . Define a G-space E' as the quotient space of the space (disjoint union)

$$\coprod_{i\in I} U_i \times K$$

by the relation $U_i \times K \ni (x, k) \sim (x, \vartheta_{ij}(x) \circ k) \in U_j \times K$. Show that the projection $p' : E' \to B$ onto the first factor is a principal K-bundle and that p is the F-bundle associated to p'.

Handing in: 08.12.11 in exercise class.

Action of the Week

Group:	\mathbb{Z}_p, p prime
Space:	$\mathbb{S}^{2n-1} \subseteq \mathbb{C}^n$
Action:	$1.(z_1,\ldots,z_n) = (e^{\frac{2\pi i q_1}{p}} \cdot z_1,\ldots,e^{\frac{2\pi i q_n}{p}} \cdot z_n)$ q_1,\ldots,q_n relatively prime to p
Isotropies:	$\{e\}$
Further properties:	Quotient spaces are the lens spaces