von Neumann Algebren

Sören Berger Seminar zur Funktionalanalysis Universität Hamburg

10. Februar 2012

Definition 1. Sei \mathcal{B} eine Algebra und $\mathcal{A} \subset \mathcal{B}$ dann heißt

$$\mathcal{A}' := \{ T \in \mathcal{B} | AT = TA \quad \forall A \in \mathcal{A} \}$$

die Kommutante von \mathcal{A} . Wir schreiben \mathcal{A}'' statt $(\mathcal{A}')'$ und \mathcal{A}''' statt $(\mathcal{A}'')'$ (Offensichtlich gilt $(\mathcal{A}'')' = ((\mathcal{A}')')' = (\mathcal{A}')''$).

Lemma 2. Für Teilmengen \mathcal{A}, \mathcal{B} einer Algebra gilt:

- 1. $A \subset B \Rightarrow B' \subset A'$
- 2. $\mathcal{A} \subset \mathcal{B}' \Leftrightarrow \mathcal{B} \subset \mathcal{A}'$
- 3. $\mathcal{A} \subset \mathcal{A}''$
- 4. $\mathcal{A}' = \mathcal{A}'''$

Beweis. 1. Für $T \in \mathcal{B}'$ gilt TB = BT für alle $B \in \mathcal{B}$ insbesondere gilt also TB = BT für alle $B \in \mathcal{A}$ also $T \in \mathcal{A}'$.

- 2. Aus $\mathcal{A} \subset \mathcal{B}'$ folgt das für alle $A \in \mathcal{A}$ und für alle $B \in \mathcal{B}$ AB = BA gilt also $\mathcal{B} \subset \mathcal{A}'$ Und umgekehrt genauso.
- 3. Es gilt $\mathcal{A}' \subset \mathcal{A}'$ und aus 2. folgt $\mathcal{A} \subset (\mathcal{A}')' = \mathcal{A}''$
- 4. Es gilt nach 3. $\mathcal{A}' \subset (\mathcal{A}')'' = \mathcal{A}'''$. Und es gilt wieder nach 3. $\mathcal{A} \subset \mathcal{A}''$ und nach 1. folgt dann $\mathcal{A}''' = (\mathcal{A}'')' \subset (\mathcal{A})' = \mathcal{A}'$.

Erinnerung 3. Sei \mathcal{A} eine Banachalgebra und $A, \tilde{A} \in \mathcal{A}$.

- Eine Abbildung $*: \mathcal{A} \to \mathcal{A}$ mit $*(A) := A^*$ heißt Antilinearer Antihomomorphismus, falls für alle $A, \tilde{A} \in \mathcal{A}$ und $\lambda \in \mathbb{C}$ gilt:
 - 1. $(A + \tilde{A})^* = A^* + \tilde{A}^*$
 - 2. $(\lambda A)^* = \overline{\lambda} A^* antiliear$
 - 3. $(AB)^* = B^*A^*$ antihomomorph
- Eine Banachalgebra $\mathcal A$ mit solch einer Abbildung * nennen wir Banach*-Algebra.
- Ein Algebrenhomomorphismus $\phi: \mathcal{A} \to \mathcal{B}$ zwischen Banach-*-Algebren heißt *-Homomorphismus, falls $\phi(A^*) = (\phi(A))^*$ für alle $A \in \mathcal{A}$ erfüllt ist und *-Isomorphismus, falls er zusätzlich bijektiv ist.

Bemerkung 4. Im folgenden sei \mathcal{H} stets ein komplexer Hilbertraum und $\mathcal{L}(\mathcal{H})$ der Raum aller stetigen Operatoren $\mathcal{H} \to \mathcal{H}$. Wir wissen, theoretisch dank Christians Vortrag, dass $\mathcal{L}(\mathcal{H})$ mit der Adjunktion eine Banach*-Algebra ist.

Definition 5. Eine *-Unteralgebra $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ mit $\mathcal{A} = \mathcal{A}''$ heißt von Neumann Algebra.

Erinnerung 6. Ein Maßraum (Ω, Σ, μ) heißt σ -endlich, falls eine Folge $(\Omega_n)_{n\in\mathbb{N}}$ in $\mathcal{P}(\Omega)$ existiert, mit:

$$\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset \dots$$

wobei $\mu(\Omega_n) < \infty$ für alle $n \in \mathbb{N}$ und:

$$\Omega = \bigcup_{n \in \mathbb{N}} \Omega_n$$

Bemerkung 7. Man kann zeigen, dass jede kommutative von Neumann Algebra auf einem seperablen Hilbertraum isomorph zu $(L^{\infty}(\Omega, \Sigma, \mu))$ für einen passenden Maßraum (Ω, Σ, μ) ist.

Bemerkung 8. Sei (Ω, Σ, μ) ein σ-endlicher Maßraum. Wir wissen, dass $L^2((\Omega, \Sigma, \mu))$ ein Hilbertraum ist und werden nun $L^{\infty}(\Omega, \Sigma, \mu)$ in $\mathcal{L}L^2((\Omega, \Sigma, \mu))$ einbetten. Für $[f] \in L^{\infty}(\Omega, \Sigma, \mu)$, definieren wir die Abbildung:

$$\Phi_{[f]} \colon L^2((\Omega, \Sigma, \mu)) \to L^2((\Omega, \Sigma, \mu)), \quad [g] \mapsto [fg]$$

und hiermit definieren wir den *-Isomorphismus:

$$i: L^{\infty}(\Omega, \Sigma, \mu) \to i(L^{\infty}(\Omega, \Sigma, \mu)) \subset \mathcal{L}L^{2}((\Omega, \Sigma, \mu)), \quad [f] \mapsto \Phi_{[f]}$$

Satz 9. $i(L^{\infty}(\Omega, \Sigma, \mu))$ ist eine (sogar kommutative) von Neumann Algebra.

Beweis. $(L^{\infty}(\Omega, \Sigma, \mu))$ ist eine kommutative Banach-*-Algebra und da i ein *-Isomorphismus ist, ist auch $i(L^{\infty}(\Omega, \Sigma, \mu))$ eine kommutative Banach-*-Algebra und ist damit insbesondere *-Unteralgebra von $\mathcal{L}L^{2}((\Omega, \Sigma, \mu))$. Weiter zeigen wir die stärkere Aussage:

$$i(L^{\infty}(\Omega, \Sigma, \mu)) = i(L^{\infty}(\Omega, \Sigma, \mu))'$$

Da $i(L^{\infty}(\Omega, \Sigma, \mu))$ kommutativ ist gilt bereits:

$$i(L^{\infty}(\Omega, \Sigma, \mu)) \subset i(L^{\infty}(\Omega, \Sigma, \mu))'$$

Für die andere Inklusion sei nun $T \in \mathcal{L}L^2(\Omega, \Sigma, \mu)$ gegeben mit:

$$T\Phi_{[f]} = \Phi_{[f]}T\tag{1}$$

für alle $[f] \in L^{\infty}(\Omega, \Sigma, \mu)$.

Seien $\Omega_n \subset \Omega$ gegeben, mit $\Omega = \bigcup_{n \in \mathbb{N}} \Omega_n$, wobei $\Omega_1 \subset \Omega_2 \subset \Omega_3 \subset ...$ und $\mu(\Omega_n) < \infty$ für alle $n \in \mathbb{N}$.

Dann ist $\chi_{\Omega_n} \in L^2((\Omega, \Sigma, \mu))$ und wir setzen:

$$[g_n] := T([\chi_{\Omega_n}]) \in L^2((\Omega, \Sigma, \mu))$$
(2)

Wir zeigen jetzt $[g_n] \in L^{\infty}((\Omega, \Sigma, \mu))$. Sei hierfür $g_n \in [g_n]$. Angenommen es gibt ein $E \subset \Omega$ und $0 < \mu(E) < \infty$, sodass $|g_n| > ||T||$ auf E. Dann $\chi_E \in L^2((\Omega, \Sigma, \mu))$ (außerdem gilt $\chi_M \in L^{\infty}((\Omega, \Sigma, \mu))$ für alle $M \subset \Omega$) und

$$g_n\chi_E=\chi_Eg_n=\chi_ET(\chi_{\Omega_n})=\Phi_{\chi_E}(T(\chi_{\Omega_n}))=T(\Phi_{\chi_E}(\chi_{\Omega_n}))=T(\chi_{E\cap\Omega_n})$$

also

$$\int_{E} |g_{n}|^{2} d\mu = \int_{\Omega} |g_{n}|^{2} \chi_{E} d\mu = \int_{\Omega} |g_{n} \chi_{E}|^{2} d\mu
= \|g_{n} \chi_{E}\|_{L^{2}}^{2} = \|T(\chi_{E \cap \Omega_{n}})\|_{L^{2}}^{2}
\leq \|T(\chi_{E})\|_{L^{2}}^{2}
\leq \|T\|^{2} \|\chi_{E}\|_{L^{2}}^{2} = \|T\|^{2} \int_{E} d\mu = \int_{E} \|T\|^{2} d\mu$$

Das aber ist ein Widerspruch zur Annahme, also gilt $||g_n||_{\infty} \leq ||T||$ bis auf eine Nullmenge. Und für $\tilde{g}_n \in [g_n]$, mit $\tilde{g}_n \neq g_n$, gilt für eine weitere Nullmenge $N \subset \Omega$ $||\tilde{g}_n|_{\Omega \setminus N}||_{\infty} = ||g_n||_{\infty} \leq ||T||$ bis auf eine Nullmenge. Also gilt $[g_n] \in L^{\infty}((\Omega, \Sigma, \mu))$ und $||[g_n]||_{L^{\infty}} \leq ||T||$.

Für $m \leq n$ gilt:

$$[g_n \chi_{\Omega_m}] = T([\chi_{\Omega_m \cap \Omega_n}]) = T([\chi_{\Omega_m}]) = [g_m]$$

Hiermit können wir nun ein $[g] \in L^{\infty}((\Omega, \Sigma, \mu))$ mit $||[g]||_{L^{\infty}} \leq ||T||$ durch $[g|_{\Omega_n}] := [g_n]$ definieren. Sei nun $[f] \in L^2((\Omega, \Sigma, \mu))$ eine Elementare Funktion mit Träger in Ω_n (alle Elementaren Funktionen $[f] \in L^{\infty}((\Omega, \Sigma, \mu))$) dann gilt:

$$\Phi_{[g]}([f]) = [gf] = [g\chi_{\Omega_n} f] = [g_n f] = [fg_n] = \Phi_{[f]}([g_n])
= \Phi_{[f]}(T([\chi_{\Omega_n}])) = T(\Phi_{[f]}([\chi_{\Omega_n}])) = T([f\chi_{\Omega_n}])
= T([f])$$

Da $\Omega = \bigcup_{n \in \mathbb{N}} \Omega_n$ gilt dies für alle Elementaren Funktionen $[f] \in L^2((\Omega, \Sigma, \mu))$. Und da die Elementaren Funktionen dicht in $L^2((\Omega, \Sigma, \mu))$ liegen für alle $[f] \in L^2((\Omega, \Sigma, \mu))$ Bemerkung 10. Im folgenden bezeichnen wir mit τ die Normtopologie auf $\mathcal{L}(\mathcal{H})$ und für $\mathcal{A} \subset \mathcal{L}(\mathcal{H})$ ist $\overline{\mathcal{A}}$ der Abschluss von \mathcal{A} bezüglich τ .

Definition 11. Auf $\mathcal{L}(\mathcal{H})$ definieren wir die schwache Topologie τ_w als die Initialtopologie bezüglich der Abbildungen:

$$w_{a,b} \colon \mathcal{L}(\mathcal{H}) \to \mathbb{C}, \quad T \to \langle Ta, b \rangle \quad a, b \in \mathcal{H}$$

und die $starke\ Topologie\ \tau_s$ als die Initialtopologie bezüglich der Abbildungen:

$$s_a \colon \mathcal{L}(\mathcal{H}) \to \mathcal{H}, \quad T \to Ta \quad a \in \mathcal{H}$$

Bemerkung 12. Seinen $T \in \mathcal{L}(\mathcal{H})$, $a, a_1, ..., a_n, b, b_1, ...b_n \in \mathcal{H}$ und $\varepsilon > 0$ dann sind:

- $S_{T,a,b,\varepsilon} := \{S \in \mathcal{L}(\mathcal{H}) | |\langle (S-T)a,b \rangle| < \varepsilon \}$ $B_{T,a_1,...,a_n,b_1,...,b_n,\varepsilon} := \{S \in \mathcal{L}(\mathcal{H}) | |\langle (S-T)a_i,b_i \rangle| < \varepsilon \quad i \in 1,...,n \}$ jeweils Elemente einer Subbasis und Basis von τ_w
- $S_{T,a,\varepsilon} := \{ S \in \mathcal{L}(\mathcal{H}) | \| (S-T)a \| < \varepsilon \}$ $B_{T,a_1,...,a_n,\varepsilon} := \{ S \in \mathcal{L}(\mathcal{H}) | \| (S-T)v_i \| < \varepsilon \quad i \in 1,...,n \}$ jeweils Elemente einer Subbasis und Basis von τ_s

Satz 13. Es gilt:

$$\tau_w \subset \tau_s \subset \tau$$

Beweis. Seien $a, b \in \mathcal{H}$, mit $||a||, ||b|| \leq 1$ und $T \in \mathcal{L}(\mathcal{H})$ gegeben, dann gilt:

$$\langle (S-T)a, b \rangle \le ||(S-T)A|| ||b|| \le ||(S-T)a|| \le ||(S-T)||$$

Hieraus folgt nach Definition der jeweiligen Basiselemente die Behauptung.

Bemerkung 14. Aus Satz ?? folgt insbesondere für $A \subset \mathcal{L}(\mathcal{H})$:

$$\overline{\mathcal{A}}\subset\overline{\mathcal{A}}^s\subset\overline{\mathcal{A}}^w$$

Lemma 15. Es gilt für $A \subset \mathcal{L}(\mathcal{H})$:

$$A' = \overline{A'}^w$$

Beweis. Sei $T \in \mathcal{L}(\mathcal{H})$. Es gilt $T \in \mathcal{A}'$ genau dann, wenn für alle $A \in \mathcal{A}$ und $h, \tilde{h} \in \mathcal{H}$ gilt:

$$\begin{split} 0 &= \langle (TA - AT)h, \tilde{h} \rangle \\ &= \langle TAh, \tilde{h} \rangle - \langle ATh, \tilde{h} \rangle \\ &= \langle TAh, \tilde{h} \rangle - \langle ATh, \tilde{h} \rangle \\ &= \langle TAh, \tilde{h} \rangle - \langle Th, A^*\tilde{h} \rangle \\ &= w_{Ah,\tilde{h}}(T) - w_{h,A^*\tilde{h}}(T) \\ &= (w_{Ah,\tilde{h}} - w_{h,A^*\tilde{h}})(T) \end{split}$$

Also gilt: $\mathcal{A}' = \bigcap_{h,\tilde{h}\in\mathcal{H},A\in\mathcal{A}} \ker(w_{Ah,\tilde{h}} - w_{h,A^*\tilde{h}})$ und ist damit Abgeschlossen bezüglich der schwachen Topologie.

Erinnerung 16. Auf einem Abgeschlossenen Unterraum $\mathcal{A} \subset \mathcal{H}$ existiert die *orthogonale Projektion* $P_{\mathcal{A}} \colon \mathcal{H} \to \mathcal{A}$ mit unter anderem $P_{\mathcal{A}}(h) = h$ für $h \in \mathcal{A}$ und $P_{\mathcal{A}}(h) = 0$ für $h \in \mathcal{A}^{\perp}$

Satz 17. Bikommutantensatz

Sei \mathcal{A} eine *-Unteralgebra von $\mathcal{L}(\mathcal{H})$ mit 1, dann gilt:

$$\mathcal{A}'' = \overline{\mathcal{A}}^w = \overline{\mathcal{A}}^s$$

Bemerkung 18. Die Voraussetzung $1 \in \mathcal{A}$ kann fallengelassen werden.

Beweis. Es gilt nach Satz ?? und Lemma ?? und ??

 $\overline{\mathcal{A}}^s \subset \overline{\mathcal{A}}^w \subset \overline{\mathcal{A}''}^w = \mathcal{A}''.$ Bleibt zu zeigen:

$$\mathcal{A}''\subset\overline{\mathcal{A}}^s$$

1. Sei also $T \in \mathcal{A}''$ und ein $U \in \tau_s$ gegeben mit $T \in U$, dann existieren $h_1, ..., h_n \in \mathcal{H}$ und $\varepsilon > 0$, sodass (siehe Bemerkung ??):

$$B_{T,h_1,\ldots,h_n,\varepsilon} \subset U$$

Wir werden nun ein $A \in \mathcal{A} \cap B_{T,h_1,\dots,h_n,\varepsilon}$ finden, indem wir eine Folge $(A_m)_{m \in \mathbb{N}}$ in $\mathcal{L}(\mathcal{H})$ "konstruieren" mit:

$$\lim_{m \to \infty} (A_m h_1, ..., A_m h_n) = (Th_1, ..., Th_n)$$

Dies zeigt dann die Behauptung.

2. Für gegebenes $h \in \mathcal{H}$ betrachten wir $\overline{\mathcal{A}h} := \{Ah | A \in \mathcal{A}\}$. Es gilt $A\overline{\mathcal{A}h} \subset \overline{\mathcal{A}h}$ für alle $A \in \mathcal{A}$, denn für alle $\tilde{h} \in \mathcal{A}h$ existiert ein $\tilde{A} \in \mathcal{A}$ mit $\tilde{A}h = \tilde{h}$ da \mathcal{A} eine Unteralgebra ist gilt auch $A\tilde{A} \in \mathcal{A}$ und damit auch $A\tilde{h} = A\tilde{A}h \in \mathcal{A}h$, also $A\mathcal{A}h \subset \mathcal{A}h$ Insbesondere gilt also auch $\overline{A\mathcal{A}h} \subset \overline{\mathcal{A}h}$ und da A stetig ist auch $A\overline{\mathcal{A}h} \subset \overline{\mathcal{A}h}$ und damit:

$$A\overline{\mathcal{A}h} \subset \overline{\mathcal{A}h}$$

Nun gilt also $0 = \langle A\overline{\mathcal{A}h}, \overline{\mathcal{A}h}^{\perp} \rangle = \langle \overline{\mathcal{A}h}, A^*\overline{\mathcal{A}h}^{\perp} \rangle$ Also gilt $A^*\overline{\mathcal{A}h}^{\perp} \subset \overline{\mathcal{A}h}^{\perp}$. Und da $\mathcal{A} = \mathcal{A}^* := \{A^*|A \in \mathcal{A}\}$ gilt auch $A\overline{\mathcal{A}h}^{\perp} = (A^*)^*\overline{\mathcal{A}h}^{\perp} \subset \overline{\mathcal{A}h}^{\perp}$ Sei $P_{\overline{\mathcal{A}h}}$ die orthogonale Projektion von \mathcal{H} auf $\overline{\mathcal{A}h}$, dann gilt für $g \in \mathcal{H}$:

$$P_{\overline{Ah}}Ag = P_{\overline{Ah}}A(g - P_{\overline{Ah}}g + P_{\overline{Ah}}g)$$

$$= P_{\overline{Ah}}A(\underbrace{g - P_{\overline{Ah}}g}) + P_{\overline{Ah}}A(\underbrace{P_{\overline{Ah}}g})$$

$$= 0 + AP_{\overline{Ah}}g$$

$$= AP_{\overline{Ah}}g$$

und somit $P_{A_h} \in \mathcal{A}'$

Wegen $T \in \mathcal{A}''$ gilt auch $TP_{\overline{\mathcal{A}h}} = P_{\overline{\mathcal{A}h}}T$ und da $1 \in \mathcal{A}$ gilt ist $1h = h \in A_h$.

Also gilt:

$$Th = TP_{\overline{Ah}}h = P_{\overline{Ah}}Th \in \overline{Ah}$$
 (3)

3. Wir betrachten nun $\mathcal{L}(\bigoplus_{i=1}^n \mathcal{H})$ und definieren die Abbildung: $p \colon \mathcal{L}(\mathcal{H}) \to L(\mathcal{H}^n)$, durch $p(A)(h_1, ..., h_n) := (Ah_1, ..., Ah_n)$ Da \mathcal{A} eine *-Unteralgebra von $\mathcal{L}(\mathcal{H})$ mit 1 ist auch $p(\mathcal{A})$ eine *-Unteralgebra von $\mathcal{L}(\bigoplus_{i=1}^n \mathcal{H})$ mit 1 = p(1). Als nächstes zeigen wir nun $p(T) \in p(\mathcal{A})''$. Sei dazu $S \in p(\mathcal{A})'$, und sei $\pi_i \colon \mathcal{L}(\bigoplus_{i=1}^n \mathcal{H}) \to \mathcal{H}$ die orthogonale Projektion auf den *i*-ten Faktor. Dann gilt für $g \in \mathcal{H}$ und alle $i, j \in \{1, ..., n\}$:

$$\pi_i S \pi_j^* A g = \pi_i S p(A) \pi_j^* g = \pi_i p(A) S \pi_j^* g = A \pi_i S \pi_j^* g$$

Also gilt $\pi_i S \pi_j^* \in \mathcal{A}'$ und da $T \in \mathcal{A}''$ gilt auch:

$$T\pi_i S\pi_j^* = \pi_i S\pi_j^* T \quad \forall i, j \in \{1, ..n\}$$

Das ergibt nun für p(T) und $(g_1, ..., g_n) \in \bigoplus_{i=1}^n \mathcal{H}$

$$p(T)S(g_1, ..., g_n) = p(T)(\sum_{i=1}^n \pi_1 S \pi_i^* g_i, ..., \sum_{i=1}^n \pi_n S \pi_i^* g_i)$$

$$= p(T)\sum_{i=1}^n (\pi_1 S \pi_i^* g_i, ..., \pi_n S \pi_i^* g_i)$$

$$= \sum_{i=1}^n p(T)(\pi_1 S \pi_i^* g_i, ..., \pi_n S \pi_i^* g_i)$$

$$= \sum_{i=1}^n (T \pi_1 S \pi_i^* g_i, ..., T \pi_n S \pi_i^* g_i)$$

$$= \sum_{i=1}^n (\pi_1 S \pi_i^* T g_i, ..., \pi_n S \pi_i^* T g_i)$$

$$= (\sum_{i=1}^n \pi_1 S \pi_i^* T g_i, ..., \sum_{i=1}^n \pi_n S \pi_i^* T g_i)$$

$$= (\pi_1 S p(T) g_1, ..., \pi_n S p(T) g_n)$$

$$= S p(T)(g_1, ..., g_n)$$

Also gilt:

$$p(T) \in p(\mathcal{A})'' \tag{4}$$

Und nach Teil 2 folgt jetzt für $(h_1, ..., h_n)$:

$$(Th_1, ..., Th_n) = p(T)(h_1, ..., h_n) \in \overline{p(A)(h_1, ..., h_n)}$$

Es existiert also eine Folge $(A_m)_{m\in\mathbb{N}}$ in \mathcal{A} mit:

$$\lim_{m \to \infty} (A_m h_1, ..., A_m h_n) = (Th_1, ..., Th_n)$$

und somit $T \in \overline{\mathcal{A}}^s$

Korrolar 19. Eine *-Unteralgebra \mathcal{A} von $\mathcal{L}(\mathcal{H})$ ist also genau dann eine von Neumann Algebra wenn eine der folgenden Äquivalenten Bedingungen gilt:

- $\mathcal{A} = \mathcal{A}''$
- $A = \overline{A}^w$
- $A = \overline{A}^s$

Insbesondere gilt dann auch $\mathcal{A}=\overline{\mathcal{A}},$ also ist jede von Neumann Algebra auch eine C^* -Algebra