Aufgabenblatt 2 Funktionalanalysis

Aufgabe 1: [10 Punkte] Beweisen Sie: Ein kompakter Hausdorffraum, welcher dem ersten Abzählbarkeitsaxiom genügt, ist folgenkompakt.

Aufgabe 2: [3+3+4] Punkte Es sei I eine beliebige Menge, $\mathbb{R}^I = \{f: I \to \mathbb{R}\}$.

- 1. Für $\varepsilon > 0$, $F \subseteq I$ endlich, sei $U(f, \varepsilon, F) = \{g : I \to X \mid |f(i) g(i)| < \varepsilon \, \forall i \in F\}$ und $\mathcal{U}_f = \{U(f, \varepsilon, F) \mid \varepsilon > 0, F \subseteq I \text{ endlich}\}$. Zeigen Sie, dass \mathcal{U}_f eine Umgebungsbasis von f einer Topologie τ auf \mathbb{R}^I ist. (D.h. zeigen Sie, dass endliche Schnitte von Mengen in \mathcal{U}_f stets wieder ein Element von \mathcal{U}_f enthalten. Die Elemente von τ sind dann Vereinigungen von Mengen aus \mathcal{U}_f für $f \in \mathbb{R}^I$ variabel).
- 2. Zeigen Sie, dass mit der Topologie aus 2.1. die Abbildung $\pi_i : \mathbb{R}^I \to \mathbb{R}, f \mapsto f(i)$ für jedes $i \in I$ stetig ist.
- 3. Es sei σ eine Topologie auf \mathbb{R}^I , so dass die Abbildungen $\pi_i : \mathbb{R}^I \to \mathbb{R}$ stetig sind. Zeigen Sie, dass dann die Abbildung $(\mathbb{R}^I, \sigma) \to (\mathbb{R}^I, \tau), f \mapsto f$ stetig ist.

Aufgabe 3: [10 Punkte] Es sei X ein Vektorraum, $p_n: X \to \mathbb{R}^{\geq 0}$ für $n \in \mathbb{N}$ eine Menge von Funktionen mit $p_n(x+y) \leq p_n(x) + p_n(y)$ und $p_n(\lambda x) = |\lambda| \cdot p_n(x)$ für $n \in \mathbb{N}, x, y \in X, \lambda \in \mathbb{R}$ und zu jedem $x \in X \setminus \{0\}$ gebe es $n \in \mathbb{N}$ mit $p_n(x) \neq 0$. Zeigen Sie:

$$d(x,y) = \sum_{n=1}^{\infty} \frac{1}{2^n} \frac{p_n(x-y)}{1 + p_n(x-y)}$$

definiert eine Metrik auf X.

Aufgabe 4: [2+4+4] Punkte] Es sei X ein normierter Raum, $i_X:X\to \hat{X}$ seine Vervollständigung (als metrischer Raum). Zeigen Sie, dass \hat{X} in kanonischer Weise ein Banachraum ist, in dem Sie zeigen:

- 1. (Lineare Struktur) \hat{X} trägt die Struktur eines Vektorraums, so dass $i_X(X)$ ein Unterraum ist.
- 2. (Vollständigkeit) Die vervollständigte Metrik auf \hat{X} wird von einer Norm induziert, in welcher \hat{X} Banachraum ist.
- 3. (Kanonizität) Ist $L: X \to Y$ linear und stetig, Y normierter Raum, so gibt es $\hat{L}: \hat{X} \to \hat{Y}$ linear und stetig mit $\hat{L} \circ i_X = i_Y \circ L$.

Abgabe: 15.04.10 in den Übungen.

Raum der Woche

Bezeichnung: ℓ^{∞}

Definition: $\ell^{\infty} = \{x : \mathbb{N} \to \mathbb{R} \mid \sup_{n \in \mathbb{N}} |x_n| < \infty \}$

Norm: $||x||_{\infty} = \sup_{n \in \mathbb{N}} |x_n|$

Dualraum: $m(\mathbb{N}, \mathbb{R})$

Weitere Eigenschaften: Nicht reflexiv, inseparabel, Prädualraum ℓ^1 .