
1 NOTATION AND FIRST FORMULAS
Fourier Transform and one of its applications

The main goal of this script is to present a relatively self-contained introduction of the FourierTransform and as well one of its applications. This material is intented to be covered in a talk ofabout 90 minutes. Since this topic is indeed dense I should apologise for the omisions I shouldmake during the talk in order to make it suitable for the time I have. Nevertheless, The motivatedreader can consult about this topic either way here or in one the bibliographical sources.
Jose Vasquez

1 Notation and first formulas
From now on we are going to consider always complex valued functions with n variables.
Definition 1. A n-tuple α = (α1, ..., αn) of non negative integeres is said to be a multiindex.
The set of all such a tuples is going to be denoted by Nn

0 .
For α, β ∈ Nn

0 , x ∈ Rn we define

• (length) |α| := |α|1

• (Factorial) α! := α1!...αn!

• (Weak-order) α ≤ β :⇔ ∀j : αj ≤ βj

• (Monomial) xα := xα11 ...xαnn

• (Derivatives) ∂α := ∂|α|
∂xα11 ...∂xαnn

and Dα := (−i)|α|∂α

• (Binomial coeficient)
(
α
β

)
:=
∏
j

(
αj
βj

)
where

(
αj
βj

)
:=

αj !
βj !(αj−βj)!

Remark 1. For α, β ∈ Nn
0 , it holds that(

α
β − ej

)
+

(
α
β

)
=

(
α + ej
β

)
It basically follows from the well known identity for natural numbers .(

a
b − 1

)
+

(
a
b

)
=

(
a+ 1
b

)
a, b ∈ N

Since stimations with multiindexes are common and indeed tedious, in this script just fun-damental staff is going to be verified in order to keep the patient of the reader.
Theorem 1. For α ∈ Nn

0 , one has

1. (Binomial formula)

x, y ∈ Rn : (x + y)α =
∑
β≤α

(
α
β

)
xβyα−β
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1 NOTATION AND FIRST FORMULAS
2. (Leibniz formula) For u, v ∈ C |α| one has

∂α(uv) =
∑
β≤α

(
α
β

)
∂βu∂α−βv

Proof. It is enough to prove (1) by induction on |α|.
• The case |α| = 0 is indeed trivial.
• Suppose the proposition holds for α multiindex. By calculation it is straightforward tonotice that

(x + y)α+ej = (x + y)α . (x + y)ej =

∑
β≤α

(
α
β

)
xβyα−β

 .(xej + yej )

=
∑
β≤α

(
α
β

)
xβ+ejyα−β︸ ︷︷ ︸

:=B

+
∑
β≤α

(
α
β

)
xβyα−β+ej

making the change of multiindexes θ := β + ej in B , one gets
B =

∑
θ≤α+ej

(
α

θ − ej

)
xθyα−θ+ej

therefore, using remark 1
(x + y)α+ej =

∑
θ≤α+ej

[(
α
θ

)
+

(
α

θ − ej

)]
xθyα−θ+ej

=
∑

θ≤α+ej

(
α + ej
θ

)
xθyα−θ+ej �

The following integral appears often in calculations, so that we need a sufficient condition toassure its convergence.
Lemma 1. Define

< x >:= (1 + |x|2)
1
2 x ∈ Rn

Let 1 ≤ p < ∞. Then s > n/p implies∫
Rn
< x >−sp dx < ∞

Proof. Let s > n
p . We recall that1.

n

√∏
i

(
1 + x2i

)
︸ ︷︷ ︸
Geometric average

≤
∑
j

1 + x2i
n︸ ︷︷ ︸

(Arithmetic) average

≤ 1 + |x|2

2. ∫
R

(1 + x2)−1dx = π
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2 THE SCHWARTZ SPACE
it follows by simple calculation

(1 + |x|)−sp = (1 + 2|x|+ |x|2)−
ps
2 ≤

(1)

[∏
i

(
1 + x2i

)]− sp
2n

≤Hip

[∏
i

(
1 + x2i

)]−1
Now integrate over the space and conclude usying (2). �

Remark 2. The following relation is sometimes useful when dealing with monomials. You may
see [1] A.9. for its proof∑

|α|≤m

x2α ≤ < x >2m=
∑
|α|≤m

Cm,αx2α ≤ Cm
∑
|α|≤m

x2α

For some positive constants Cm,α , Cm.´

2 The Schwartz space
One space in which one is interested when doing Fourier transform is the well known Schwartz space
S := S(Rn) - or the space of rapidly decreasing functions -. This space consists in all thesmooth mappings φ ∈ C∞(Rn,C) such that

|φ|k := sup{|xα∂βφ| : x ∈ Rn |α + β| ≤ k } < ∞ k ∈ N0

Remark 3. 1. We recall that each |.|k for k ∈ N0 defines a semminorm and also that.

φ ∈ S ⇔ pk (φ) := sup{| < x >k ∂αφ(x)| : x ∈ Rn |α| ≤ k} < ∞

moreover, the family (pk)k in view of remark 2 induces the same topology as (|.|k)k
2. Consider a linear mapping f : S −→ S. Then

f continuous ⇔ ∀l ∈ N0 ∃m ∈ N0 ∃C > 0 : |f (x)|l ≤ C|x|m x ∈ S

for the proof of this statement we should work with some topology. You may have a glance
at the last part of this script

3. Recalling that |xα | ≤ |x||α|, One notices that

|xα∂βφ(x)| ≤ |x||α||∂βφ(x)| ≤ (|x||α|+1 + |x||α|)
1 + |x| |∂βφ(x)| ≤ < x >l + < x >m

1 + |x| |∂βφ(x)|

≤ Cl,m
1 + |x| → 0 as |x| → ∞

which leads to

φ ∈ S ⇔ lim|x|→∞xα∂βφ(x) = 0 ∀α, β ∈ Nn
0There is one subspace of S which is particullary important. This space consists in all thesmooth functions with compact support. However it is not obvious that such a space is non-trivial.

Example 1. Set φ(x) := f (|x|2 − 1), where

f (t) :=

{
e1/t if t < 0;
0 if t ≥ 0.

In analysis courses one shows that φ ∈ C∞ and supp(φ) = B1(0). Which means that this
function belongs to the mentioned space.
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3 FOURIER TRANSFORM
Proposition 1. (Immersion property) One has that S ↪→ Lp for all 1 ≤ p ≤ ∞.

Proof. For each φ ∈ S we remark that
• p =∞ : ||φ||∞ = |φ|0

• 1 ≤ p < ∞ :

|φ(x)|p ≤ |φ(x)|p
∏

j
(1 + x2j )

p−1
︸ ︷︷ ︸

>1

≤ sup


∣∣∣∣∣∣φ(x)

∏
j

(1 + x2j )

∣∣∣∣∣∣︸ ︷︷ ︸
≤ |φ(x)|Cn<x>2n

: x ∈ Rn



p∏
j

(1 + x2j )

−1 ≤ Cn,p|φ|p2n

∏
j

(1 + x2j )

−1

Integrating over Rn and recalling the above identity∫
R

(1 + x2)−1 = π

one obtains
||φ||p ≤ Cn,p|φ|2nSince the functions in S are smooth - in particular continuous- , one has that the naturalinclusion is injective. �

Remark 4. The last proposition allows us to treat S as a subspace of Lp for each p. Moreover,
it can be proved that such an immersion is dense. You may see [1] Lemma 5.2(3) .

3 Fourier Transform
The Fourier transform of a function u(x) ∈ L1 with new variable ξ is defined as

û(ξ) := Fξ(u) :=

∫
Rn
e−i<x,ξ>u(x)dx ξ ∈ Rn

The following theorem states the most basic properties of the Fourier Transform. We recall herethat there are important ones which are not discussed in this script - for instance, Plancheler’sTheorem-. The interested reader might have a glance at [1].
Theorem 2. (Properties)

1. F : L1(Rn) −→ C(Rn) ∩ L∞(Rn) is a well defined continuous map, such that ||û||∞ ≤
||u||1 and û(ξ)→ 0 as |ξ| → ∞

2. F : S −→ S is a continuous linear map and also

F
(
xαDβ

x f (x)
)

= −(Dξ)α
(
ξβ f̂ (ξ)

)
α, β ∈ Nn

0
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3 FOURIER TRANSFORM
3. Define the Co-Fourier transform as the mapping

Fξ(u) :=

∫
Rn
ei<x,ξ>u(x)dx ξ ∈ Rn

By saying Ff is meant F f . Then F : S −→ S is a bijection - in fact an Homeomorphism
- with inverse F−1 := (2π)−1F.

Proof.1. It is clear that ||f̂ ||∞ ≤ ||f ||1 . For the continuity just notice that
|e−i<x,ξ>f (x)| ≤ |f (x)| ∈ L1

Using standart resoults concerning integration depending on parameteres, one knows thenthat f̂ is continuous - as function of ξ-. The fact that û(ξ) → 0 as |ξ| → ∞ will beproved later.2. For the identity it is enough to show that
• For f (x) ∈ L1 such that xj f (x) ∈ L1, one has

∂ξjF(f (x)) = Fξ(−ixj f (x))In fact, one notices
|∂ξj (e−i<x,ξ>f (x))| = | − ixje−i<x,ξ>f (x)| = |xj f (x)| ∈ L1

therefore, applying the same standart result we already used, one obtains
∂ξj
∫
Rn
e−i<x,ξ>f (x)dx =

∫
Rn
−ixje−i<x,ξ>f (x)dx

which proves the point.
•

F(∂j f (x)) = −iξjF(f (x))Using integration by parts:
Fξ(∂j f (x)) = limR→∞

∫
BR (0)

e−i<x,ξ>∂j f (x)dx

= limR→∞

(∫
BR (0)

−iξje−i<x,ξ>f (x)dx +

∫
∂BR (0)

e−i<x,ξ>f (x)
xj
|x|dx

)
However∣∣∣∣∫

∂BR (0)
e−i<x,ξ>f (x)

xj
|x|

∣∣∣∣ ≤ ∫
∂BR (0)

|f (x)|
xj
|x|dx ≤

∫
∂BR (0)

|f (x)|dx

≤ µ(∂BR (0)) sup{|f (x)| : x ∈ ∂BR (0)} → 0 as R → ∞Since f ∈ S. Now replace and conclude the identity.The right side of this identity in view of Leibniz formula shows that f̂ ∈ S - again aftersome calculations with multiindexes- . Now let ε > 0 and f ∈ L1. Recall a couple offacts
5



3 FOURIER TRANSFORM
(a) There is a g ∈ L1 such that ||f − g||1 < ε

2 . By (1), one obtains
|f̂ − ĝ| ≤ ||f̂ − ĝ||∞ ≤ ||f − g||1 <

ε
2

ξ ∈ Rn

(b) Since ĝ ∈ S, there is an R > 0 such that |ξ| ≥ R implies |ĝ(ξ)| ≤ ε
2Combining those, one has

|f̂ (ξ)| ≤ |f̂ (ξ)− ĝ(ξ)|+ |ĝ(ξ)| < ε |ξ| ≥ R

which is the missing fact in (1). For the continuity notice that
F((1−∆)f ) =

(
1 +

∑
ξ2j
)
f̂ =< ξ >2 f̂

for each k ∈ N0 put
l :=

{ k
2 if k even;
k+1
2 if k odd.

It can be proved (cf. [1] theorem 5.4) that
|f̂ |0 ≤ || < x >−n−1 ||1 |f |n+1

|f̂ |k ≤ Ck,l|f |k+n+1where Ck,l := sup{< x >n+1 (1 − ∆)l(xα f (x)) : x ∈ Rn |α| ≤ k}. It implies thecontinuity of F .
3. The proof of this proposition carries lots of calculation, it is convenient to sketch it

(a) The first fact we shall remark is that
Ff = F(f )

Which means that F has the same properties that F has - in particular it maps Sonto itself continuously -.(b) We shall try to calculate
(2π)−n

∫
Rn
ei<x,ξ>

(∫
Rn
e−i<y,ξ>f (y)dy

)
dξ

but the function e−i<ξ,x−y>f (y) is NOT intgrable on R2n. It means that one can notjust change the integration’s order.(c) To overcome this difficulty we shall introduce a function ψ(ξ) ∈ S which will beremoved afterwords passing to the limit. In more detail; for ε > 0 insert ψ(εξ) with
ψ ∈ S and use the change of varibables (η, z) = (εξ, (y−x)/ε)). Some calculationslead to ∫

Rn
ei<x,ξ>ψ(εξ)f̂ (ξ)dξ =

∫
Rn
ψ̂(z)f (x + εz)dz

(d) Let ε → 0 and use the theorem of Lebesgue to show
ψ(0)

∫
Rn
ei<x,ξ>f̂ (ξ)dξ = f (x)

∫
Rn
ψ̂(z)dz
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3 FOURIER TRANSFORM
(e) We need the following lemma

Lemma 2. It holds for φ(x) := e−|x|2/2 that φ̂(ξ) = (2π)n/2e−|ξ|2/2.

Proof. First recall that
φ̂(ξ) :=

∫
Rn
e−i<x,ξ>e−|x|2/2dx =

∏∫
R

e−ixjξje−x
2
j /2dxj

and so, it is enough to consider the case n=1. Notice φ satisfies the following ODE
y′ + xy = 0

with initial condition y(0) = 1. Put g := (2π)−1/2φ̂ and recall that
g(0) = (2π)−1/2φ̂(0) = (2π)−1/2

∫
R

e−x2/2dx = 1

Using the last property of the Fourier transform, and the fact that φ satisfies thementioned ODE one obtains
0 = φ̂′ + x̂φ = iξφ̂ +

(
1

−iφ̂
)′

⇔ ξg+ g′ = 0

by Picard’s theorem, one concludes
φ = g ⇔ φ̂ = (2π)1/2φ

and so, the n- dimensional case reduces simply to
φ̂(ξ) =

∏∫
R

e−ixjξje−x
2
j /2dxj = (2π)n/2

∏
e−ξ

2
j /2 = (2π)n/2e−|ξ|2/2 �

choose ψ(ξ) := e−|ξ|2/2 and apply such a lemma to obtain
ψ̂(z) = (2π)n/2e−|z|2/2 ψ(0) = 1

∫
Rn
ψ̂(x)dx = (2π)n

one concludes the result from the indentity of the last item �

Definition 2. (Convolution)

1. For f ∈ L1(Rn) and g ∈ C(Rn) ∩ L∞(Rn). The convolution

(f ? g)(x) :=

∫
Rn
f (x − y)g(y)dy

Is defined for all x ∈ Rn, and satisfies ||f ? g||∞ ≤ ||f ||1 ||g||∞

2. In the case f , g ∈ L1(Rn), the convolution is defined a.e. and it holds that ||f ? g||1 ≤
||f ||1 ||g||1

Theorem 3. (Convolution’s properties)

1. For f , g ∈ L1(Rn) one has that F(f ? g) = F(f )F(g).

2. For f , g ∈ S. It holds that f ? g ∈ S
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4 APPLICATION
Proof.

1. For ξ a.e

F((f?g)(x))(ξ) = F
(∫

Rn
f (x − y)g(y)dy

)
(ξ) =

∫
Rn
e−i<x,ξ>

[∫
Rn
f (x − y)g(y)dy

]
dx

=

∫
Rn
g(y)

[∫
Rn
e−i<x,ξ>f (x − y)dx

]
dy

=

∫
Rn
g(y)

[∫
Rn
e−i<x+y,ξ>f (x)dx

]
dy

=

∫
Rn
e−i<x,ξ>f (x)dx

∫
Rn
e−i<y,ξ>g(y)dy = (F(f ).F(g))(ξ)

2. Notice F(φ ? ψ) = F(φ)F(ψ) ∈ S. Now apply inverse Fourier transform and conclude.
�It is convenient at least to state the well known result of Plancheler, which allows us to considerFourier transform defined on L2 with some aditional considerations ( for a complete proof of thisstatement you may see [2] or [1])

Theorem 4. (Parseval-Plancheler theorem)

1. The Fourier transform F : S → S extends in a unique way to an isometric isomorphism
F2 of L2(Rn, dx) onto L2(Rn, (2π)−n, dx) which satisfies the following identities∫

f (x)g(x)dx = (2π)−n
∫
F2(f )(ξ)F2(g)(ξ)dξ∫

|f (x)|2dx = (2π)−n
∫
|F2(f )(ξ)|2dξ

for all f , g ∈ L2(Rn)

2. There is an identification

F2(f ) = F(f ) for f ∈ L1(Rn) ∩ L2(Rn)

4 Application
As an example of aplication we will solved the n− dimensional heat equation with an specialinitial condition. The following example is made with the aim of setting ideas before solving thementioned equation
Example 2. (a non-offensive guy) For k ∈ R fixed consider the following problem{ dg

dt (t)− kg(t) = 0 t>0
g(0) = c c∈ R.

as we did in school we calculate the roots of the characteristic polynomial of owr ODE

P(λ) := λ − k = 0 ⇒ λ = k

therefore the solution is given by

g(t) = g(0)e−kt = ce−kt t > 0

8



4 APPLICATION
Now look at P(λ) and at Theorem 2 (2). Is it SCREAMING something to you?.

Excercise 1. (Wave equation) Consider the homogeneous n-dimensional heat equation.{
ut(x, t)−∆xu(x, t) = 0 t>0;
u(x, 0) := φ(x) x ∈ Rn.

for some φ ∈ S.

We are going to show that this problem has one solution in S. By taking Fourier transform one
obtains

F(ut(x, t)) =

∫
Rn
e−i<x,ξ> ∂∂t u(x, t)dx = limh→0

1

h

∫
Rn
e−i<x,ξ> [u(x, t + h)− u(x, t)]dx

= limh→0
1

h

[∫
Rn
e−i<x,ξ>u(x, t + h)dx −

∫
Rn
e−i<x,ξ>u(x, t)dx

]
= limh→0

1

h [û(ξ, t + h)− û(ξ, t)] =
∂
∂t û(ξ, t)

on the other hand
F(∆xu) =

∑
ξ2j û(ξ, t) = |ξ|2û(ξ, t) .

For a fixed ξ ∈ Rn and named g(t) := û(ξ, t), our Cauchy’s problem turns out to be way
easier. More in detail, it becomes{ dg

dt (t)− |ξ|
2g(t) = 0 t>0

gξ(0) = φ̂(ξ) ξ ∈ Rn.

from the last example, for a fixed ξ one knows that

û(ξ, t) = φ̂(ξ)e−|ξ|2t t > 0

by Theorem 3 one obtains

u(x, t) = φ(x) ? F−1(e−|ξ|2t)(x) t > 0 x ∈ Rn

In our context, the last property is telling us that the solution of our Cauchy’s problem is unique
-if it lives in S; since the Gaussian function is a rapidly decreasing function- . Similarly as we
did when calculating the Fourier transform of the Gaussian function, one can find that

F−1x (e−|ξ|2t) = (2π)−n/2t−n/2e−|x|2/4t (x, t) ∈ Rn ×R+

thus, one solution - the unique rapidly decreasing one -of this PDE is given by

u(x, t) = (2π)−n/2t−n/2e−|x|2/4t ? φ(x) x ∈ Rn t > 0

u(x, 0) = φ(x) x ∈ Rn
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5 SOME USED TOPOLOGY
5 Some used topology
This section is devoted to summarize the most important topological facts that were used in thetalk, for a detailed proof of those statements which are not shown here please check [1] AppendixB.
Definition 3. A topological vector space over K is a vector space X provided with a topology
τ with respect to which the vector space operations are continuous i.e. The mappings

(x, y)→ x + y (λ, x)→ λx (λ, x, y) ∈ K× X × X

are continuous

Remark 5. The topology of every topological vector space can be described by a neighborhood
system at 0.

Definition 4. 1. A locally convex space is a topological vector space which has a local basis
at 0 consisting of convex sets.

2. A topological vector space X is called a Frechet space when X is metrizable with a
translation invariant metric d, (X, d) is complete and X is locally convex.

Example 3. S provided with the family of semminorms P := (|.|k)k defined in definition 2 -
or remark 3 - is metrizable ( see excercise sheet 1 (3) ) and it is complete with respect to this
metric. Notice P separates points.Having a vector space X and a separating family of semminorms, we are interested inendowing X with a topology which makes it become a topological space.
Theorem 5. Let X be a vector space and P be a separating family of semminorms. One topology
on X can be defined by taking as a local system of neighborhoods at 0 the sets

V (p, ε) := {x ∈ X : p(x) < ε} p ∈ P (x, ε) ∈ X ×R+

together with their finite interesections

W (p1, ..., pN) :=
⋂
i≤N

V (pi, εi)

with this topology X is a topological vector space and each semminorm is a continuous mapping.

Definition 5. A separating family of semminorms P is said to satisfy the max-property if and
only if

∀p1, p2 ∈ P ∃p ∈ P ∃C > 0 : p ≥ Cmax{p1, p2}

Example 4. The family of semminorms (pk)k defined in remark 3 (1), satisfies the max-property

Remark 6. Each countable separating family of semminorms P can be replaced by a new
countable separating family P′ which induces the same topology and satisfies the max-property.
In fact one can simply define P′ as the set of semminorms p ∈ P with p = max{p1, ..., pN} for
pj ∈ P and N ∈ N.

Lemma 3. Let X, Y be topological vector spaces with topologies given by a separating family
of semminorms P,Q - respectively- having the max-property, usying the method set in theorem
5. Then for a linear mapping T : X → Y one has

T continuous ⇔ (∀q ∈ Q)(∃p ∈ P)(∃C > 0) : |q(T (x))| ≤ Cp(x) x ∈ X
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5 SOME USED TOPOLOGY
Proof. ⇐ is clear.

⇒. Since P,Q satisfy the max-property and the sets W in theorem 5 constitute a local basisat 0, the notion of continuity reduces to
∀ε ∃δ > 0 : ∀q ∈ Q , ∃p ∈ P s.t. p(x) < δ ⇒ |q(T (x))| < ε

Our claim holds for c := ε
δ . In fact one has

1. p(x)=0 implies q(T (x)) = 0 otherwise |q(T (tx))| = t|q(T (x))| → ∞ for t → ∞ whereas
p(tx) = 0 for t>0. It contradicts the continuity of T .

2. p(x) > 0. Let 0 < δ ′ < δ . Then
p
(

δ ′
p(x)x

)
= δ ′ < δ ⇒ q

(
T
(

δ ′
p(x)x

))
< ε ⇒ q(T (x)) < ε

δ ′p(x)

now let δ ′ → δ and conclude. �
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