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Introduction

These are lecture notes for a course held at the university of Hamburg in the spring of 2013. Two
major topics were treated in this course, which seem at first glance unrelated: infinite-dimensional
manifolds (in particular mapping spaces) and geometric (or smooth) stacks. However, the perspective
to infinite-dimensional manifolds was chosen to be a topos theoretic one, which means that one first
constructs mapping “spaces” in a category of sheaves, and then enhances them in a second step to
a honest infinite-dimensional manifold. This approach has many benefits, amongst others that it
makes the reader familiar with notions that make the passage from sheaves to stacks a more or less
natural one. Moreover, the notion of a geometric stack then also is quite natural. In the end, the
chapter on string group models shows how these two concepts interact nicely. This is due to the fact
that the most conceptual picture on the string group is to view it as a certain geometric stack, while
explicit (in particular strict) models of it are constructed from certain mapping spaces.

Requirements and Notation

The general pattern that we will use is as follows. At first we assume that the reader is familiar
with the basic concepts mentioned below. Based on this we will develop all concepts and give most
of the proofs explicitly. From time to time we take the liberty of referring to textbooks for facts
that we do not prove and defer easy arguments to exercises. This comprises the part of the lecture
that addresses the novice. In addition to this, we sometimes give remarks on the extendability and
greater validity of the results proven in the lecture. These extended results will not be used later on,
but are for readers with a broader interest. In these remarks we then also refer to more advanced
texts.

The basic concepts that we assume familiarity with are some notions from topology (e.g., con-
tinuous functions, open covers, metrisable spaces, compact, locally compact and paracompact spaces
and some basics of the compact-open topology) and knows what submanifolds of R™ are. We also
assume some familiarity with the basic notions from category theory, i.e., that the reader knows
what a category is and what functors and natural transformations are. In particular, we will use the
categories Set (of sets'), Ab (of abelian groups), R-Mod (of R-modules for a fixed ring R), G-Mod
(= Z[|G]-Mod for Z[G] the group ring of some group G) and Top of topological spaces. Moreover,
we will assume in Section 7 that the reader is familiar with the basic properties of the exponential
map of a (finite-dimensional) Riemannian manifold.

Some notation and abbreviations that we use throughout:

pr,, projection the the n-th factor in a (cartesian) product [[,.; X;
pry projection that omits the n-th factor in a cartesian product
tvs topological vector space

lcs locally convex (vector) space

UcX U is an open subset of the topological space X

x €U € X | U is an open neighbourhood of z

B, (¢) open e-ball around x

f defined by f(x)(y) = f(z,y) for f: X XY = Z

f defined by f(z,y) := f(z)(y) for f: X — Set(Y, Z)

1'We will throughout assume that out sets have a cardinality bound, so that Set is a small category, cf. Remark 2.6.
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1 Categorical Preliminaries

In this section we give the necessary categorical background for the lecture. This comprises
e limits and colimits,
e adjoint functos and preservation of (co)limits and

e some examples.

We now introduce the parts of the language of categories that we will use throughout. For
instance, it will be necessary to perform constructions of objects in a category from other prescribed
objects. A first example is the product X x Y of two sets (groups, R-modules, topological spaces or
(sub)manifolds). While the construction of finite products is often pretty natural, the construction
of infinite products is not always possible and sometimes ambiguous. For instance in Top, where
the infinite product of topological spaces [[;.; X; may be endowed with different topologies (i.e., the
box topology or the product topology). However, only the product topology turns [[;.; X; into a
(categorical) product in Top (cf. Example 1.3 ¢)) and the following definition provides the framework
for this.

Definition 1.1. Let C be a category and J be a small category, i.e., the objects of J form a set.
Then the category of functors from J to C (and natural transformations between them, cf. Exercise
2.35) is abbreviated C’. Then the diagonal functor A;: C — C” sends each object C to the constant
functor that maps each object of J to C' and each morphisms of J to idg. A morphism f: C' — D
is sent to the natural transformation given by map each object of J to f.

Call an object A of C’/ a diagram of type J (in C). Then a natural transformation 7 from the
constant diagram Aj;(C) to some other diagram A of C’ then consists of a family of morphisms

(mj: C — Aj)jeon(s) such that
C
R
Ay

A A,

commutes for each morphism u: j — k of J. Such a natural transformation = is called a cone
m: C' — A over the diagram A with vertex C.
A cone m: L — A over A with vertex L is universal if for each cone ¢: C' — A there is a unique
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morphism f: C'— A in C such that ¢; = 7; o f for each object j of J, as depicted by the diagram

C
|
W
5 L Tk
/gok %
A A,

This universal cone (if it exists) is called the limit of the diagram A in the category C. It is the also
: iy . .
denoted by (1£1J A = Aj)jecob(s) or simply Jim | A
One similarly defines colimits as universal cocones, where a cocone for a diagram A of type
J in C with vertex C is a natural transformation from A to A;(C). Colimits are denoted by

(A; SEN lim | A)jeob(s) or simply lim | A. ]

Remark 1.2. The usual reasoning shows that limits are unique up to isomorphism, provided that
they exist (cf. Exercise 1.11). ]

Example 1.3. a) Set J = o { @ (the identity morphisms in .J will always be omitted). Then
a diagram of type J in a category C is given by two objects A, B of C and two morphisms
fiA— Bandg: A— B:

f
ATB. (1)

A cone with vertex C is an object C' with morphisms C' — A and C' — B such that

C=—=C

I, ]

A !B
g

commutes, i.e., it is a morphism i: C' — A such that foi = goi. A limit L of (1) is thus
an object L with a morphism ¢: L — A such that fo: = go¢ and that if i: C' — A satisfies
foi=goi, then there exists a unique ¢: L — C with i =10 ¢:

f
L—5A ' B

T g
Flp | ]

| i

C

This limit is also called equaliser of the diagram (1). In Set and Ab equalisers always exist
(cf. Exercise 1.12).

b) If J = (), then for each category there exists a unique diagram of type J in each category C,
namely the empty diagram (). A limit of () in C is called terminal object of C. Tt is an object
of C that has a unique morphism from each other object of C. A colimit of ) is called initial
object of C, it hat a unique morphism into each other object of C (cf. Exercise 1.13).
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c¢) The product [[;.; X; (in Set, Ab, R-Mod or Top) is a limit of a diagram of type J, where .J
has Ob(J) = I and no non-identity morphisms and the diagram is given by the values X; on
the objects ¢ € I. Likewise, the disjoint union (in Set) or direct sum (in Ab or R-Mod) is a
colimit.

d) Particularly important will be the case where J = e —— e <——e . In this case, a diagram
A of type J consists of two morphisms p: X — Z and ¢: Y — Z. Then a limit of A consists
of an object P of C, together with morphisms a: P — X and b: P — Y such that poa=¢ob
and that whenever ¢: Q — X and d: ) — Y satisfy poc = g o d, then there exists a unique
f:@Q — Psuchthat c=ao fandd=0bo f:

In this case, the limit is also called pullback or fibre product of p and ¢. It is also denoted by
X xzY (if the morphisms X — Z and Y — Z are understood).

e) In C = Set, the pullback is given by
P={(z,y) e X XY [p(z) = q(y)}, alz,y) =z, blr,y)=y.

For Z = pt a single point one sees that this notion generalises the cartesian product of the sets
X and Y.

f) In C = Top, the pullback is also given by
P={(z,y) € X xY |px) =q(y)}, alz,y)=2, b=y =y,

endowed with the subspace topology of the product topology. In particular, if X is a topological
space and U C X and V C X are subsets (endowed with the subspace topology), then we have
that the pullback of the inclusions U — X and V — X is given by the intersection UNV = P
(for P as above), cf. Exercise 1.14. ]

Definition 1.4. Let C be a category and A be a diagram of type J. Then we say that C has

arbitrary limits arbitrary J
finite limits i lim A exists f J with Ob(J) finite
arbitrary products ! %n xists for J with only identity morphisms
finite products J with only identity morphisms and Ob(J) finite

Analogously, one says that C has arbitrary (finite) colimits (coproducts) if lim A for arbitrary (finite)
J (with only identity morphisms). n

Limits behave nicely under (right) adjoint functors, i.e., we will see that (right) adjoint functors
are continuous.
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Definition 1.5. Let C,D be categories and F: C — D and G: D — C be functors. Then F' is left
adjoint to G and G is right adjoint to F' if there exists a natural isomorphism

D(F(-),-)
/\
C°? x D ﬂn Set

C(-.G(+)
between the functors (C, D) — D(F(C), D) and (C, D) — C(C,G(D)) (more precisely one also says

that 7 is an adjunction between F' and G). The natural transformation 7 is also called adjunction
(between F' and G) and is denoted by n: F' 4 G. =

Example 1.6. a) The standard example of an adjunction is that the functor that creates a free
R-module Fx on a set X is left adjoint to the forgetful functor that assigns to an R-module
the underlying set.

b) Let C have arbitrary products. Then the product functor [[: [[,c;C — C is right adjoint to
the diagonal functor A: C — [[,.;C. Likewise, if C has arbitrary codproducts, then coproduct
[I: [Lic;C — C is left adjoint to A.

c¢) The forgetful functor F': Top — Set that sends each topological space to its underlying set has
a left adjoint the functor 6: Set — Top X +— §(X), where §(X) is the set X equipped with
the discrete topology. Since §(X) has the property that each map §(X) — Y to a topological
space Y is continuous we have

Top(§(X),Y) = Set(X,Y)

and thus 0 4 F. Moreover, F' also has a right adjoint. If x(X) denotes X, equipped with the
chaotic topology {0, X}, then each map Y — x(X) is continuous and thus

Top(Y, x(X)) = Set(Y, X)

shows F = x [

Proposition 1.7. Let F': C — D and G: D — C be two functors. Then the following are equivalent:
a) There exists an adjunction n: F 4 G.
b) There exists natural transformations e: ide — GF and 6: FG — idp such that the compositions

—EG(D)

D
F and G—=—"—>

C—ép(0) D—G(

C—F(ec) ép) G (2)

F FGF GFG

are the identity transformations on F and G respectively.

Proof. a)=-b): If natural bijections 7, py: D(F(C), D) — C(C,G(D)) are given (we will omit the
indices of 7 in the sequel), then we set

ec =n(idpy): C = G(F(C)). and 6p = n~(idp): F(G(D)) — D
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The naturality of n means that for arbitrary g: D — D', ¢: F(C) — D and f: C' — C we
have

n(gowo F(f)) =G(g)on(p)o f. (3)
If we fix {: A — B and evaluate (3) for, g = idp(p), ¢ = idp(p) and f = &, then we get

n(F(€)) =n(idpm)) 0o =cpok.
If we evaluate (3) for g = F'(§), ¢ =idp(4) and f = ida, then we get
n(F(§)) = G(F(§)) o n(idp(a)) = GF(§)) o ea.

Thus € is natural. A similar argument shows that § is natural as well. Moreover, if we evaluate
(3) for g =idp(a), p = dp(a) and f = 4, then we get

N(0pay o F(ea)) =n(0pa)) 0 €a = ca = n(idpea))
and thus dp(4)0 F'(e4) = idp(4) since 7 is bijective. The other identity of (2) is shown similarly.

b)=-a): This is left as Exercise 1.15. (]

Definition 1.8. The natural transformation ¢ in part b) of the preceding proposition is also called
the unit (or front adjunction) of the adjunction n: F 4 G. The natural transformation ¢ is also called
counit (or rear adjunction). "

The importance of adjoint functors is that they preserves (co)limits in the following sense.

Proposition 1.9. Let F: C — D be left adjoint to G: D — C.

a) If A is a diagram of type J in C that has a colimit (A; =N lim | A)jeon(ry i C, then Fo A has

a colimit (F(l&nj A) LiCIN F(Aj))jeob(s) in D.

b) If B is a diagram of type K in D that has a limit (@KB SLN By)reob(r) in D, then G o B
has a timit (G(lim,, B) “™% G(By))geob in C.

Proof. We only show part b), part a) follows similarly. Let 1 p): D(F(C), D) — C(C,G(D)) be the

G(m
Sm), G (Bk))keob(k)

is a cone over G o B in C. Suppose (C' 2% G (Br))keob(k) 1s another cone over G o B, then we

adjunction. Since G commutes with compositions it is clear that (G Qin «B)

obtain a cone (F(C) Y, By.)keob(k) With 1y, 1= 7 (1) (check this!) and thus a unique morphism
f: F(C)— @KB such that 1, = mp o f for all k. Since

Y =k o f & o =) =n(me o f) = G(mi) o n(f)

we have that g :=n(f): C — G(@K B) is unique with ¢, = G(m)og for all k. Thus (G(@K B) G,
G (Bk))reob(k) 1s universal. ]
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Definition 1.10. If a functor F': C — D (not necessarily one for which there exists an adjoint)
satisfies Property a) of Proposition 1.9, then we say that F' preserves colimits. Likewise, if G: D — D
has Property b), then G preserves limits. [

Exercise 1.11. Show that any two limits of the same diagram A are isomorphic. Moreover, show
that if A, B are diagrams of type J in C with limits l'mJA and @JB and A — B is a morphism
of diagrams (i.e., a natural transformation of functors A, B: J — C), then there exists a unique
morphism l'glJ A— l'mJ B such that

fm, A4 —— lm, B

ol
commutes and that the assignment (A — B) — (@ ;A= m | B) is functorial. ]

Exercises for Section 1

Exercise 1.12. Show that in Ab the equaliser of two arbitrary morphisms f and g always exists
and is given by the kernel of f — g. Then show that also in Set equalisers always exist. [

Exercise 1.13. Determine the initial and terminal objects in Set and Ab. Conclude that right
adjoints do not preserve colimits in general. =

Exercise 1.14. If X is a topological space and U,V C X are open subsets, equipped with the
subspace topology, then show that the pullback of the inclusions U — X and V < X is given by
UNV—aUandUNV < V. [

Exercise 1.15. Let F': C = Dand G: D — C be two functors and let : id¢ - GF and §: FG — idp
be natural transformations such that the compositions

fp CPFEQ), pop CHEQ), o DoeGD)), ey DRGOWD)),

are the identity transformations on F' and G respectively. Then show that n(C, D): D(F(C),D) — C(C,G(D)),
v — G(p)oe(C) is an adjunction n: F 4 G. ]

Exercise 1.16. Show that in Top limits and colimits always exist. In contrast to this, show that
in the category Toppaus of topological Hausdorff spaces, limits do always exist, but colimits do not
(Hint: The colimit of the embedding Q < R would have to have the property that each continuous
map Q — X to an arbitrary Hausdroff space extends to a continuous map on R). u

Exercise 1.17. Show that the forgetful functor Man — Top does in general not preserve pull-
backs. Hint: If f: R — R is smooth such that f~1(0) = {1 | n € N*} U {0}, then the pull-back of
fand {0} = R in Man is {1 | n € N*} U {0} with the discrete smooth structure. ]
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2 Presheaves and Sheaves

In this section we give the basic definitions of presheaves and sheaves (on a Grothendieck site). By
doing so, we try to minimise the technical notation, i.e., do not treat Grothendieck (pre)topologies,
but only coverages. The exposition tries to make the passage to stacks later quite natural. The
section contains roughly

e definitions of presheaves, sites and sheaves thereon,
e proof that (pre)sheaves are complete and cocomplete,
e discussion of exponential objects (mapping objects) and of cartesian closed categories and

e examples (in particular that manifolds do in general not have exponential objects, pull-backs
and push-outs).

Sheaves serve many purposes in mathematics, they are very useful in Algebraic and Differential
Geometry, Algebraic Topology, Representation Theory and are the foundational concept in Topos
Theory. The perspective that we will take in this lecture is that a sheaf is the concept that endows
a topological space with additional geometric structure.

To illustrate this a bit more, note that a topological spaces provides us with the notion of locality?.
For example, we can say what it means for a function to be continuous at a point. Note that there are
concepts that can be defined in local terms (like continuity, i.e., a function is continuous if and only if
it is continuous on a neighbourhood of each point), but that there are notions that cannot be defined
in local terms (like boundedness, i.e., a function can be bounded on some neighbourhood of each
point, but might not be bounded on the whole space). On the other hand, we have all learned in the
beginners classes that geometry is conveniently expressed in algebraic terms (Linear Algebra in most
cases, but not exclusively). The idea of a sheaf is to combine these two concepts in order to endow a
topological space with “local geometric structure”. References for this section are [Mac98, MLM94].

The difference between presheaves and sheaves is something quite subtle and perhaps kind of
mysterious at first reading. It will become clearer in Section 12.

Definition 2.1. If X is a topological space, then a presheaf F' in the category of abelian groups
on X is an assignment U — F(U), where U C X is open and F(U) is an abelian group, and to
each inclusion U < V of open subsets a morphism pyv: F(V) — F(U) of abelian groups such that
pvu = idy and pyy opyw = puw whenever U < V < W. We call the elements of F(U) the sections
(of F') over U and the elements of F'(X) the global sections. For U — V as above and f € F(V) we
sometimes denote by f|; := pyv(f) and call this the restriction of f to U (see the examples below
for an illustration). n

This definition is a specialisation of the following more general notion.

2 As first approximation, one can think of locality as being a notion of “closeness”. However, the mathematically
correct incarnation of “closeness” is given by a uniform structure, which is related to locality, but is strictly speaking
not the same. Note that for metric spaces or topological groups one always also has a canonically associated uniform
structure, so that the difference between these notions is subtle (recall the confusion that many beginners have when
introducing uniform continuity).
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Definition 2.2. If C and D are categories, then a presheaf on C in D is a functor F': C°°® — D.
This covers the above definition by setting C to be the category Openy whose objects are the open
subsets of X and?

{U=V} ifUCV

OpenX (U7 V) =
0 else

with the obvious composition and identity morphisms, and setting D to be the category Ab of abelian
groups. If D is omitted, then it is taken to be the category Set of sets, i.e., by a presheaf on C we
will always mean a presheaf in Set. ]

Example 2.3. a) To each topological space X there is associated the presheaf Ox of continuous
functions U — C(U,R), where pyy is the restriction f — f|;. This is also called the structure
sheaf of X. More generally, if Y is another fixed topological space, then (’)}/( is the presheaf
U~ C(U,Y) on X with the same restriction morphisms.

There is an associated “big” example as a presheaf on the category Top of all topological spaces.
If we fix some topological space Z (which was R above), then we have a presheaf h%: Top — Set
given by X — C(X, Z) and for a continuous function f: X — Y the “restriction” morphisms
are given by

pr: C(Y,2) = C(X,2), ¢ yof

b) To each topological space X there is associated the presheaf Bx of bounded continuous functions
U {f: U—=R] fis bounded }, again with pyy the restriction f — f|.

c) To each submanifold M C R™ there are associated the presheaf Op; of smooth functions
U+ C®(U,R)%, as well as the presheaf X); of (smooth) vector fields U + V(U), in both cases
with pyy given by restrictions.

d) Let A be an abelian abelian group, X be a topological space and xy € X. Then we define the
skyscraper presheaf Sfo by
U {A if 2o € U

0 else

and

idgy ifzgeUNV
pUV = .
0 else

This example easily generalises to a presheaf in D on X, where D is a category with terminal
object.

e) Let X be a topological space and Y be a set. Then the constant presheaf with values in Y is
given by

U {f: U—Y| there exists y € Y such that f is the constant function with value y} =Y

3We will follow the convention to denote the morphisms from z to y for objects x,y of a category C by C(z,y).
4Note that each open subset of a submanifold is again a submanifold, so that it makes sense to talk about smooth
functions on U.
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and py,v the restriction f — f|;;. There is a variant of this, called the locally constant presheaf
with values in Y, which is most conveniently defined as U — C(U,Y), where Y is endowed
with the discrete topology.

f) If C is an arbitrary category and Z is an object of C, then a presheaf A% in Set on C is given
as in part a) by X — C(X,Z) and for f € C(X,Y) the “restriction” morphism if given by

pr:C(Y,Z) = C(X,Z), @+ pof. (4)

We will frequently denote the functor A% also by C( - , Z). Note that X + C(X, X) cannot be
made into a functor in a natural way, if one wants to mimic the construction to involve both
arguments then one has to consider (X,Y) — C(X,Y) as a functor C°P? x C — Set. ]

Note: We frequently denote the restriction homomorphism pgy also by Fyy (for U < V an
inclusion of open subsets) and p¢ also as F'(f) (for f a morphism in C).

Remark 2.4. Note that X); has additional algebraic structure, i.e., that for each U C M open we
have that O/ (U) is a ring and Xy (U) is a module over O/ (U), since we can multiply vector fields
point-wise with smooth functions. In this case one says that Xj; is a module (pre)sheaf over the
(pre)sheaf of rings Ops. This is the general idea in Algebraic (and also in Differential) Geometry, that
one first specifies a certain (pre)sheaf of rings on a topological space X (called the structure sheaf),
and then the geometric notions are expressed in terms of module (pre)sheaves over the structure
(pre)sheaf. ]

Taking Definition 2.2 into account, the notion of morphism of presheaves is immediate.

Definition 2.5. If F,G: C°? — D are presheaves, then a morphism from F to G (denoted either by
F — G or also by F' = G) is a natural transformation of functors.

If C is a small category (i.e., the class of objects forms a set), then functors and natural trans-
formations between them form a category (cf. Exercise 2.35). This defines for each small category
C the category PShCD of presheaves in D on C. If D is omitted, then it is considered to be Set. If
C = Openy, then we also set PShy := PSh(Openy). ]

Remark 2.6. The preceding definition requires C to be a small category in order to turn functors
and natural transformations (shortly called functor category) into a category. The subtle issue here is
that for two functors F,G: C — D, the natural transformations should form a set (and not a proper
class). This is an important requirement in category theory.

The problem now is, that this assumption would spoil the treatment of functors Set — Set or
Top — Set as a functor category. The remedy for this is to put a cardinality bound on all sets (and
thus also topological spaces), which is large enough to make all constructions from set theory work
below this cardinal. Technically, this is implemented by assuming the existence of a Grothendieck
universe, in which all these operations take place. We will throughout assume (without any further
mentioning) that all categories (like Set, Ab, Top) only contain sets below this cardinality bound
and thus are small (cf. [Mac98, Chap. I] or [Bor94, Sect. 1.1] for a more detailed treatment). L]

Remark 2.7. By Example 2.3 f) we can assign to each object Z of C the presheaf h? on C. If
g € C(Z,W), then we obtain a morphism of presheaves g,: h¥ — A" given by

h2(X) — WY (X), (X 2, Z) o (X LNGAER W).
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From the associativity in C and (4) it follows immediately that this defines in fact a natural trans-
formation. If C is small, then this results in a functor C — PSh¢, which is also called the Yoneda
embedding. That this is in fact an embedding is content of the following lemma. [

Lemma 2.8 (Yoneda Lemma). For any small category C, the assignments
Z—hZ and (ZLH W) (ge: B2 = BW) (5)
is a functor C — PSh¢. Moreover, for each presgeaf F' on C we have that
PSh(h?, F) = F(Z), aw a(Z)(idy) (6)

is a bijection. In particular, (5) is fully faithful, i.e., C(Z, W) — PSh¢(h?,hW), g + g, is bijective
for each two objects Z, W of C.

Proof. For composable morphisms Z 2w i) @ we have
(fog)lp)=(fog)op=folgop)= fg:(¥))

and clearly (idz). = idjz. Thus (5) defines a functor. By definition, a natural transformation
a: h? — F is the same thing as for each X an assignment of a map a(X): C(X,Z) — F(X) such
that for each f: X — Y the diagram

Z
cv,z) Y ex, 7)

a(Y)J la(X)
Fv) Y pix)

commutes. For Y = Z we have that h?(idz) = f and thus
a(X)(f) = a(X)(W* (f)(idz)) = F(f)(a(Z)(idz)).

Thus « is uniquely determined by «(Z)(idz) and if v € F(Z), then a(X)(f) := F(f)(u) defines an
inverse to (6). If we apply this to F' = A" then we get

a(X)(f) =" (N)((2)(idz)) = (a(Z)(idz)) o f
and thus a(X) = g, for g = a(Z)(idz) € C(Z,W). ]

Definition 2.9. A presheaf F' on a category C is called representable if F' is isomorphic to the
presheaf h? for some object Z of C. One then says that Z represents the presheaf F. n

Corollary 2.10. If F is representable, then the object of C that represents F' is uniquely determined
up to isomorphism.

Proof. This is Exercise 2.36 m

Constructions in PShe¢ are “easy” (at least compared to constructions on C), as the following
example and proposition is supposed to illustrate.
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Example 2.11. Let C be a small category and (F;);c; be a family of presheaves on C. Then we may
define the product [],.; F; in PSh¢ by

([IF)©) =][FC) ad [[FECL D) =T]FEW. (7)

iel iel iel el

together with the canonical projections (recall that [] is a functor from the product category
[[;c;Set — Set). Note that this is possible since Set has products, but no products in C are
involved. Note that for instance the category of (sub)manifolds (or varieties) does not have arbitrary
products (cf. Remark 2.19). (]

We take the preceding as a motivating example for showing that even more is true: PSh¢ not
only has arbitrary products, but also arbitrary limits and colimits. As in (7), this will be done for
each object C on C separately, so we first consider the target category Set.

Proposition 2.12. If A is a diagram of type J (with J small by definition) in Set, then A has a
limit and colimit in Set. Shortly: Set has arbitrary small limits and colimits.

Proof. Set I = Ob(J) and consider the product [[,c; A; of the sets A;. Then we set

1£1A = {(ai)iel € HAz ’ Au(aj) = ay, if u: j— k in J}
J iel
Then 7;: @JA — Aj, (ai)ier — aj is a map satisfying A, o m; = m,. If ¢;: C — Aj satisfies
Ay opj =g, then f: C — @J A, ¢ — (pi(c))ier is uniquely determined by satisfying ¢; = mj o f.
Thus @1] A is a limit of A.
The colimit is slightly more involved. We consider the disjoint union [[,.; A; of the sets A; and

set
@A::HAi/ ~,
J

iel

where ~ is the equivalence relation generated by the reflexive and transitive relation

a; ~ ap < Ju: j — kin J with A,(a;j) = ai.

Then 1j: Aj — lim A, a;j — [a;] satisfies 1j 0 Aj = 1, and if p;: A; — C satisfies p; 0 A, = ¢y, then
I ligJ A — C, [aj] = ¢j(a;) is well-defined and uniquely determined by satisfying fotj =¢;. =

Remark 2.13. The following proposition generalises the preceding one to arbitrary presheaves. For
this we observe that a functor A: J — PSh¢ is the same thing as a functor A: J x C — D. In
particular, we get for each object C of C a functor

A(+,C): T > Set, je A(GL,C) and (5 k) - (A(j,C) AWMO) 4y, 0)) (8)

from precomposing A with the functor J x C — J x C, where C denotes also the subcategory of C
with one object C' and sole morphism ide. Then A( - ,C) is called the evaluation of A at C. This
is to be spelled out in detail Exercise 2.37. =

Proposition 2.14. If A is a diagram of type J (with J small by definition) in the presheaf category
PShe, then A has a limit and colimit in PShe. Shortly: PShe has arbitrary small limits and
colimits.
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Proof. We shall only show the statment for limits, colimits are treated similarly. For each object C
of C, consider the diagram Ac and its limit

Lo ::@A(- ,C)
J

in Set. For each morphism f: C' — D in C and each u: 5 — k in J we have that

ij?///
A(

A(j, D) A(k,D)

Cin i P

commutes since A is a functor and (u,idp) o (id;, f) = (u, f) = (idg, f) o (u,id¢). Thus we have a
unique morphism Ly: Lo — Lp making the resulting diagram

u,idp)

A, C) A(k,C)

!Lf\
Wji?///
A(j, D) — 2L Ak, D)

commute. From the uniqueness it also follows that L., = Ly o Ly for g: D — E another morphism
in C (simply put yet another cone around and observe that both Lyo Ly and L., make it commute).

Thus C — L¢ is a presheaf, also denoted by L, and L¢ M A(j,C) is a morphism of functors

Aj(L) — A, and whence a cone over A (with vertex L).
Finally, this cone is universal, for if ¢: A ;(M) — Ais any other cone over A, then ¢;(C): M(C) — A(j,C)
satisfies A(u,id¢) o ;(C) = @k (C) for each j = k and thus there exist unique gc: Mc — Lo with
¢; = gc omc(j). These combine to give a natural transformation (check this!) and thus a morphism
M — L with the desired properties. [

Ay, C) A(k,C)

Remark 2.15. The conclusion of the proof may also be rephrased by saying that (small) limits and
colimits in PShe¢ exist and may be computed point-wise:

(1'%114)(0) ::I'%nA(C') and  (lim A)(C) := lim A(C). "
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Remark 2.16. Proposition 2.14 might look as abstract nonsense, but has the following remarkable
consequence. In the categories Top and Man we consider the morphisms

fRoRz—2?(x+1) and ¢:R— R,y 12

We are interested in the limits of
f

R—sR+I R (9)
in Top and Man. Let T" be the limit in Top (which exists, cf. Example 1.3 f)) and M the one in
Man (if it exists). We want to show that M cannot exist in Man, so we assume that it exists and
derive from this a contradiction.

The forgetful functors Man — Set and Top — Set have left adjoint (cf. Example 1.6 c¢) and B.3
a)) as left adjoints the functors that send sets to manifolds and topological spaces endowed with the
discrete smooth structure and topology. Thus they preserve limits by Proposition 1.9, which means
that the limits in Man and Top all have as underlying set the limit {(z,y) € RxR | 42 = 22(z +1)}
in Set (cf. Figure 1).

10+

051

e e N e
-10 -05 05 10

—051

Figure 1: Limit in Top, but not in Man

In Top, the limit of f and g is given by 7' = {(z,y) € R x R | y? = 2?(x + 1)} with the subspace
topology of R? and the canonical projections to R.

Likewise, if M existed in Man, then this would amount to endowing {(z,y) € R x R | y? =
2?(x + 1)} with a manifold structure such that the projections to R are smooth. Moreover, the
structure morphisms from the limit M — R are in particular continuous and thus yield a continuous
map M — T, which is the identity on the underlying sets (why?). If we now consider the maps
R — R, given by x ++ 22 — 1 and = — x(2? — 1), then they give rise to a unique continuous map
¢: R — T and a unique smooth map ¢: R — M, both given by x +— (22 — 1,2(2% — 1)). Both, ¢
and ¢ map {—1,1} to the singular point (0,0) (cf. Figure 1). If U = [-1 —¢,—14+¢]U[l —¢,1 +¢],
then ¢ maps U to a neighbourhood of (0,0) in 7" and ¢ maps U to a compact set containing (0, 0).
Since id: M — T is continuous, ¥ (U) is a compact neighbourhood of (0,0) in M, and thus id|,

is a homeomorphism®. This of course cannot be the case, since no neighbourhood of (0,0) in T (cf.

5Recall from topology or prove as an exercise that a continuous bijection f: X — Y with X compact and Y Hausdorff
is automatically a homeomorphism.
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Figure 1) is homeomorphic to an open interval (why?). This shows that Man does not have arbitrary
limits (even not finite ones!). Moreover, one can also show that Man does not have finite colimits.m

We now turn to another categorical construction that is, in general, only possible in PSh¢, but
not in C itself.

Remark 2.17. Recall that in Set we have the natural isomorphism
Set(X x Y,Z) = Set(X,Set(Y, 7)), fr f with f(2)(y):= f(z,y) (10)

where Set(Y, Z) denotes, of course, the set of functions from Y to Z (this is important to note
in order to give Set(X,Set(Y,Z)) a meaning). Natural means here that (10) is an adjunction
(- xY)dSet(Y, - ) for each fixed Y. (]

Definition 2.18. Let A be a category with finite products. An object Y of C is called exponentiable
if - x Y has a right adjoint, usually denoted by either C(Y, - ) or (- )Y. For each other object Z,
the object ZY is also called the exponential of Y and Z. The category C is called cartesian closed if
each object is exponentiable. [

Remark 2.19. We take a look at the exponentiable objects Y in Man. If Y = {y1, ..., y, } is a finite
collection of points, then we have X x Y =2 X LU ... U X and thus

n n
Man(X x Y,Z) = Man(X U...UX, Z) = [[Man(X, Z) = Man(X, [ [ 2).
i=1 i=1
Thus Z — [[, Z is the exponential of ¥ and Z. However, N is not exponentiable, as one sees
as follows. Suppose that for each Z we have a manifold structure on Man(N, Z). We denote
this manifold by Man(N, Z). If this would satisfy (X x -) 4 Man( - ,Z) for suitable natural
isomorphisms

Man(X x N, Z) = Man(X, Man(N, 7)), (11)

then we would have in particular natural isomorphisms

Man(X, Man(N, Z)) = Man(X x N, Z) = [ [ Man(X, Z).

Thus the product [[y h? of the representable presheaves h? on Man would be represented by
Man(N, Z). As in Remark 2.16, we see that the products in Man and Top all have as underly-
ing set the cartesian product [[ Z and that the identity map id: Man(N, Z) — [ [y Z is continuous
with respect to the topology underlying Man(N, 7).
We now set Z = S! = R/Z. Then we have the smooth manifold [[yR and the projections
r,: [[yR — R are continuous, linear and thus smooth (cf. Example A.2 e)). Thus they give rise
to smooth maps pr,,: [[yR — 51, and thus induce a smooth map ¢: [[§R = Man(N, Z), giving
rise to the composition

HR—>Man (N,sH) 5 Hsl
N

of continuous maps, which equals the projection [[yR — HN S' (by the uniqueness of the map into
the product). Since the projection is open and ¢ is continuous, it follows that id is open, and thus
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that id is a homeomorphism. But by the definition of the product topology, each open neighbourhood
of (1,1,...) in [[y S is of the form

Vi X oo X Vi x ST x St x (12)

for only finitely many open neighbourhoods Vi, ..., Vj,, of 1 € S'. Thus (12) is not contractible, but
in a manifold each point has a contractible neighbourhood (homeomorphic to an open convex set
in a les). This contradicts the existence of a manifold structure on Man(N, S!) satisfying (11) (cf.
Exercise 2.38).

One can phrase the difference between {yi,...,y,} and N by noting that the former space is
compact (in the discrete topology) and the latter is not. We will see later on that the compactness
of a manifold Y will be essential for endowing Man(Y,Z) = C*(Y,Z) with meaningful smooth
structures. |

Remark 2.20. We can remedy the above failure by passing from Man to PShyja,. More generally,
for presheaves G, H on an arbitrary category C, we obtain a new presheaf PSh.(G, H) which has
the property that we have natural isomorphisms

PSh¢(F,PSh,(G, H)) = PShe(F x G, H) (13)

If we assume that PSh.(G, H) exists and evaluate (13) for F' = h? a representable functor, then we
obtain by the Yoneda Lemma 2.8

PSh.(G, H)(Z) = PSh¢(h?,PSh.(G, H)) = PShe(h? x G, H).
We now take this as a definition of the presheaf PSh,(G, H), i.e., we set
PSh.(G, H)(Z) := PShe(h? x G, H).
This is a presheaf if we set
PSh, (G, H)(Z L W): PShe(hW x G, H) — PShe(h? x G, H), aw ao(f. x idg). .

We have thus shown the following proposition:

Proposition 2.21. For each category C the category PShe is cartesian closed.

From the perspective of sheaf theory, the objects one is interested in most of the time are the
representable presheaves. However, many presheaves that are of significant importance are not repre-
sentable, as the preceding examples and propositions are supposed to illustrate. One can nevertheless
take the presheaves there as a “first approximation” to an object that one would like to consider (for
instance the “manifold” of all smooth functions C*°(M, N') between manifolds M, N), and then try
to enhance the properties of these presheaves as far as it gets to a representable functor.

The first step in this enhancement this is to check whether one actually has a sheaf (rather than
a presheaf), since representable presheaves are (almost®) always so. This is what we now turn to

As we have seen in the introductory remarks, not all of the above examples really qualify as
a local notion, since functions are not bounded (respectively constant) if they are locally bounded

S At least in the cases that we will treat in this lecture, representable functors will always be sheaves, cf. Proposition
12.2.
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(respectively locally constant). The following notions subsume that in a sheaf we know sections if
(and only if) we know them locally.

As above, we fist do the case of sheaves on topological spaces. We will follow throughout the
conventions that multiple indices on sets of a covering denotes multiple intersections, i.e.,

Uip..im := Uiy N ... N Uj,,,.

Definition 2.22. Suppose that F' is a presheaf (in Set) on the topological space X. Then F is a
sheaf if the following condition holds:

Let U C X be open and (U;);er be an open cover of U. If f; € F(U;) are sections such that
fi|Uij = fj|U1-j for each 4, j € I, then there exists a unique f € F(U) such that f[; = f;.

A morphism of sheaves is a morphism of presheaves, i.e., presheaves for a full subcategory of the
categories of sheaves (this is just a fancy word for saying that sheaves are presheaves with a certain
additional property). This defines the category Sh(X) of sheaves on X. [

Remark 2.23. Suppose X is a topological space, U C X is open and (U;);es is an open cover of U.
If F is a presheaf in abelian groups on X, then we have for each i € I a morphism F(U) — F(U;) of
abelian groups and thus (by the universal property of the product) a morphism

FU) - [[F@Wy).
el

Now for each pair of elements 7,k € I, we have two morphisms

[1Fw) = Py “25%5 FU) - and - [ F@) 22 PUL) 22525 F(U)
i€l el

This results in in two morphisms

[[Fw) & H FUy) and [[F@) % ] FU)

iel jkel iel jkel

If now F is a presheaf in abelian groups, then F' is a sheaf if and only if the sequence

0= F(U) = [[FW) = [ FU) (14)
el j,kel

is exact. The notion of exactness also makes sense for presheaves in Set, in this case one requires
that i: F'(U) — [[,c; F(U;) is the equaliser of

[[Frw) % ] FWpr) and  J[FW) S T] FUR). n

i€l j.kel iel j.kel

Remark 2.24. The condition on a presheaf F' on X for being a sheaf may be phrased by saying:

Local sections glue uniquely to global sections if the gluing condition f;] U, = fJ'|Ui]~ is
satisfied.
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There exists two weakened versions of this. One is by demanding that glueing is perhaps not
always possible, but if it is, it is unique:

A presheaf F' on X is separated (or a monopresheaf) if for each open U C X, open cover
(Ui)ier of U and f; € F(U;) there exists at most one f € F/(U) such that fl; = f.

The other is by demanding that gluing is always possible, but perhaps not unique:

A presheaf F on X is an epipresheaf if for each open U C X, open cover (U;);cr of U and
fi € F(U;) such that fi|Uij = fj|Ui7- there exists at least one f € F(U) such that f|;; = f;.

Clearly, a sheaf is a presheaf that is a separated epipresheaf. [

We now go through Example 2.3 and look whose of the above conditions are satisfied:

Example 2.25. a) O}/( is a sheaf. It is a monopresheaf since a function is uniquely determined

by its restrictions to an open cover. Moreover, if (U;);cs is an open cover of U C X open, and
fi € C(U;,Y) satisfy fi|Uij = fj|Uij’ then we may define

[U=Y, o fi(x)ifzel,.
Since fi‘Uij = fj‘Uij we have that f;(z) = f;(x) for each € U;; and f is well-defined. Moreover,

f is continuous since on Uj; it coincides with the continuous function f; and is thus continuous
on a neighbourhood of each point of U.

By is a separated presheaf that does not satisfy gluing. For instance, take X = R>g, I = N+t
and U; = [0,n). Then f;(x) = x is bounded on each U;, but the function f(x) = z is not
bounded on Rxg.

The presheaf O); is actually a sheaf, for the same reason as for Ox above.
A quick and direct check shows that the skyscraper presheaf Sﬁ) is a sheaf.

The constant presheaf is not a sheaf. Take for instance X = R\ {0}, U; = Rp and Uy = Ry
and f; = 0, fo = 1. Then there exists no constant f: X — R with f|; = fi and f|;, = fo.
However, the locally constant presheaf is a sheaf, since it is a special case of a). [

If we want to generalise the notion of a sheaf to presheaves on arbitrary categories, then we first
have to give the intersection UNV of open subsets U,V C X a meaning. The most important feature
of U NV is that is comes along with natural morphisms U NV — U and U NV < V that were used
in Definition 2.22 and Remark 2.23. Recalling that U NV =2 U xx V, it is now natural to replace
intersections by pull-backs and simply demanding that the necessary pull-backs exist.

Definition 2.26. If C is a category and C'is an object of C, then a C-family (of morphisms in C) is
a family of morphisms {f;: D; — C | i € I} with codomain C. A coverage on C is a function K that
assigns to each object C of C a collection K (C') of C-families of morphisms, called covers of C, such

that

If {fi: Di » C|iel} e K(C), then for each i € I and each morphism g: X — C' in C
the pullbacks X x¢ D; exist and {X x¢ D; = X |i € I} € K(X).

The pair (C, K) is also called site. ]
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This now allows for the following natural generalisation of Definition 2.22:

Definition 2.27. Let (C, K) be a site and F': C°®? — Set be a presheaf on C. If R = {f;: D; — C'|
i €I} is a cover in K(C), then a matching family (of F with respect to R) is an element

(x;)ier € HF(DZ) such that  F(m;;)(z;) = F(pi;)(z;) for all 4,5 € I (15)
el
(shortly denoted by (x;)) where m;;: D; x¢ Dj — D; and p;j: D; x¢ Dj — D; are the projections
from the pull-back

Pij
l)i><C71)j““‘>1)j

ﬁijl J{f] .
f

D, —~*——C
An amalgamation for a matching family (z;) is an object € F(C) such that F(f;)(x) = x; for all
i. Finally, F is a sheaf (with respect to K) if each matching family has a unique amalgamation.
A morphism of sheaves is a morphism of presheaves, i.e., sheaves form a full subcategory of the

categories of presheaves. This defines the category Shc k) of sheaves on (C, K). If K is understood,
then we omit it from the notation. =

Remark 2.28. a) As in Remark 2.24 we say that a general presheaf F': C°? — Set is separated
(or a monopresheaf) if amalgamations are unique (whenever they exist) and that F is an
epipresheaf if amalgamations always exist (but are possibly not unique).

b) Note that the property on F' being a sheaf can also be rephrased as follows: for each cover
{fi: D; = C | i € I} of an object of C, the morphism

FO)STF®), 2 F(fi)()
el

is the equaliser of the morphisms

[T1FD) 5 ] F(Di xe Dy),  p((wi)ier)is = F (i) ()

el i,5€1

and
[IFD) = 1] FDixe D) al(@iier)iy = Flpig)())- u
el 1,j€1

Example 2.29. a) If X is a topological space, then we obtain a coverage of Openy if we let
covers {f;: U; — U | i € I} be all families of morphisms (aka collection of open subsets of U)
for which U = U;¢;U;. With this we obtain to notion of sheaf from 2.22.

b) We also obtain a coverage of C = Top if we define {f;: U; — X | i € I} to be a cover of
a topological space X if each U; is an open subset of X, f; is the inclusion U; — X and if
X = U;erU;. This is referred to as the open cover coverage of Top. This also defines a coverage
on the subcategory Toppaus of topological Hausdorff spaces. All the representable functors
h* are sheaves with respect to this coverage. In fact, if h%, X +— C(X, Z) is representable and
(Ui)ier is an open cover of X, then (f;) € [[;c; C(Us, Z) is a matching family if and only if
fi|Uij = fj|Uij for all i,i € I. Thus there exists a unique map f: X — Z such that f[, = fi,
which is continuous since f; is so.
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¢) On Top and Topgaus We also have the following coverage: the covers of C are the singletons
{f: D — C}, where f is surjective and admits local sections through each point, i.e., for each
d € D there exists an open neighbourhood V of f(d) and a continuous map o: V — D such
that o(f(d)) = d and foo =idy. Indeed, if f: D — C admits local sections and g: X — C'is
continuous, then the pull-back

X xc D ={(a,d) € X x D | g(z) = f(d)}

also admits local sections: if (z,d) € X x¢ D, V is an open neighbourhood of f(d) a d
o:V — D satsifies foo = idy, then g~ 1 (V) is an open neighbourhood of z (since g(x) =

and x — (z,0(g(x))) is a local section of the projection X x D — X (since g(x) = f(o(g(x ))) =
v(z)). We call this coverage the local section coverage. ]

The following two sites will be of big importance to us, thus we give them a separate definition.
Lemma 2.30. On Man we obtain a coverage if we set
K(M) = U {f: N—= M| f is surjective submersion}. (16)
NeOb(Man)

Proof. If g: N — P is a surjective submersion and f: M — P is arbitrary, then for each m € M
there exists n € N with f(m) = g(n), and thus pri: M xp N — M is again surjective and a
submersion by Proposition C.8. ]

Definition 2.31. We call the coverage on Man given by (16) the surjective submersion coverage.m

Definition 2.32. Let Euc be the category whose objects are all open subsets of all R” and Euc(U, V')
C>(U,V) with the usual composition of smooth maps. A cover of an object U of Euc is given by
an open cover in the usual sense, i.e., {f;: U; = U | i € I} is a cover if U; C U are open, f; are the
inclusion maps and U = U;¢;U;. [

It is remarkable that each presheaf may be turned into a sheaf by a more or less canonical
procedure. We will not treat this procedure here, but only state the corresponding result.
Theorem 2.33. The inclusion functor i: Sh ) — PShe has a left adjoint

a: PShC — Sh(C,K)v

called the sheafification functor, and the composition aoi is naturally isomorphic to idSh(c K, More-
over, Shc ) has arbitrary (small) limits and a preserves finite limits.

Proof. This is [MLM94, Proposition II1.4.4, Theorem II1.5.1 and Corollary I11.5.6]. [

Likewise, we only cite the following fact on the cartesian closedness of Shc ). We will give a
more elementary proof for the site Euc later on.
Proposition 2.34. Let (C, K) be a site and F, P € PSh¢ be presheaves. If F is a sheaf, then so is
the exponential PShy(F, P). In particular, She i is cartesian closed.

Proof. The first assertion is [MLM94, Proposition II1.6.1]. Since Sh¢ g is in particular closed
under finite products, we have

Shic i)(G, PShe(F, P)) = PShe(G, PShe(F, P)) 2 PShe(G x F, P) = She 1)(G x F, P)

and thus that PShe(F, P) is also an exponential in Sh¢ g ]
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Exercises for Section 2

Exercise 2.35. If C and D are categories and C is small, show that functors F,G: C — D, together
with natural transformations a: F = G form a category. It is part of the exercise to determine the
composition and identity morphism. We denote this functor category by Fun(C, D) or simply D°. m

Exercise 2.36. Show that if I': C — Set is representable, then the object of C that represents F' is
uniquely determined up to isomorphism. u

Exercise 2.37. a) Show that

Set(X x Y, Z) — Set(X,Set(Y,2)), fw f with f(z)(y) = f(z,y)

is in fact a natural bijection (natural in the sense that is gives an adjunction (- xY) - Set(Y, - )
for each fixed Y).

b) Suppose that C, D, £ are small categories. Show that we have natural isomorphism of categories

Fun(C x D, £) = Fun(C, Fun(D, £)). (17)

Conclude from this that (8) indeed defines indeed a functor J — Set. L]

Exercise 2.38. Let [[y S1 be the product of N copies of S' in Top, i.e., the cartesian product
endowed with the product topology. Show that (1,1,...) (or equivalently each point) does not have
an open neighbourhood which is homeomorphic to an open subset of a Ics. [

Exercise 2.39. Show that open covers (as in Example 2.29 b) and Definition 2.32) yield indeed a
coverage on Top and Euc. Moreover, show that these sites are subcanonical. [

Exercise 2.40. Show that a sequence A — B — C of abelian group, such that the composition
A — C is 0, is short exact if and only if the diagram

A——0

|

B——C

is cartesian and cocartesian. n

Exercise 2.41. More generally than in Definition 2.26 one defines a coverage to be a function K
that assigns to each object C of C a collection K (C) of C-families of morphisms, called covers of C,
such that

If{fi: D;i—C|iel} e K(C)and ¢: X — C is any morphism, then there exists a cover
{9;:Y; = X | j € J} of X such that each for each j € J there exists some i € I and
Y:Y; — D; such that pog; = f; 0.

A matching family for a presheaf F': C°P? — Set with respect to R € K(C) is then an element
(%;) € [, F(D;) such that for each pair m: E — D; and p: E — Dj satisfying fiom = fj o p we
have F'(r)(x;) = F(p)(x;). With this notion of matching family, F' is defined to be a sheaf if for each
object C' and each cover R € K(C') each matching family has a unique amalgamation.
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a) Let K be a coverage of C in the sense of Definition 2.26. For each object C and R =
{fi: D; - C|iecI}in K(C) set

R:={f: D — C | there exists i € [ and ¢: D — D; such that f = f; o p}

Then show that K(C) := {R| R € K(C)} defines a coverage in the above sense.

b) Show that F' € PShe is a sheaf (in the sense of Definition 2.27) with respect to K if and only
if it is a sheaf (in the sense of the above definition) with respect to K. ]

3 Diffeological Spaces

This section introduces the category Diff of diffeological spaces and discusses their basic proper-
ties. In particular, it contains

e the definition of diffeological spaces and their morphisms,

e the natural functor Man — Diff (and shows that it is fully faithful on finite-dimensional
manifolds) and

e the (co)completeness and cartesian closedness of of Diff

We now introduce a type of sheaf that will help us in understanding infinite-dimensional manifolds.
The basic idea is to generalise manifolds by a concept of space that only has smooth maps into it”.
Recall the site Euc from Definition 2.32. A good reference for this section is [IZ13].

Definition 3.1. a) If G: C°? — Set is a presheaf, then a subpresheaf is a presheaf F' on C such
that F'(C') € G(C) for each object C' of C and F(f) = G(f)|p(c) for each morphism f: €' — D
of C. We shortly denote this by F' C G. If G is a sheaf, then F' is called subsheaf F is itself a
sheaf.

b) A diffeolocigal space is a pair (D, X) consisting of a set X and a sheaf D: Euc®® — Set
such that D(x) = X (where * := R") and D is a subsheaf of U ~ Set(U, X). The elements
w: U — X of D(U) C Set(U, X) are called plots (from U into X ). We then also say that D is a
diffeology on X and simply denote the diffeological space by X if the diffeology is understood.

¢) A morphism of diffeological spaces is a morphism of the underlying presheaves. This defines
the category Diff of diffeological spaces. [

Remark 3.2. a) A diffeological space is a set X together with a sheaf of smooth functions from
open subsets of all R™’s into it. Although this looks very similar to the notion of a topological
space, endowed with a structure sheaf (cf. Remark 2.4), this differs significantly from it (mainly
because the structure maps are into the space and not out of it, see [Stal0] for a comparison
of the different possible concepts of smooth spaces that arise this way).

"One can also study a space with a notion of smooth maps out of it, see [Stal0] for a comparison of the different
possible concepts of smooth spaces that arise this way
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b)

Note that constant maps (aka maps x* — X) are plots by requiring D(x) = X. Moreover, if
¢: U — X is locally constant and (U;);er is a cover of U such that |, is constant, then |,
is a plot of D and thus is ¢ by the sheaf property of D.

Be aware that some authors call morphisms of diffeological spaces smooth maps, while we
reserve the term smooth map for a morphisms of manifolds. It will turn out in Section 4 that
for locally metrisable manifolds these notion coincide anyway.

A morphism D — D’ of diffeological spaces gives rise to a map f: D(x) = X — D/(x) = X'. If
ay,: * — U represents an element u € U, then we have that D(U) — D(x) is given by restriction
of the map Set(U, X) — Set(x, X) = X, and thus given by ¢ — ¢(u). Since

D) 2 Dy

R

D)2 pr(x)

commutes we thus have that the morphism D(U) — D’(U) is given by ¢ — po f. Thus D — D’
is determined entirely by f: X — X’. We will thus identify a morphism of diffeological spaces
f: (X,D) — (X', D) with the associated map f: X — X'. n

Example 3.3. a) Each set X has two canonical diffeologies. Let X°(U) := {¢: U — X | ¢ is

~

locally constant}. This clearly has X°(x) = X (canonically). Moreover, fi: U; — X locally
constant with f;] U, = fj|Ui]~ give rise to a unique and locally constant f: U = U;c;U; — X.

Thus X? is a sheaf. Observe that f: X — Y induces naturally a morphism f: X° — Y9
and thus X — X?° is a functor §: Set — Diff. Moreover, each map X — D(*) maps locally
constant maps under postcomposition to locally constant maps and since locally constant maps
are plots we have Diff(X°, D) = Set(X, D(x)). Thus 6 4 F for F: Diff — Set, D — D(%)
(the forgetful functor).

On the other hand D¢(U) := Set(U, X) clearly is also a diffeology on X and each map X — Y
gives rise to a morphism X¢ — Y. Moreover, each map D(x) — X is a morphism of diffe-
ological spaces D — X°¢ Thus Diff (D, X¢) = Set(D(x), X) and F H ¢ (for c: Set — Diff,
X — X¢and F as above).

Each manifold M gives rise to a diffeology Djs on the set underlying M, defined by Dy (U) :=
C>(U, M). This clearly is a sheaf, called the canonical diffeology on M. Moreover, a smooth
map f: M — N induces a morphism Dy; — Dy of diffeological spaces, since composites of
smooth maps are again smooth. We thus obtain a functor Man — Diff. We will show in
Section 4 that this is actually an embedding (i.e., full and faithful) if we restrict to manifolds
modelled on metrisable spaces.

If X is a diffeological space and A C X is a subspace, then A inherits a diffeology D|, form
the one on X by setting
DI, (U) :={p e D(U) | ¢(U) € A}.

It is clear that D|, (x) = A and that D], is a sheaf since gluing maps with values in A will
result in a map with values in A.
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d) If (X;, D;)ier is a family of diffeological space, then we obtain a diffeology on [, ; X; be setting
(ILicr Di)(U) :=Tl;e; Ds(U). It is clear that [[,c; Di(x) = [[;e; Xi (with X; = D;(x)) and that
[Lic; Di(U) C [l;c; Set(U, X;) since these equalities hold for each i € I separately. Moreover,
[Lic; Di is in fact a sheaf, since a matching family for a cover (Uy)rer of [[,c; D; consists of a
tuple ¢; 1 € D;(Uy) such that ‘Pivk‘Uij = ‘pj=k|Uij for all i,5 € I and k € K. Thus there exists
for each k € K a unique ¢ € Di(U) with ¢k[;. = ;. Thus [[;c; D; is a sheaf. Combining
this with the construction of limits in Set as in Proposition 2.12 and the subspace diffeology
one sees that Diff has arbitrary (small) limits.

e) A very similar argument shows that Diff also has arbitrary (small) colimits, cf. Exercise 3.9.m

We will not treat diffeological spaces as spaces of interest per se, but more as a tool for studying
manifolds in a very convenient way.

Definition 3.4. If Y, Z are diffeological spaces, then we define
Diff (Y, Z)(U) :={p: U - Diff (Y, Z) | p € Diff (Dy x Y, Z)}, (18)

where we have used the natural bijection Set(U, Set(Y, Z)) — Set(U x Y, Z), f — fwith f(u, y) =
f(w)(y). -

Proposition 3.5. Let X,Y,Z be diffeological spaces. Then (18) defines a diffeology on Diff (Y, Z)
and we have natural isomorphisms

Diff (X x Y, Z) = Diff (X, Diff (Y, 7)), (19)
given by the identity map on the underlying set. In particular, Diff is cartesian closed.

Proof. Since we have omitted the proof for the general fact that exponentials of sheaves are sheaves
we will give it here in this more basic case. Let D, E, I’ be the diffeologies on XY, Z respectively,
and let us first observe that by (18) we have Diff (Y, Z)(x) = Diff (Y, Z) canonically. Moreover, we
have

o: U — Diff(Y, Z) € Diff(Y, 2)(U)
& (u,v) = p(E(u)(P()) € F(U' x V) forallyp: V —Y € E(V) and all £ € Dy(U’) = C>®(U",U)
< (u,v) = p(u)(YP(v)) € F(U x V) forally: V=Y € E(V), (20)

where the first equivalence is simply the definition and the second follows from the presheaf property
of F, applied to & x idy for each £ € C>°(U',U).
To check that (18) actually defines a sheaf, let

(¢:) € | [ Diff (D, x Y, Z) € [[ Set (Ui x Y, Z)
iel el

be a matching family, i.e., satisfy gpi]Uiny = ¢y Uy xY for all 7,57 € I. Then there exists a unique
¢ € Set(U x Y, Z) such that ¢[;;. .y = @; for all i € I. In order to verify (20) for ¢, let ¢: V — Y
be in D(V). Since ¢; € Diff (Y, Z)(U;), we have for each ¢ € I that U; x V 3 (u,v) — ¢(u,9(v)) € Z
is an element of F(U; x V'), again by (20). Thus U x V 3 (u,v) — ¢(u,9(v)) € Z isin F(U x V) by
the sheaf property of F, applied to the open cover (U; x V);cr of U x V. Thus ¢ € Diff (Y, Z)(U),
and it is an amalgamation of (¢;).
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_ We now claim that a map f: X xY — Z is a morphism in Diff if and only if the map
f: X — Diff(Y, Z) is a morphism in Diff. In fact, we have

f:XXY 5 ZeDiff(X xY,Y)a fo(pxv)e F(UxV) forall p e D(U),¢ € E(V)
& fopeDIff(Y, Z)(U) for all ¢ € D(U)
& f € Diff (X, Diff(Y, 2)).

Thus the isomorphisms in (19) are in fact the identity maps, which are of course natural. This
finishes the proof. [

Corollary 3.6. Let Y,Y' . Z. Z' be diffeological spaces and f:Y' — Y, g: Z — Z' be morphisms in
Diff. Then
g« DIff(Y, Z) — Diff (Y', Z'), @o+>gopof

18 a morphism in Diff.
Proof. This is left as Exercise 3.8. ]

Exercises for Section 3

Exercise 3.7. Show that the restriction of the functor Man — Diff;, M — Dj; to the category
Mang,, of finite-dimensional manifolds is fully faithful. m

Exercise 3.8. Let Y,Y’, Z, Z' be diffeological spaces and f: Y’ — Y, g: Z — Z' be morphisms in
Diff. Show that
Diff(Y,Z) — Diff(Y', Z'), ¢~ gopof

is a morphism in Diff. =

Exercise 3.9. Show that the category Diff of diffeological spaces has arbitrary (small) colimits. m

4 Comparison of Diffeological Spaces and Manifolds

This section contains the first main result of the lecture: the functor Man — Diff is fully faithful
on locally metrisable manifolds.

We now turn towards the first main result. It is a powerful tool for constructing smooth maps
between certain infinite-dimensional manifolds. In a first (an less general) approximation it says that
a map between certain infinite-dimensional manifolds is smooth it if maps smooth curves (into the
space) to smooth curves.

Remark 4.1. In Appendix A the notions of differentiability of functions f: U @ X — Y for X, Y
locally convex spaces (lcs) have been laid out. In particular, we have that a curve y: I @R — Y is
differentiable (in the sense of Definition A.9) if the ordinary difference quotient

V()= 20 1= i = ({4 8) = (1)) = da(a 1)
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exists for all ¢ € I, since

dy(,0) = im > (y(t + 50) — 4(1)) = lim 2 (3(t + 5) — 7(t)) = v7/(2). (21)

s—0 S %—>O S

If ~y is differentiable, then it is also continuous, since then (¢,,) — p implies

lim (¢,) = lim M(

n—00 n—o0 tn — p

tn —p) +7(p) =~ ()04 ~v(p) = ~(p)

by the continuity of the scalar multiplication in Y. Moreover, (21) shows that if 4/ is continuous,
then so is dy and thus 7 is then a C'-map. Likewise, + is smooth if and only if y/¥ := (yF=1]) with
A1 = 4 is continuous for all k. =

We recall the following elementary Lemma.

Lemma 4.2. Let X,Y be topological spaces, X be metrisable, f: X —Y be a map and p € X and
(tn) be a sequence in Rsg with t, — 0. If for each sequence (x,,) in X with d(x,,p) < t, it follows
that f(xn) — f(p), then f is continuous in p.

Proof. Let d be a metric inducing the topology on X and suppose that f is not continuous in p.
Then there exists a neighbourhood Uy, of f(p) such that for each § > 0 there exists some x € X with
d(x,p) < and f(x) ¢ Uy(,). In particular, we find with § = ¢, a sequence () with d(z,,p) < t,
and f(z,,) - f(p). This contradicts the assumption. L]

Metrisability of a lcs will be an important property in the sequel. We first recall some equivalent
conditions for this.

Theorem 4.3. For a lcs X the following are equivalent
a) The topology of X is metrisable.
b) The topology of X is locally metrisable.

¢) The topology of X is induced by an at most countable family of point-separating semi-norms.
Proof. a) < b) is [Rud91, Theorem 1.24] and b) < ¢) is [Rud91, Remark 1.38 b) and c)]. ]

Lemma 4.4 (Special Curve Lemma). Suppose that X is a metrisable locally convex space and
that the topology on X is induced by a countable family (pp)nen of point-separating semi-norms on
X that satisfy pp+1 > pp for alln. If U @ X is convex with 0 € U and (x,) is a sequence in U
such that 2"%p,(z,) — 0 for each k € N, then there exists a smooth function v: R — U such that

’y(%) =z, and v(0) = 0.

Proof. The idea is to take a convex combination between x, 41 and z, on the interval [#, 2%],
put them together to obtain a continuous function and then to “smoothen out” the function at the
points {i | n € N} U{0} by a reparametrisation that kills all derivatives.

Let 6 € C*°(R,R) be such that 6] _. o =0 and 0], ) =1 and define

0 ift <0
Y(t) = (1= 02" — 1)) wpgr + 02" — Day, if t € [5r57, 57)
x1 if t > 3.
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Then y is continuous on R \ {0} since

(1 =02" 1t = 1)@ngr + 02" = D) 1 = (1= 02" = 1)zpia + 02"t = Darpir)| s

on+1 on+1
for all n. Moreover, « is also continuous in 0: Let (h,) be a sequence with 0 < h,, < 2% for all n.
Then h,, € [W, W] for some m,, and if we set s, = 2"t™nFlp 1, then we have

Pr(Y(hn)) = pn((1 = 0(5))Zntmy,+1 + 0(8)Tntm,) <

Pr((1 = 0(8))Tntma+1) + Pn(0(8)Tntm,) < Prtmn+1(Tntmn+1) + Prtmn (Tntm.,) R

—0

since pp < Pntm, < Pntm,+1 and 0(s) € [0,1]. Since (hy,) was arbitrary, this implies limp\ o y(h) =0
by Lemma 4.2 (se also Exercise 4.18 b)).

We can use a similar argument to show inductively that ~y is smooth: If & € Nt and v in C*~!, then
7 is a C*-map on R\ {0} for each k € N, since ’y|[ ] =(1-002"" % —1))xp 1 +0(2" T — 1)y,

on+1127

is so and

@ P (M @~ Dy + 002 - )| | =0=

_1
on—+1

(2n+1)k (_9[k](2n+2t _ 1)$n+2 + H[k](2n+2t — 1)Jjn+1)

1
on+1

is implied by 8*/(0) = #*/(1) = 0. Thus ¥ exists and is continuous on R\ {0}. In order to check
that ~ is C* also in 0 it suffices to check that %! extends continuously to R, since then

t
t— y* () +/ ~Fat
to
defines a C'-map coinciding with the continuous map =1 on the dense subset R\ {0} and thus
equals Y*~1. Let (h,) be a sequence with 0 < h,, < 5 for all n. Then h,, € [W, | for
some m,, and if we set s, = 2" F1p 1, then we have

Pu(r () = @ (=0 (5, 41+ O (50) 0 4m) <

(2m+m"+1)k‘9[k](3n)|(pn+mn+1($n+mn+1) + Pntmn, (xn+mn)) — 0

since pn < Prom, < Prtm,+1, 01 is bounded (since continuous on [0, 1] and constantly 0 everywhere
else), and since

(2n+mn+1) (2n+mn+1)

kpn—s—mn—«—l(xn—&-mn—&-l) — 0 and kpn+mn (Tntm,) — 0

follow from (2")*p,,(x,) — 0. As above, this implies limj~ o v (h) = 0. ]

Corollary 4.5. Let X be a metrisable locally convex space, Y be a topological space, U C X be open
and f: U =Y be a function. If f o~y is continuous for each v € C®(R,U), then f is continuous.
In particular, the topology on U is the final topology for all v € C*®(R,U).

Proof. We show that for each p € U there exists an open convex neighbourhood V), of p such that
f ‘Vp is continuous in p. Without loss of generality we may assume that p = 0, since we can translate
U toU —p. Let V, be open an convex with p € V,, and V, C U. By Theorem 4.3 there exists a



Comparison of Diffeological Spaces and Manifolds 29

countable family (p/,)nen of point-separating semi-norms on X that induce the topology. By setting
Pn := ) + ... + pj, we may assume without loss of generality that p,4+1 > py, for all n.

If (xy,) is a sequence in V), with d(z,,0) < (2%)”, then we have for each fixed k € N and n > 2
that

S 2 min{pi(z,), 1} < (;)n = min{py(z,),1} < <2n1_1>n = pulan) < <2n1_1>n

1eN

and this implies
- 28 \" oo 0
P (Tn) < 1) 7

for each k € N. Thus there exists by Lemma 4.4 some v € C*°(R,V,) such that y(5) = z,, and
~v(0) = 0. Since f o~y is continuous we have

1 1
Tim () = lim F(+(5)) = fG(lm ) = 7(+(0)) = (0)
and thus that f is continuous by Lemma 4.2. [

Remark 4.6. Note that the assumptions of the preceding corollary are in particular satisfied if
f:U @ X — Y maps either smooth curves to smooth curves or continuous curves to continuous
curves. [

Proposition 4.7. Let X,Y be lcs, X metrisable and f: U @ X — Y be such that for eachn € N and
v € C®(R™, U) the composite f o~y is also smooth. Then f is smooth (where throughout smoothness
refers to Definition A.9).

Proof. We show that for each k and (z,v1, ...,vx) € U x X¥ the higher differentials d* f(x)(v1, ..., vi)
exist and that (z,v1,...,v;) — d¥f(2)(v1, ..., v}) is continuous.

Consider the map v: V=Y, y(s1, ..., Sk) = & + s1v1 + ... + sk, which is defined on some open
zero neighbourhood V, diffeomorphic to R¥. We have that f o~ is smooth by assumption and thus

0 0

a78166781'{]“07 :dkf(]))(vl,,vk) (22)

s1=...=s=0

exists. We now show that (z,vy,...,v) — d*f(x)(vy,...,vx) has the property that whenever I @
R — U x X¥ t — (2(t),vi(t),...,v5(t)) is smooth, then t > d¥ f(z(t))(vi(t),...,vx(t)) is continuous.
Indeed, the map

(t,81, ..y Sk) = x(t) + s101(t) + ... + spvk(t)

is smooth and thus (¢, s1, ..., sx) — (¢, $1, ..., Sg) := f(x(t) + s1v1(t) + ... + sgvk(t)) is smooth. Thus

0 0 0 0

i IO, wu0) = giocgifos|
exists for all ¢, implying that ¢ ~ d*f(z(t))(vi(t),...,vx(t)) is continuous (cf. Remark 4.1). By
Corollary 4.5, d* f is continuous. Since k was arbitrary, this shows the claim. [

Remark 4.8. Proposition 4.7 is valid also for not necessarily locally convex (but still metrisable)
X [BGNO04, Theorem 12.4]. Moreover, a slightly more detailed analysis shows that it suffices in
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Proposition 4.7 to check the case n = 1 [G1604b, Proposition E.3], even if X is not necessarily locally
convex (but still metrisable). This implies in particular that what is called conveniently smooth maps
between locally convex metrisable spaces (cf. [KM97, Definition 3.11]) are smooth maps in the sense
of Definition A.9. However, this is only a slightly stronger statement, since in practice it is usually
not harder to show that f o+ is smooth for each v € C*°(R",U) than just for each v € C*(R,U).m

Remark 4.9. Recall that a topological space X is locally metrisable if each point has a metrisable
open neighbourhood. In particular, for a locally metrisable manifold the charts have as targets open
subsets of metrisable lcs by Theorem 4.3. [

The following theorem is the main result of this section.

Theorem 4.10. Let Many,, denote the category of locally metrisable manifolds. Then the functor
Man;,,, — Diff from Example 3.3 ) is fully faithful, i.e., a map f: M — N between locally metrisable
manifolds M, N is smooth if and only if f o~y € C>®(O,N) for each O @ R"™ and v € C>*(0,M).
Moreover, the last statement remains true if restricted to O = R"™.

Proof. Let M, N be locally metrisable manifolds an f: M — N be a map that induces a morphism
of the diffeological spaces Dy — Dpy. We show that each coordinate representation of f is smooth
under these assumptions. To this end, suppose that ¢: U — ¢(U) @ X and ¢p: V — (V) @ Y are
charts of M and N (respectively) with f(U) C V. Then in the diagram

v—1 v

| b
i
p(U) ——(U)
we may interpret ¢ and 1 as morphisms between the induced diffeological spaces. Thus f: o fopt
is a morphism of diffeological spaces, which is smooth by Proposition 4.7.
The last assertion follow from applying Proposition 4.7 to what we have just shown. [

We now turn to comparing the topologies on locally metrisable manifolds and the natural topolo-
gies induced from their diffeologies.

Definition 4.11. If (X, D) is a diffeological space, then the d-topology on X is the final topology
for all plots, i.e., O C X is d-open if and only if »~!(O) is open for each plot ¢ € D(U) and each
U @ R"™. This is the finest topology that makes each plot continuous. ]

Lemma 4.12. A morphism of diffeological spaces is continuous for the d-topology.
Proof. This is left as Exercise 4.19. ]

Lemma 4.13. If M is a locally metrisable manifold, then the d-topology on M is the topology of the
underlying topological space of M.

Proof. Let (¢;: Uy — ¢(U;) @ X;)ier be an atlas of M. Then
f: M — Y is continuous < f’Ui : U; — Y is continuous for all 7 € T
& fopt: wi(Ui) = Y is continuous for all i € T

& fop;oy: R =Y is continuous for all i € I,y € C(R, p;(U;))
& foy: R— Y is continuous for all i € I,y € C°(R, U;),
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where the last but one equivalence follows from Corollary 4.5. Thus the topology of M is final for
the set of all smooth curves that have range in the domain of some chart. Adding functions to this
set makes the induced final topology finer, and does not change it if the added functions already are
continuous. Since all plots of M are continuous, the topology is thus final for all plots. m

For later reference, we record the following lemma. Note that we endow throughout the set
of smooth functions C°°(M, N) between locally metrisable manifolds with the diffeology from the
identifications C*°(M, N) = Diff (D, Dy) (see Definition 3.4 and Proposition 3.5).

Lemma 4.14. If M, N are manifolds, M is compact, N is locally metrisable and O C N is open,
then C*°(M,O) is open in the d-topology on C*°(M,N).

Proof. The proof is left as Exercise 4.20. ]

We have seen that metrisability is an important property for us. Unfortunately, the question
whether or not a space is metrisable is quite delicate and one of the fundamental questions in general
topology. We will not go into detail here but only list some properties under which spaces are
metrisable (this will only shorten some arguments in the sequel, the examples that we will treat
often come along with natural metrics).

Theorem 4.15. ([Mun75, Theorem 6.5.1]) A topological space is metrisable if and only if it is locally
metrisabe and paracompact.

Corollary 4.16. FEach finite-dimensional paracompact manifold is metrisable. In particular, each
closed submanifold of R™ is metrisable.

Theorem 4.17. ([EG5}]) If m: Y — Z is a locally trivial bundle with fibre X such that Z and Y
are metrisable, then Y is metrisable.

Exercises for Section 4

Exercise 4.18. Let X be a lcs such that the topology of X is induced by a countable family of
semi-norms (pp)nen-

a) Show that if we set p, := 3, pi, we obtain another family of semi-norms inducing the same
topology on X. We may thus w.l.o.g. assume that the family satisfies p, < pn41.

b) Show that the following statements are equivalent conditions for a sequence (zj) in X and
peX:

i) (xg) koo, p in the topology of X.

9—n Pn(z—y)

i) (d(xg,p)) LmiN 0, where d is the metric d(z,y) := >, oy SE

iil) (pn(xr —p)) k220 0 for each n.

Moreover, if the family satisfies p, < pn41, then show that any of these conditions is implied
by

iv) (pu(zx —p)) == 0. =

Exercise 4.19. Show that a morphism of diffeological spaces is continuous for the d-topology. =

Exercise 4.20. Show that if M, N are manifolds, M is compact, N is locally metrisable and O C N
is open, then C*°(M, O) is open in the d-topology on C*°(M, N). [
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5 Spaces of Smooth Maps: The Topology

In this section we treat the topology structure on C*°(M, N) for M a compact manifold and N.
In particular, the section

e introduces the smooth compact-open topology (topology of uniform convergence of all deriva-
tives on compact subsets) on C*°(M, N),

e discusses the metrisability of the topology on C*°(M, N) and

e discusses completeness issues for C*°(M,Y).

We will now finally turn to understanding the smooth structure on spaces of smooth maps
C°(M, N). From Proposition 3.5 we already know how to treat them as diffeological spaces and the
d-topology from Definition 4.11 turns them into topological spaces. What we need to know in order
to understand C°°(M, N) as manifolds is to see that it is locally homeomorphic to open subsets of
locally convex spaces.

For the main results of this section our approach only works for compact M. This applies in
particular to the smooth structure on C*°(M, N) and Diff(M). However, some more basic results
are also valid for non-compact M and we stick to this more general setting whenever this is necessary
or it is possible without major changes. The more general assertions on C*°(M, N) and Diff (M) for
non-compact (but still finite-dimensinoal) M are not treated, since the modelling spaces are then
spaces of compactly supported maps, which are in general not metrisable.

Definition 5.1. If M, N are manifolds modelled on lcs X and Y, then we endow the set C*°(M, N)
with the initial topology with respect to

C®(M,N) = [ CT*"M, T"N)eo,  f > (T* Frens,
keNg

where C'(X,Y)c,. denotes for two Hausdorff spaces X,Y the space of continuous functions endowed
with the compact-open topology (cf. [Mun75, Section 7.5]). ]

Remark 5.2.  a) The topology on C*°(M, N) is also the initial topology for
TF: C®°(M,N) = C(T*M, T*N)co., frTFf with ke Ny,
but it sometimes is more convenient to consider C*°(M, N) as a subspace of [ | ke, C (T*M, T*N),.,..

b) Note that the topology on C*°(M, N) is designed to make C>°(M,N) — C®(T*M,T*N),
f — T*f continuous. In particular, if M, N are open subsets of lcs’ X, Y, then

C®(M,N) = C®(M x X*\Y), f—d'f

is continuous, since d¥f only puts some of the arguments of T*f to zero and takes the last
component (cf. Exercise 5.15).

c¢) In case that the target N = X is a lcs, then for f: M — X smooth there exists an intermediate
differential D*f between d* f and T*f. Since TX = X x X we have TFX = T2° X and we set
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DFf .= pryoT* f (where we follow the convention that locally we have T'f = f x df, i.e., we
put the map in the first and the differential in the second component). Then we clearly have
that Tf = f x Df (where we have used the canonical isomorphism 7X = X x X). Moreover,
f — DFf is also continuous.

d) Besides the properties that we will show in this lecture, the topology on C*°(M, N) carries
some very important properties. For instance, continuous homotopies in C*°(M, N') coincide
with smooth homotopies and the inclusion C*°(M, N) — C(M, N) is a homotopy equivalence
(both provided that M is finite-dimensional). Similar statements also hold for spaces of smooth
sections [Woc09]. L]

Lemma 5.3. If X,Y arelcs, U @ X and V @Y, then the topology on C*(U, V) is initial for

d*: C®(U, V) = C(U x X*,Y)eo.,, [frd*f with ke N.

Proof. We have
dkf($)(vlv Sx3) Uk’) = PTok (Tfk(x7 Wy .-y w2k—1))

with wgi 1 = vi41 for 0 < i <k —1 and w; = 0 else (cf. Exercise 5.15). Thus if Z is an arbitrary
topological space and ¢: Z — C*®(U, V) is continuous, then d* o ¢ is continuous for each k € N.
Conversely, let ©: Z — C°(U, V). Then we claim that for each U,V , each ¢p: Z — C*°(U,V) we
have
d* o 1) continuous for all k € Ny = T™ o 1) continuous for all n € Ny.

Since 7% = v this shows the statement for n = 0. Moreover,

T"(y(2)) = T(T"'(2)) = T 1(2) x dT" ()
shows inductively that T™ o is continuous if 7" 04} is so (since 7" 19(2) € C(T" U, T" V) m
Lemma 5.4. If M is a manifold and Y a lcs, then the topology on C°°(M,Y) is initial for

DF: C®(M,Y) — C(T*M,Y)¢o., fr DFf with ke N.

Proof. The proof is entirely analogous to the previous one. [
Lemma 5.5. If f: M/ — M and g: N — N’ are smooth, then

gxf*: C®°(M,N) — C®(M',N"), v+ govyof
is continuous. In particular, the restriction map f — f]Q for Q@ C M a submanifold is continuous.
Proof. For n € Ny, K CT"M compact and O C T"N open, we set

In, K,0] := {n € C®(M,N) | T"(K) C O}.
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Suppose v € (g«f*)" (V) for some V @ C*°(M’,N'). Then there exists some [ € N and for each
1 <i<lsomen; € Ny, K; CT"M compact and O; C T™ N open such that

goyofe€|n,Ki,O1]N..N|n, KO

and
ny, K1,01] N...n|ng, K;,0;] C V.
Now
gono fe|n,Ki,01|N..N[n, K, O
& n € [n, T (K1), (T™g) " (O0)] Mo [y, T f(KG), (T g) O,
and thus

L1, T™ (K1), (T™ g) " (O] N 0 [, T (EG), (T g) 101 € (g ) H(V). u

Lemma 5.6. Let M, N be manifolds and M be finite-dimensional. Then the evaluation map
ev: C*°(M,N)x M — N, (y,z)+— v(x)

1S continuous.

Proof. Since M is locally compact (i.e., each point has a compact neighbourhood) and the topology
on C°(M,N) is finer than the compact-open topology, this follows from the the fact that the

evaluation
ev: O(M,N)co. x M — N, (y,2)— vy(x)

is continuous in this case (cf. Exercise 5.17 and [Mun75, Theorem 7.5.3]). n

The definition of the topology on C°°(M, N) is quite general and becomes useful only in more
specialised cases, as in the following proposition.

Lemma 5.7. Let X be a Hausdorff space and (Y,d) be a metric space. The for f € C(X,Y) the
sets
04(K, <) == {g € C(X,Y) | d(f(x), g(x)) < & for all z € K}

form a basis for a topology on C(X,Y), where f runs through C(X,Y), K through the compact
subsets of X and € over Rsg.

Proof. We show that for each two O(K,¢),04(K’,¢") and each h € O¢(K,e) N Oy(K',€’) there
exists K”,¢” such that On(K",e) C Of(K,e) N Oy(K',€") (cf. [Mun75, Section 2-2]). Since the
image of K > x — d(f(x),h(z)) € [0,e) is compact there exist £ such that d(f(z),h(x)) +& < ¢
for all z € K. Likewise, there exists & such that d(g(z),h(z)) + & < & for all x € K’. Thus
v € Op(K U K',min(g, ")) implies

d(v(z), f(z)) < d(vy(x),h(z)) + d(h(z), f(z)) < €+ d(h(x), f(x)) <e forall z € K

and
d(y(z),g(x)) < d(vy(z), h(x)) + d(h(z),g(z)) < & + d(h(z),g(x)) < & for all z € K’

and hence v € Of(K,e) N Oy(K',€"). "



Spaces of Smooth Maps: The Topology 35

Definition 5.8. The topology described in Lemma 5.7 is called the topology of compact convergence
and is denoted by C'(X,Y).. ]

We do not indicate the dependence of the topology C(X,Y ). on the metric d. This is justified
by the first part of the following proposition. In there and in the sequel we will frequently use spaces
that admit a compact exhaustion in the following sense.

Remark 5.9. A Hausdorfl space X is o-compact if there exists a sequence Ki, Ko, ... of compact
subspaces such that U,en K, = X. We will in the following always assume that the K;’s are increasing
(if necessary then we replace K, by U;<, K;). Note that a compact space is o-compact. Some further
properties of o-compact spaces are established in Exercise 5.19. m

Proposition 5.10. Suppose X is a Hausdorff space and Y is a metrisable space.

a) The topology C(X,Y). equals the compact-open topology. In particular, it is independent of the
metric on 'Y .

b) If X' is another Hausdorff space, Y' is another metrisable space and f: X' — X, g: Y = Y’
are continuous, then C(X,Y ). — C(X",Y")e, v+ goyo [ is continuous.

¢) Suppose d is a bounded metric on'Y and K1, K, ... is a sequence of compact subsets of X with
UpenKy = X. Then

d(f,9) =Y 27'd"(f,g)
€N
with d¥i(f,g) := sup{d(f(x),g(x)) | = € K;} defines a metric on C(X,Y) whose induced
topology is C'(X,Y)..

d) If X is compact and d is a metric on'Y, then the topology C(X,Y). is induced by the metric

d(f,g) = sup{d(f(z, g(x)) | z € X}.

e) If X is o-compact and Y is metrisable, then C(X,Y). is metrisable.

Proof. a) This is left as Exercise 5.18, see also [Mun75, Theorem 7.5.1].

b) Follows from the previous part since the corresponding statement is true for the compact-open
topology.

c) We assume without loss of generality that d is bounded by 1. If K is an arbitrary compact
space, then we consider on C(K,Y’) the metric

d"(f.g) = sup{d" (f(x),9(z)) | x € K}.

If K" C K is compact, then By(e) C Of(K’,¢) and thus Of(K’,€) is open in the topology
induced by d¥. Conversely, Oy(K,e) C By(e) by definition, and thus By (¢) is open in C(K,Y)..
Thus C(K,Y). is metrisable.

Now we have by definition

d(f.9) = 27'd" (flx. . 9lx,):

€N
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which clearly defines a metric on C(X,Y) (cf. Example A.2 e) and f)).

In order to check that C'(X,Y). is finer than the metric topology take By (e) arbitrary. Then
there exists n € N such that > ;° 27" < £. We claim that Oy(K,,5) C By(e). In fact, if
v e Of( ns 2) then

d(v(z), f(x)) < % ifxre K,

and d(y(z), f(z)) < 1if x ¢ K,,. Thus

::EE:QiSup{d(y(x)jf(x))|a;€ B@} <

ieN
S 2 sup{d(y(a), f(@) |2 € K} + S 2@<Zzz Py <s+5=c (23)
i=1 i=n+1 i=n+1

since K; C K, if i <n and d(y(x), f(x)) is bounded by 1. Thus By¢(e) is open in C(X,Y)..

In order to show that the metric topology is finer than C(X,Y)., we first note that if K C X
is compact, then it is contained in some K,. In fact, (int(Kj;));en is an open cover of X and
thus K C int(K;) U ... Uint(K,) = int(kK,) C K,, for some n. Now take an arbitrary Of(K,e)
and assume K C K,,. Then Bf(e) C O¢(K,¢), since

v€Bp(e) =Y 27 d5 (fl k) <e=d¥(fli,  Vk,) < ¢
€N

=d(f(z),v(z)) <eforall x € K,
=d(f(z),v(z)) <eforallz € K
=v € Of(K,e).

Thus Of(K,¢€) is open in the metric topology.

d) There exists a bounded metric defining the topology on Y (replace an arbitrary metric with
the equivalent metric min{d, 1} if necessary). Hence the claim follows from part c¢) if we set
Ky =X and K,, =0 for n > 2.

e) As before, there exists a bounded metric. Thus the claim follows from part c). [

Corollary 5.11. The topology on C*°(M, N) from Definition 5.1 is metrisable if M is finite-dimen-
stonal and o-compact and N is metrisable.

Proof. The topology on C*°(M, N) is the initial topology with respect to

C(M,N) < [[ CT"M,T*N)eo., > (TFFrer,-
keNp
If M is o-compact then so is TFM (see Exercise 5.18) and if N is metrisable then so is TFN
(see Theorem 4.17). Thus C(T*M,T*N)., = C(T*M,T*N). is metrisable for each k € Ny by
Proposition 5.10 ¢) and thus [[;cy, C (T*M,T*N)..,. is metrisable (see Exercise 5.20). Consequently,
C*>°(M, N) is metrisable as a subspace of a metrisable space. [

We now consider the more special case in which Y is a locally convex space.
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Lemma 5.12. a) Suppose X is a o-compact space and Y is a metrisable lcs. Then the topol-
ogy induced by the semi-norms from Example A.2 g) coincides with C(X,Y).. In particular,
C(X,Y). is then again a metrisable lcs.

b) Suppose M is a finite-dimensional o-compact space and 'Y is a metrisable lcs. Then the topology
from Definition 5.1 turns C*>°(M,Y) into a metrisable lcs.

Proof. a) Let for the moment C(X,Y);. denote the topology on C(X,Y) from Example A.2
g). Since both topologies are vector topologies we only have to check that the bases of zero
neighbourhoods agree. Let K1 C Ko C ... be an increasing sequence of compact subsets with
UnK, = X. Then we first observe that C'(X,Y). carries the initial topology of the maps
res,: C(X,Y) = C(Ky,Y)e, f+ flg, for n € N. Indeed, by Proposition 5.10 d) the topology
on C(K,,Y). is induced by the metric d,(f, g) = sup{d(f(z,g(x)) | x € K,}. Thus a basis for
the zero neighbourhoods in the initial topology of (res,)nen is (in the notation of Lemma 5.7)

Oo(K1,e1) M. N Og(Kipym)

where m runs through N and ¢4, ..., €, through the positive reals. These are clearly open in
C(X,Y).. This implies

({res; 1 (C(K,,Y)) |n € N}) C C(X,Y)..

Conversely, if K C X is compact, then K C K for some n € N and thus Oyg(Kn,e) C Op(K ¢).
This implies
C(X,Y). C ({res, ' (C(K,,Y)) | n € N}).

A similar argument also shows that the topology of C(X,Y),. coincides with the initial topology
of the maps res,: C(X,Y) — C(K,,Y ).

By the above it suffices to check the claim in the case where X is compact. A basis for the zero
neighbourhoods in C(X,Y). are given by

O. ={feC(X,Y)|d(f(x),0) <eforalze X},

where ¢ runs through to positive reals. Let (p})nen is a countable point-separating family of
semi-norms defining the topology on Y. By setting p, := p| + ... + pl, we may assume without
loss of generality that p,+1 > p, for all n. A basis for the zero neighbourhoods of C(X,Y),. is
given by

P ={feCX,)Y)|pu(f(z)) <eforalzeK,}

where n runs through N and e through the positive reals (we don’t have to take multiple
intersections here, since we assumed K, C K, 11 and p, < p,41). By Exercise A.15 we may
assume that

d(z,y) = Z 27" min{p,(x — y), 1}.

neN

If ¢ is fixed, then choose N such that > :° 271 < 5. This implies Py .-~ C O and thus

C(X,Y). € C(X,Y);e. On the other hand, we have for each n and each 0 < ¢ < 1 that
O.9-n C P, ¢ and thus C(X,Y);. C C(X,Y)..
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b) The topology on C*°(M,Y) is metrisable by Corollary 5.11. From Lemma 5.4 and Proposition
5.10 a) it follows that the topology on C'°°(M,Y) is the initial topology for

DE: C®(M,Y) = C(T*M,Y)., f+~— DFf with ke Ny.
Since the topology on each C(T*M,Y). is locally convex this also holds for the initial topology.m

The following fact is probably well-known, we repeat it here for convenience.

Lemma 5.13. Suppose Y is a Fréchet space. If (fn)nen is a sequence in C*(R™, F) such that f, — f
in C(R™, F). and Tf, — g in C(TR™ , TF)., then f € CL(R™,F) and Tf = g.

Proof. For each z,v € R™ and s > 0 we have by the Fundamental Theorem, Proposition A.8 and
Exercise 5.21

1 1
fle+sv)—f(x) = nli_)nolo(fn(x—l—sv)—fn(ac)) = lim ; dfp(x+tsv)(sv)dt = S/O pro(g(z+tsv)(v))dt.

n—o0

Thus f is differentiable and df (z,v) = pry(g(z,v)) (cf. Exercise A.18), which implies T'f = g. ]

Although completeness is not an important property of lcs for our purposes, we record the fol-
lowing fact.

Theorem 5.14. If M is a finite-dimensional o-compact manifold and Y is a Fréchet space, then
the topology from Definition 5.1 turns C°°(M,Y") into a Fréchet space.

Proof. The topology on C*°(M,Y’) from Definition 5.1 is the initial topology with respect to

CO(M,Y) = [[ CT*M,Y)e, | (T* fren,-
keNy
(cf. Proposition 5.10 a)). A metric on [[,y, C(T¥M,Y). is given by

(f,9) = > 27 Fdp(TF f, T"),
keNg
where dj, denotes a bounded invariant metric on C*(T*M,Y) (see Proposition 5.10 ¢) and Exercise
5.20). In particular, we may assume without loss of generality that f — T*f is a contraction.

From this it follows that if ( f,)nen is a Cauchy sequence, then (T f,),en is also a Cauchy sequence
for all k € Ng. Since C(T*M, F).. is complete (see Example g)), (T* f,,) converges in C(T*M, F).. for
each k to a function gy := lim,_yeo 7% f,. We set f := go and claim that g is C* and that T%g = g,
for each k. This implies that g € C*(M,Y) and f, — f in C°°(M,Y’) and thus finishes the proof.

In order to verify the claim we first observe that it suffices to show the claim for M = R™. Indeed,
T*g = g; holds if and only if we find an open cover (U;);e; with each U; diffeomorphic to R™ such
that Tk(g]Ui) = Gk|pwy, for each i. Moreover, v — 7|piy;, is continuous by Lemma 5.5 and thus we
have that T fn’Ui converges to gk|TkUi for each k£ and each 1.

On R"™ we proceed inductively: Lemma 5.13 shows directly that Tf = ¢g;. If we know that
T'g = g; for i < k — 1, then

gr = lim Tf, = lim T(T*"'f,) = T(lim T*1f,) = T(ge—y) = T(I""'g) = Ty

n—00

follows again from Lemma 5.13 and the continuity of v — Ty. This finishes the proof. ]
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Exercises for Section 5

Exercise 5.15. Show inductively that if U @ X and V @ Y, then

A () (01, 08) = i (T, e y))

with wgi g = viq1 for 0 <i <k —1 and w; = 0 else. n

Exercise 5.16. Show that if XY, Z are Hausdorfl spaces and f: X x Y — Z is continuous, then
for each x € X we have f(x) € C(Y,Z) and f: X — C(Y, Z)..,. is continuous. ]

Exercise 5.17. Show that if X, Y are topological spaces and X is Hausdorff and locally compact
(i.e., each point in X has a compact neighbourhood), then the evaluation map

ev: C(X,)Y)x X =Y, (v,2)—~v(x)
is continuous. L]

Exercise 5.18. Show that for a Hausdorff space X and a metrisable space Y the topology of compact
convergence equals the compact-open topology. Hint: This involves various typical compactness
arguments. ]

Exercise 5.19. Show the following:

a) Finite products of o-compact spaces are again o-compact (with respect to the product topol-
ogy).

b) Open subsets of R™ are o-compact.
c) A o-compact space X is also Lindeldf, i.e., each open cover of Xhas a countable subcover.

d) Countable disjoint unions of o-compact spaces are o-compact (with respect to the disjoint
union or colimit topology).

e) Closed subsets of o-compact spaces are again o-compact (with respect to the subspace topol-
ogy).

Conclude that if M is a o-compact manifold, then so is its tangent bundle T M. [

Exercise 5.20. Suppose that (X,,),en is a countable family of metrisable spaces. Let d,, be a metric
on X, that is bounded by 1 and that induces the topology on x,. Then show that

d(('rn)neNa (yn)nEN) = Z 2_ndn(3}na yn)
neN

defines a metric on ], X, that induces the product topology. [

Exercise 5.21. Show that one may interchange limits and integration in the following sense: Sup-
pose that X is a lcs and (fy,)nen is a sequence in C([0, 1], X), with lim,,_,~ fr, = f. If fol fndt exists

for each n and lim,, s fol fndt exists, then fol f(t)dt exists and equals lim,, fol fa(t)dt. n
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6 Spaces of Smooth Maps: The Exponential Law

In this section we prove the exponential law
C®(U,C*(M,0)) = C*®(U x M,0)

for U C R™ open and O an open subset of some locally convex space.

In order to prove the results of the next section the following result. Its proof will occupy this
entire section.

Theorem 6.1. Suppose U C R" is open, M is a compact manifold and O C X is open for some lcs
X. In the following, smoothness refers to Definitions B.1 and A.9.

~

a) If f: U x M — O is smooth, then so is fU— C*(M,0), f(x)(y) = f(z,y).

b) The evaluation map
ev: C°(M,0) x M — O, (y,z) — v(x)

is smooth. Moreover, the map
C®(U x M,0) — C®(U,C®(M,0)), ff
(which is well-defined by a)) is a bijection.

We will split the proof up into several lemmas. Throughout this section, smoothness refers to
Definitions B.1 and A.9 and C*°(M, N) is endowed with the topology from Definition 5.1. Recall
that C°°(M, X) is a lcs if M is finite-dimensional and o-compact and X is a les (cf. Lemma 5.12

b)).
Lemma 6.2. Suppose X, Z are lcs’s, U @ X and V @R". It f: U xV — Z is smooth, then so is

F:U = C®(V,2).

Note that the following proof goes through also for V' @ Y for an arbitrary lcs Y, but then
C*(V,Z) is not a lcs any more (cf. Lemma 5.12) and we are working here only with smooth maps
into locally convex spaces (be aware that then the notion of smoothness that we have chosen is not
the appropriate one in non-locally convex spaces, cf. [Gl604a]).

Proof. To simplify notation we set Y := R™. We first show that fis C° (aka continuous). To
this end it suffices to show by Lemma 5.3 that d* o f: U — C(V x Y*, X) is continuous for each
k € Ny. For k = 0 this is true by the basic properties of the compact-open topolgoy (cf. Exercise
5.16). Moreover, we have inductively

—~ —_

d"(f(u)) = d§ f(u)
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for each u € U, where d§ denotes the differential with respect to the second variable:

—

dgf(u)(xvvlv '--avk) = dgf(ua I)(Ul, ...7Uk) = dkf(uvx)((ovvl)’ 00y (05 Uk))
In fact, the case k = 0 is trivial and we have

d*(F(w)(z,v1, ..., v8) = lim ((dk_lf(u))(x + 50k) (V1 oy Up—1) — (@ F () () (01 ...,vk_1)>

s—0 S

— lim (dk—lf(u, 2+ 50p)((0,01), evry (0, 05—1)) — 5 F (, 2)((0, 01, .., (0, vk_l)))

s—0 S

=d* f (u, z)((0,v1), ..., (0, v3)).

Thus dF o ]?is continuous by induction and hence fis C".
We now show that f is C'. We claim that for fixed u € U and v € X we have

afu)(v) = lim * (Flut sv) — Fw)) = &f(u,0) (24)

s—0 8

where d; denotes the differential with respect to the first variable:

—

d¥ flu, v, ) (2) i= di fu, ) (01, ooy vp) 2= d f(u, 2)((01,0), ...\ (03, 0)).
To this end, let (s,)nen be a null sequence and let
|n1, K1,01] N...0 [ng, K, O]
be a basic open neighbourhood of d/l\f(u, v) in the topology of C*°(V, X) (cf. Lemma 5.5), i.e.,
d”l(cjl\f(u,v))(y) € O; for each y € K;
for K; CV x Y™ compact and O; C X is open. Observe that
d™ (d f(u,0))(y) = d™ 1 F(u,50) (0,00, (0,1), -y (0, ym,)) = A" F(w,90)((0,91), -, (0, 4m,), (€, 0)

since the higher differentials are symmetric. Since the difference quotient is extended continuously
to s = 0 by the differential (cf. Exercise A.18), there exists for each y € K; some y € P, @V x Y™
and some g, > 0 such that the function

By x (—ey,8)) \ {0} = X,

(z,8) — % (d" f(u+ sv,20)((0, 21), ..., (0, 2;)) — d" f(u, 20)((0, 21), ..., (0, 2n,))) ,

takes values in O; and extends continuously to some function P, x (—ey,ey) — O;. Since K; is
compact it is covered by finitely many Py, ..., P, and thus there exists some N € N with [s,| < g,
foreachn > N and each 1 < j < gq. Thusifn > N and z € K;, then z € Pyj and |s,| < Ey; for some
7 and thus

1

Sn

(d™ f(u~+ spv,20)((0, 21), ..y (0, 20,)) — d™ f(u, 20)((0, 21), ..., (0, 2,))) € Oj.
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This means that )
. (f(u—i— Spv) — (u)) € |n1, K1,01| N ...n |ny, K, O
n

if n > N, and thus (24) holds. Since d/l\f(u,v) is CY by what we have already shown we conclude
that f is C. R
We are now ready to show inductively that f is C* for k > 2. In fact,

—

A" F(w)(v1y ey o) = d¥ f (w01, ey 0p)
holds by the following induction:

d* F(w)(v1, ooy vp) = d(d*1 ) (u, 1, .., vp—1) (Vg 0, ..., 0) =

— —

d(d]f_lf)(u, U1y ooy Vg—1) (U, 0, ..., 0) = dl(d]f_lf)(u,vl, ey V1) (V) = d’ff(u,vl, ey Uk )

where we have used (24) for the third equality. Thus gkf(u)(vl, ..., U)) exists and is continuous by
what what we have shown for & = 0. This shows that f is C* for each k € Ny. [

Lemma 6.3. If V @ R" and X is a lcs, then the evaluation map

ev: OV, X)xV = X, (v,2) = v(z)
18 smooth.

Proof. We show ev is a C*-map for each k¥ € NT (which then also implies that ev is a C%-map). We
claim that if (y,2) € C*(V,0) x V and (n1,41), .., Mk, yx) € C°(V, X) x R™ are given, then

k
dk eV((’)/, x))((nla y1)7 e (77k7 yk)) - dkﬁ)/(x)(yla 7yk) + de_lni(x)@/lv X @7 7yk) (25)

i=1

From this it follows that ev is a C*-map, since v +— d*vy, n; — d* 'n; and the evaluations are
continuous linear by Remark 5.2 and Lemma 5.6 and thus smooth (hence in particular C*). In order
to establish (25), we first observe that f ~ d* f is linear (which can be shown by a trivial induction).
Now (25) holds by the following induction: If k = 1, then

dev(y,z)(n,y) = lim ~ (ev(y + sn)(z + sy) — ev(y)(x)) =

—0 s

lim 1(7(:1: + sy) + sn(z + sy) — v(x)) = dy(z)(y) +n(z)

s—0 S
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by the continuity of n. If (25) holds for k — 1, then we have

N _
lim 7<dk Lev(y 4 snp, z + syk)((m,yl), ey (Mio—1, yk_l)) — dF1 eV(’Y,ﬂf)((ﬁla Y1), -ees (Uk—h?ﬂc—l))) =

s—0 S

k-1
N A _ ~
lim g(dk Yoy + smk) (@ 4 syk) (s e Yk1) + Z;dk 0i(@ 4 YR) W1 oons Tiy ooos Yno1)—
1=
k-1
dkilf)/(aﬁ(yh sy Z/kfl) + Z dkizni(x)(yla ceey @7 ceey yk71)> ==
=1

N _ _
lim 7<dk 1(7)(33 + syk)(yla "'7yk‘—1) + Sdk 1(77k’)($ =+ Syk)(yla "'7yk:—l) - dk 1’}/(1))(]/1, cey yk—1)+

s—0 8

k—1
Z dkilni(x)(yla ceey Q\i? vy Yk—1, yk)) ==
i=1

k
A (@) (Y1, o yk) + D d T (@) (1, s T oo Ykt U,
=1

where the last equality follows from the continuity of d*~1n. =

Lemma 6.4. If M, N are manifolds, M is compact and Uy, ...,U, is a finite open cover of M and
X s a lcs, then the map

p: C¥(M,N) = {(7i)i=1,..n € HCOO(Uz',N) | vilu, = vilo, b v (Vyi=1m
-1

is a homeomorphism onto its image (endowed with the subspace topology of ],_, _,C>(U;N)).
Moreover, the image is closed in [[,_, , C*(U;, N).

Proof. Since smooth functions are a sheaf, the image of ¢ is given by

{(i=tm € [TCWu N) | lu, = vl b = () eval(AN). (26)
i=1 zi €117 ;21 Uij

Here evy,; denotes the map [[;; C®°(U;, N) = NXN, (V)r=1,...n — (Vi(%i5), vj(xi;)) and AN € Nx
N the diagonal. This map is continuous since the projection (yx)g=1,.n, +— 7 and evaluation
vi — 7i(xij) is continuous (cf. Lemma 5.5). Since AN is closed so is ev;ii,(AN) and thus (26)
is also closed.

Since v > 7|UZ- is continuous by Lemma 5.5 it follows that ¢ is continuous. It is clearly injective,
so it remains to show that ¢ is open onto its image. Since M is compact and regular (cf. [Mun75,
Section 4-2]), there exist an open cover Vi, ..., V;, such that

Ui\(UUj)QViQViQUi
J#i
(cf. Exercise 6.6). If v € |ny, K1,01| N...N |ny, K, O], then

")/|Ui S {m,Kl ﬂT"IVi, Oﬂ Nn...N Lnl,Kl N T”ZVZ», OlJ,
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where TV, := 7= 1(V;) C T U; for n: T%U; — U; the bundle projection (note that 77V} is in
particular closed in 7™ U;). Moreover, if (1;)i=1,..n € [[;=; C*°(U;, N) satisfies 77@|Uij 77‘7|Uij and

n; € L’I’Ll,Kl ﬁTmVi, OlJ Nn...N Lnvil N T"ZVZ-, OlJ,
then n € |n1, K1,01] N ...N |ng, K;, O] for the amalgamation n € C°°(M, N) with 77|Ui = 7, since

K is covered by TV, ..., T"% V. Thus

n
HLnl,Kl N T’“Vi, Olj n...N Lnl, KN T"ZVZ-, OlJ - go(Lnl,Kl, OlJ n...N Lnl, K, OlJ)
i=1
Since v € |n1, K1,01| N ...N |ny, K, O;| was arbitrary, this chows that ¢ is open onto its image. =

We now eventually proof Theorem 6.1: Suppose U @ R™, M is a compact manifold and O € X
for some lcs X.

a) If f: U x M — O is smooth, then so is FiU— C>*(M,0), A(a:)(y) = f(z,y).
b) The evaluation map
ev: C*°(M,0) x M — O, (v,z) — ~v(x)
is smooth and the map
C®(U x M,0) — C®(U,C®(M,0)), f—[ (27)
(which is well-defined by a)) is a bijection.

Proof. We first note that C*(M,0) = C*°(M,X) N |M,0] is open in C*(M, X), since M is
compact.

a) By the preceding it clearly suffices to show the assertion if O = X. Together with Lemma 6.4
this implies that f is smooth if and only if

~

UBJ,‘P—)( ( ) )z 1,.. ,ne{’)/zz 1,. 7nE]‘_[C'OO UzaX ”Yl’U 7j|Uij}

is smooth, where (¢: U; — ¢(U;))i=1,..n is a ﬁnlte atlas of M (the latter exists since M is
compact). Since

{()i=1. ,neHcm Ui, X) | 7ilo,, = vilo,
i=1

is closed in []}_, C°°(U;, X)® it thus suffices to show that each U 3 z f(x)

o iaX
UieC (Ui, X)

is smooth, which is by Lemma 5.5 the case if and only if U 3 z — f(z) op; 1 € O%(p(U;), X)

i

is smooth. Now the latter map is smooth by Lemma 6.2.

8Note that if f: O @ X — Y and Y is a closed subspace of Y, then f is smooth if and only co f: O @ X — Y is
smooth (the problem that could occur here is that the limit in the difference quotient exists in Y’ but not in V).
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b) We first note in showing that ev is smooth we may assume that O = X since C*°(M, O) is
open in C*°(M, X). Let us consider for the moment the evaluation map

evy: C¥(N, X)x N = X, (v,z)+— v(z)

for N an arbitrary finite-dimensional manifold. Now ev,; is smooth if an only if it is so on

an open neighbourhood of each point (y,x) € C°(M,0) x M. If ¢: U — ¢(U) C R" is

a chart with z € U, then evar(n, o (y)) = evyun((@™1)*(n),y) for all y € (U), where

(e~ H*: C®°(M,0) — C=(p(U), O) is the restriction of the linear and continuous map C*®(M, X) — C*(¢(
nmnogtto C®(M,0) @ C*(M,X). Thus (¢~ !)* is smooth and evyy is smooth if ev

is smooth for each chart p: U — ¢(U) of M. Since ev) is smooth by Lemma 6.3, this shows

that ev,s is smooth.

In order to check that (27) is bijective, it remains to check that it is surjective since it clearly
is injective. If f: U — C°°(M, O) is smooth, then f is given by the composite of

UxM— C®(M,0)x M, (u,m)w— (f(u),m)
and ev. Since these maps are smooth, so is f . Thus (27) is surjective. [

Remark 6.5. Along the same lines one can also show that a) and b) hold if M is only locally compact
(or equivalently finite-dimensional) and O = X is the whole lcs [Gl604b, Proposition 12.2]. Note that
if M is not compact, then C*°(M,O) is (in general) not open in C*°(M, X), so the corresponding
statement for locally compact M and arbitrary O © X is not even well-defined. A more subtle
question is what the correct exponential law is in case of finite differentiability order, see [AS12]. =

Exercises for Section 6

Exercise 6.6. Show that if X is a compact space and (U;);cs is an open cover of X, then there exists
an open cover (V;);er such that V; C U;. Does this also hold if X is not assumed to be compact? m

7 Spaces of Smooth Maps: The Smooth Structure

In this section we treat the smooth structure on C*°(M, N). In particular, the section

e derives the smooth structure on C*°(M, N) with an explicit description of its charts and estab-
lishes its basic properties (exponential law, smoothness of pull-back, push-forward and compo-
sition map) and

e discusses the Lie group structure on Diff (M) and mapping groups.

All these results are making heavy use of the results of Sections 4, 5, 6 and the results for diffeological
spaces that correspond to the above properties of C*°(M, N).

We now are now almost ready to describe the manifold structure on C*°(M, N). We only have to
explain the ideas and terms occurring in its description. The idea is that for a fixed map f: M — N
one can construct a chart on the set Uy of maps that “differ from f” be a vector field with small
values: In order to make this idea precise, we will have to “add” two smooth functions with values
in a manifold. This does not work pre se, but is subject to the following additional structure.
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L -

Figure 2: A function (green line) differing from another (blue line) by a vector field (orange line).

Definition 7.1. Let M be a manifold and 7: TM — M its tangent bundle. We denote by oM the
zero section {0, | m € M} C T'M (note that m +— 0,, is in particular a section of TM — M). Then

a local addition on M is a smooth map a: U @ T'M — M, defined on an open neighbourhood U of
oM such that

a) txa:U— MxM,vw— (r(v),a(v)) is a diffeomorphism onto an open neighbourhood of the
diagonal AM C M x M and

b) a(0,,) =m for all m € M.

If there exists a local addition on M, then M is said to admit a local addition. u

Example 7.2. a) If M is a finite-dimensional manifold, then M admits a local addition. In fact,
on M there exists a Riemannian metric and an associated exponential function exp: TM — M
such that exp(0y,) = m and T exp|y, , = idr,, [Lan95, Section IV.4]. Thus (7 X exp)|p arwr, s =
idr,, and by the Inverse Functions Theorem there exists 0,,, € Uy, © T'M such that (7w x exp)|y;
is a diffeomorphism onto its image. Thus 7 x exp restricts to a diffeomorphism of U := U,,epUnp
onto its image.

b) If G is a Lie group, then G admits a local addition. Namely, let ¢: U — ¢(U) @ X be a chart
around e such that p(e) = 0. Then U := T, (o(U)) is open in T.G and we set ae: U — U,
ve = @ 1 (Top(ve)). In order to extend this to all of G we observe that TG = X x G is trivial
and thus V' := Ugeqyg - U~UxG is open in T'G. Then

a:V = Goe 1) ¢ HTep(n(v) ™! v))
is a local addition on G. m

The modelling spaces of C°°(M, N) will be spaces of sections in certain vector bundles. These
we already know to be lcs.
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Proposition 7.3. Let m: E — M be a vector bundle with fibre X and compact base M. Then the

space of sections
INE—>M)={0ce€C®M,E)|mooc =idpy}

is a closed subspace of C*°(M, E). The point-wise application of the addition E X E — E and scalar
multiplication R x E — E turn T'(E — M) into a topological vector space. Moreover, if Uy, ..., Uy, is
a cover of M and ®;: m=Y(U;) — U; x X are local trivialisations for 1 <i < n, then

D(E = M) = {(&)imt.n € [[O(UL X) | € (2,&(2)) = 5 (2,&;(2)) for all @ € Uy},
=1

£ (prao®;o €|U¢)

is a homeomorphism onto its image (endowed with the subspace topology) and this image is a closed
subspace of T C°(U;, X). In particular, T(E — M) is a lcs and is metrisable if X is so.

(28)

1=1,....n

Proof. This follows from Lemma 5.5 and Lemma 6.4. The details are left as Exercise 7.12. ]

Corollary 7.4. If M is a compact manifold and E — M 1is a vector bundle with fibre X a Fréchet
space, then T'(E — M) is a Fréchet space.

Proof. By the previous theorem, I'(E — M) is isomorphic to a closed subset of a finite product of
complete metrisable spaces (cf. Theorem 5.14) and thus in particular complete and metrisable. =

Corollary 7.5. Let V @ R™ and E — M be a vector bundle with compact base. Then the map
C®(V,T(E = M)) = {g € C®°(V x M,E) | §(u) € (E — M) for eachu €V}, fwsf

s a bijection.

Proof. By (28) and Theorem 6.1, we have the bijections

Co(V,D(E — M) = {(f;) € [[ (V. C¥ (U E)) | &, fi(v)(x)) = &} (a, £;(v)(a)) for all & € Uy, € V}
= {(f) e [[C=(V x Ui, E)) | &7 (z, fi(v,2)) = ®; (z, f; (v, 2)) for all z € Uyj,v € V'}

~{GeC®(V xM,E)|g(v) eT(E— M) for each v € V'}. "

We now can prove the central result of this chapter:

Theorem 7.6. Let M be a compact manifold and N be a locally metrisable that admits a local
addition a: U @ TN — N. Set V := (7 x «)(U), which is an open neighbourhood of the diagonal
AN in N x N. For each f € C*®(M,N) we set

Of :={9 € C*(M,N) [ (f(x),9(x)) € V}.

Then the following assertions hold.

a) The set Oy contains f, is open in C*°(M, N) and the formula (f(x),g(x)) = (f(z),a(ps(g)(m)))
determines a homeomorphism

pr: Of = {h € C(M,TN) | n(h(x)) = f(2)} = T(f*(TN))

from Oy onto the open subset {h € C*°(M,TN) | n(h(x)) = f(x)} NC*(M,U) of I'(f*(T'N)).
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b) The family (¢r: Of — ©(Oyf)) fecoe(m,n) is an atlas, turning C*°(M, N) into a smooth locally
metrisable manifold.

¢) We have C*°(M, N) = Diff (Dyr, Dy) and the diffeology associated to the manifold structure
from b) on C°(M,N) by Example 3.3 b) equals the diffeology Diff (DM, DN) from Definition
3.4. In short, we have Dgoo(nr,ny = DIff (D, D).

d) The manifold structure on C°°(M, N) from b) is independent of the choice of the local addition
a.

e) If L is another locally metrisable manifold, then a map f: L x M — N is smooth if and only
if f: L — C°°(M,N) is smooth. In other words,

C®(L x M,N) — C®(L,C™(M,N)), ff

is a bijection (which is even natural).

f) If M’ is compact, N' is locally metrisable and admits a local addition and p: M’ — M
v: N — N’ are smooth, then

vip*: C®°(M,N) — C®°(M',N"), y—voyopu

18 smooth.

g) If M' is another compact manifold, then the composition map
o: C*(M',N) x C*(M,M") = C*(M,N), (v,n)~von

18 smooth.

h) The d-topology on C*°(M, N), induced from Diff (M, N) equals the topology on C*°(M, N) from
Definition 5.1.

Proof. To avoid confusion let us recall that “smooth” refers for us to a smooth map between mani-
folds (a morphism in Man).

a) Since (f(x), f(z)) € AN C V foreach x € M we have f € Oy. Since ty: C*°(M,N) — C*°(M, N)x

C>®(M,N)=C>®(M,N x N), g — (f,g) is continuous we have that Oy = LEI(COO(M, V) is
open.
Set B:=(mxa)™t: V- UCTN. If g € Oy, then Bo(f x g) defines a smooth map M — TN
mapping each x € M into T,y N. Thus we have ¢;(g) = B o (f x g) and thus ¢; is continuous
by Lemma 5.5. Since go}l(h) = a o h we also have that 4,0]71 is continuous and thus ¢y is a
homeomorphism. Since T'N has a metrisable fibre, I'(f*T'N) is metrisable and thus ¢¢(Oy) is
metrisable.

b) We first note that by Corollary 7.5 the diffeology associated to the manifold structure I'(f*T'N)
and the subspace diffeology of Diff (DM, DTN) coincide (where we have identified {h €
C>®(M,TN) | n(h(x)) = f(x)} with T'(f*(T'N))). The coordinate change ¢ o 4,0]71 is given by

@f(OfﬁOf/)-)@f/(OfﬁOf/), h»—)ﬂo(f’xaoh), (29)
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which is a morphism of diffeological spaces by Corollary 3.6. Since I'(f*T'N) and T'((f')*T'N)
are metrisable by Proposition 7.3, Theorem 4.10 shows that (29) is smooth. The same argument
also applies to the inverse of (29), showing that it is a diffeomorphism.

c) That C*°(M, N) equals Diff (DM, DN) is Theorem 4.10. In order to show that the diffeologies
agree we have to check by definition for each U C R"™ that ¢: U — C°°(M, N) is smooth if
and only if @Z : U X M — N is a morphism in Diff. Since U x M and N are locally metrisable
the latter is by Theorem 4.10 equivalent to J being smooth. Since this is a local statement we
may assume that ¢ (U) C Oy for some f € C°°(M, N). Then 9 is smooth if and only if ¢ o4
is smooth. This is by Corollary 7.5 the case if and only if m: Ux M — f*I'N, which is

turn is equivalent to (idy xgo}l) o m = 1; being smooth.

d) Since by Theorem 4.10 the manifold structure is for a locally metrisable manifold uniquely
determined by the underlying diffeological space and since the diffeology on Diff (Dys, D) is
independent of «, the assertion follows from part b) and part c).

e) By Theorem 4.10 f: L x M — N is smooth if and only if f is a morphism in Diff, which is
by Proposition 3.5 the case if and only if J?: L — C®(M,N) is a morphism in Diff, which is
by Theorem 4.10 the case if and only if f is smooth. That f — f is natural follows from the
naturality of f — ]?in Set.

f) This is left as Exercise 7.10
g) This is left as Exercise 7.11

h) Since on C*°(M, N) we have Dgeo(pr,ny = Diff (D, Dy) it follows that the d-topology on
C(M, N) from Diff (D, D) is the d-topology from Dgeo(ps ). The latter equals the topol-
ogy on C*°(M, N) by part b) and Lemma 4.13. ]

Remark 7.7. Note that we have refrained from denoting the manifold structure on C*°(M, N) by
Man(M, N), although Theorem 7.6 e) suggests this. The problem here is that C>(M, - ) is a
functor between different categories, i.e., the category of manifolds admitting a local addition and
the category of all manifolds. Thus a compact manifold M is strictly speaking not exponentiable in
the sense of Definition 2.18. The remedy for this would be to show that if N admits a local addition,
then so does C*°(M, N), but since C*°(M, N) does not have a tangent bundle in our setting (since
the tangent spaces are not all isomorphic), this goes beyond the scope of this lecture. [

Corollary 7.8. If G is a locally metrisable Lie group modelled on the lcs X and M is a compact
manifold, then C*°(M,G), equipped with the manifold structure from Theorem 7.6 b) and the point-
wise group operations is a locally metrisable Lie group with modelling space C*° (M, X).

Proof. By Theorem 7.6 f) the multiplication map u(f,g)(x) == f(z) - g(x) = pg o (f x g) o A and
inversion map ¢(f)(z) := tg(f(x)) = v o f are smooth. Since TG = G x X (the trivial bundle,
see Example D.12) and sectinos of trivial bundles are maps to the fibre, we have that I'(f*T'G) =
C>*®(M,X) for all f e C>®(M,Q). ]

Theorem 7.9. If M is a compact manifold, then the group of diffeomorphisms Diff (M) is an open
submanifold of C*(M,M). Moreover, the inversion map inv: Diff(M) — Diff(M), f ~ f~1 is
smooth. Consequently, Diff (M) is a Lie group with modelling space T'(TM — M).
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Proof. In order to show that Diff (M) is open in C*°(M, M) we will show that if v: R — C*°(M, M)
is smooth and ¢(0) is a diffeomorphism, then there exists some € > 0 such that c(t) is a diffeomorphism
if [t| < e. To this end we first observe that if f: U @ R" — R" is such that df (zo) is an invertible
linear map, then there exists a neighbourhood V,, of = such that df(y) is invertible for each y € V.
In fact, the invertible linear maps GL,(R) are open in the space of all linear maps Lin(R™ R"),
equipped with the subspace topology of C>°(R",R") (since the subspace topology of C**(R",R")
on Lin(R™ R™) is locally convex it has to be the usual one). Since df € C(U,Lin(R",R")) and
df (z) € GL,(R), V, exists as claimed.

The above implies that there exists € > 0 such that T,¢(t) is an isomorphism if |t| < e. In fact,
for each m € M and chart p: U — ¢(U) @ R™ around m there exists some § > 0 and a chart
P: V = (V) @ R" such that ¢(t)(U) C V if |[t| < §. Then

(—6,0) = C=(M, M) |_5> C(U, V)= C®(e(U),(V)) 4 C(e(U) x R",R"™)

is continuous, and thus is its adjoint
C*((=0,0) x M, M) — C((—9,6) x o(U) x R",R"™)

and since Tp,,( - )( - ) equals d( - )(¢(m), - ) in local coordinates and since T,,c(0) is invertible, this
show that there exists €, and m € V;;, @ M such that T,,c(¢) is invertible if |[t| < € and n € Vj,.
Since M is compact, € exists as desired.

Thus ¢(t) is a local diffeomorphism if [t| < €. In order to check that it is a diffeomorphism we
first check that it is surjective. In fact, then ¢({t} x M) is compact since ¢ is continuous and thus
closed. It is open since ¢(t) is a local diffeomorphism. Since ¢(0)(M) meets each component of M so
does ¢(t)(M), and thus c(t) is surjective if [¢t| < e.

If ¢(t) was not injective for small ¢, then there exists a null sequence (¢,) and sequences (z,),
(yn) such that z, # yn and c(tp)(xn) = c(tn(yn)). Since M is compact we may replace (x,) and
(yn) by convergent subsequences. If (x,) — x and (y,) — vy, then c(t,)(zn) = c(tn)(yn) implies
that ¢(0)(z) = ¢(0)(y) and thus x = y. Since there exists x € W, @ M such that c(t)[y, is
injective for ¢ small enough this implies c¢(t,,)(zy) # ¢(tn)(yn) for n large enough. This contradicts
(tn) (@n) = eltalyn). -

To show that inv is smooth, let ¢: U — Diff(M) be smooth. Then invoyp fulfils the implicit
equation

B(u,inv op(u,m)) = m

and is thus smooth by the implicit function theorem. Thus inv is a morphism of diffeological spaces
and thus smooth by Theorem 4.10. m

Exercises for Section 7

Exercise 7.10. Show that if M, M’ are compact manifolds, N, N" are locally metrisable manifolds
and pu: M’ — M v: N — N’ are smooth, then

vip®: (M, N) = C*(M',N'), vy voyop

is smooth. -
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Exercise 7.11. Show that if M, M’ are compact manifolds and N is a locally metrisable manifold,
then the composition map

0: C®°(M',N) x C®(M,M") = C®°(M,N), (y,n)ryon
is smooth. =
Exercise 7.12. Fill in the details of the proof of Proposition 7.3. ]

Exercise 7.13. Suppose M is a compact manifold, N is a locally metrisable manifold and L C M
be a subset and ng € N. Show that

Cr'(M,N) :={f € C=(M,N) | fl, = no},

where ng is identified with the constant map with values ng is a closed submanifold of C*°(M, N).m

8 Some Basic 2-Category Theory

From this section on we turn to the discussion of higher geometric objects. To this end, we give
in this introductory section the necessary categorical background. In order not to overwhelm the
lecture with too much category theory we have decided to shorten the exposition and give some
textbook references. The following topics are discussed

e strict 2-categories, 2-functors and examples thereof
e pseudo functors and pseudo natural transformations

e bicategories and morphisms thereof (motivated my the bicategory of bimodules over a ring)

In this section we will provide the background on 2-category theory that we use throughout. The
treatment will not be exhaustive, we will mainly provide explicit references to the literature that
should help in collecting the necessary material as quickly and directly as possible.

Definition 8.1. (cf. [Bor94, Definition 7.1.1] and [Mac98, Section XII.3]) A (strict) 2-category C
consists of

a) a class Ob(C), whose elements are called objects,
b) for each pair X,Y of objects a small category C(X,Y),

c) for each triple X,Y, Z of objects a composition functor
CX\Y,Z: C(X, Y) X C(Y, Z) — C(X, Z)

(for x the cartesian product of categories) and

d) for each object X an identity object ix of C(X, X) (which we shall frequently identify with its
identity morphism in C(X, X)).
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These data are required to satisfy the following relations: for each quadruple of objects X,Y, Z, W
we have that the composition functor is associative

cx,zw © (cxy,z xid) = ex,y,w o (id xcy,zw)
and for each pair of objects X, Y the identity is a left and right unit

CX,X,YO(iX Xid) :id:CX’yvyo(id Xiy). n

Remark 8.2. In comparison to ordinary categories, one has two types of morphisms. For each two
objects X,Y one has objects of C(X,Y), which we call 1-morphisms (or also 1-arrows). We denote
1-morphisms usually by f: X — Y and depict them by

x—.y.

But we also have for each two objects f,g: X — Y of C(X,Y) morphisms in C(X,Y’) between them.
Those are called 2-morphisms (or also 2-arrows). We denote them usually by a: f = ¢ and depict
them by
f
T
X o Y.
~_ "
g
We also usually simply say “a: f = g is a 2-morphsim (in C)” instead of “« is a 2-morphism between
the 1-morphisms f and g¢”.
There are two types of compositions for different types of morphisms. If we have 2-morphisms
a: f = g and B: g = h, then composition in C(X,Y) yields another morphisms foa: f = h in
CX,)Y) fa: f = ¢gin C(X,Y) and B: h = k is a 2-morphism in C(Y,Z), then the composition
functor yields 1-morphisms ho f := ¢(f,h) and kog := ¢(g, k) and a 2-morphism Sx«a: ho f = kog.
One usually calls 8o« the vertical composition and B * « the horzontal composition of 2-morphisms.m

The following examples are given in somewhat more detail in [Bor94, Example 7.1.4].

Example 8.3. a) Each category C is a 2-category if we consider for each two objects X,Y of C
the set of morphisms C(X,Y) as a category with only identity morphisms (thus the resulting 2-
category has only identity 2-morphisms). Functors between such categories are the same thing
as maps of the underlying objects, thus the composition map C(X,Y) x C(Y,Z) — C(X, Z)
provides a composition functor.

b) We obtain a 2-category Cat of small categories whose objects are given by the class of small
categories and Cat(X,Y) := Fun(X,Y) is the functor category of X and Y. The composition
functor is given on 1-morphisms by the usual composition of functors and on 2-morphisms by

c: Fun(X,Y) x Fun(Y, Z) - Fun(X, 2), (o, B) — B * «,

where 8 * « is the natural transformation

C = B(9(C)) o h(a(C)) = k(a(C)) o B(f(C))-
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That this defines indeed a functor follows from (6 * 7)o (8* ) = (yoa) * (6 o B) (cf. Exercise
8.12). Together with the identity natural transformation this defines a 2-category (since the
composition functor is built out of the associative compositions it is automatically associative
and likewise has the identity natural transformation as unit.)

If we consider not arbitrary categories X but only those that are groupoids (and leave the
remaining structure unchanged), then we obtain the 2-category Grpd of small groupoids.

c¢) For each two topological spaces let 2-Top(X,Y’) denote the category with objects continuous
functions and morphisms the homotopy classes of homotopies (fixing the boundaries) between
continuous functions. Then horizontal and vertical composition of homotopies endows this with
the structure of a 2-category (and the associativity and unit conditions are satisfied since we
have taken homotopies up to homotopies).

d) If G, H are groups, then denote by 2-Grp(G, H) the category in which an object is a group
homomorphism ¢: G — H and a morphism from ¢ to 1 is an element @ € H such that
©(g) - =a-1(g) for all g € G. Then composition of group homomorphisms, multiplication
in H and 8 * a := h(«) - B turn this into a 2-category. [

Remark 8.4. There is an obvious notion of morphism of 2-categories, namely that of a (strict)
2-functor. If C and D are 2-categories, then a 2-functor F': C — D assigns an object F(X) of D to
each object X of C and to each pair X,Y of objects a functor F'(X,Y): C(X,Y) — D(X,Y). This
is required to be compatible with the composition functors and identities of C and D (see [Bor94,
Definition 7.2.1] for details).

However, life is in general not that nice in the sense that many 2-functors are not strict. One
example is the “2-functor”

BG: Man®® — Grpd, M +— Bun(M,G), (f: M — L)~ (f": Bun(L,G) — Bun(M, G)),

from Example 9.4 b). Since BG(f o g) # BG(g) o BG(f) it noes not even make sense to require BG
to be compatible with the composition in Man®. However, this assignment gives what is called a
weak 2-functor (which even preserves identities in this case). n

Example 8.5. Let C, D be 2-categories. Then a pseudo functor F: C — D also assigns an object
F(X) of D to each object X of C and to each pair X,Y of objects a functor

F(X,Y):C(X,Y) > D(F(X),F(Y)).
However, it also has as part of its data for each three objects X, Y, Z a natural isomorphism
VXY, Z21 Cr(x) F(y),F(z) ° (F(X,Y) x F(Y, Z2)) = F(X,Z) ocx,v,z
and for each object X an isomorphism
irx) = F(X, X)(ix)

in F(X). These are then required to obey the coherence conditions from [Bor94, Definition 7.5.1]
(note that the concept of “lax 2-functor” introduces in [Bor94, Definition 7.5.1] agrees with the
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concept of pseudo functor if all categories D(X,Y") are groupoids, and thus in all cases that we are
interested in).

Likewise, there is a notion of transformation between pseudo functors, which is the one of pseudo
natural transformation, see [Bor94, Definition 7.5.2]. In the same way like a category has one ad-
ditional layer of morphisms than sets do have (namely functors and natural transformations), there
is an additional layer of morphism for 2-categories, the modifications (cf. [Bor94, Definition 7.5.3]).
For fixed 2-categories C, D (with C small), the pseudo functors, pseudo natural transformations and
modifications constitute a 2-category [Bor94, Proposition 7.5.4]. =

Definition 8.6. If C and D are 2-categories, then a weak 2-functor F': C — D is a pseudo functor
F:C — D (in the sense of [Bor94, Definition 7.5.1]) that preserves identities (i.e. satisfies F(ix) =
ip(x)). A morphism of weak 2-functors is a pseudonatural transformation and a 2-morphism of weak
2-functors is a modification. n

Corollary 8.7. IfC is a small 2-category, then weak 2-functors, pseudonatural transformations and
modifications form a 2-category DE.

Remark 8.8. Of course one should in general not spoil the generality that one has obtained by
allowing a weak 2-functor not to preserve the composition with forcing it to preserve identities.
However, one can show that one does not lose any generality when assuming preservation of identities,
and thus we will do so in order to keep the technicalities as simple as possible. [

Remark 8.9. When we said before that life is in general not that nice that functors are strict, then
this also applies to the concept of a 2-category. There we required functors to be the same, namely
the functors cx zw o (cx,y,z x id) and cx,yw o (id xXcy zw) are the same, as well as the functors
cx,xy © (ix x1id), id and cx vy o (id xiy ). However, in many examples it is more natural to require
these functors not to be the same but only to differ by a natural equivalence. This the leads to the
notion of a bicategory.

A bicategory C consists of

a) a class Ob(C), whose elements are called objects,
b) for each pair X,Y of objects a small category C(X,Y),

c) for each triple X,Y, Z of objects a composition functor
CX\Y,Z: C(X, Y) X C(Y, Z) — C(X, Z)

(for x the cartesian product of categories) and

d) for each object X an identity object ix of C(X, X) (which we shall frequently identify with its
identity morphism in C(X, X)).

These data are mot required to satisfy the associativity and unit relations as in Definition 8.1, we
rather have the additional data of

e) for each quadruple X,Y, Z, W oj objects a natural isomorphism

OXY,ZW: CX ZW © (CX7Y,Z X id) = CX,)Y,W © (id ><Cy,Z7w)
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f) for each pair of objects X, Y natural isomorphisms

)\X’yt id = CX, X,y © (ZX X id) and PXY: id = CX,\Y)y © (id Xiy).

These natural isomorphisms are then required to satisfy themselves coherence conditions that we do
not spell out here, the entire definition can be found in [Bor94, Section 7.7], [Mac98, Section XII.6]
or [Lei98, Section 1.0]. The following example and Exercise 8.13 should be illustrative enough to see
the point of the concept. [

Example 8.10. Let R be some commutative ground ring and A, B be R-algebras® (all with unit).
Recall that an A-B bimodules is an R-modules M together with the structure of a left A-module and
a right B-module such that (a.m).b = a.(m.b) for all a € A, m € M and b € B. We denote such an
A-B bimodule shortly by 4, Mz. A morphism ¢: ,Mpz — ,Npg of A-B bimodules is an R-linear map
@: M — N that is a morphism of left A-modules and right B-modules. Clearly, the identity and
the composition of two such A-B bimodule morphisms is again one and we thus obtain the category
Bimp (A, B) of A-B bimodules.

If we have an A-B bimodule , M and an B-C bimodule 5N, then we can form the relative
tensor product M ®p N as follows: Since R and B are unital, we have in particular an R-module
structure on M and N so that we can take the tensor product M ® g N. So far this is an R-module.
Each a € A induces an R-linear map a: M — M that induces a map a ® id: M g N = M ®r N.
This way M @ N becomes a left A-modules and in a similar way a right C-module. Now the subset

{m®@bn—-—mbn|meMmneN,be B}

generates an A-C-submodule Ip so that M @ g N := M ®p N/Ip carries the structure of an A-C
bimodule that we also denote by M ®p N (or 4,(M ®p N). if we want to highlight the bimodule
structure). The equivalence class of m®@grn in M ®@p N is denoted m®pn. The usual reasoning shows
that if 4, P, is an A-C bimodule and ¢: M x N — P is R-bilinear, left A-linear, right C-linear and
B-invariant (i.e., ¢(m.b,n) = p(m,b.n)), then there exists a unique A-C linear map : M @ N — P
such that B(m ®p n) = ¢(m,n).

From the uniqueness assertion it follows that for an A-B linear map ¢: ;,Mpz — 4M’'p and an
B-C linear map ¢: g N — pN’c there exists a unique A-C' bilinear map

eQRpY: \M @ Ng — AM/®BN/B-
This gives rise to a functor

Xp: Bll’nR(A, B) X BlmR(B,C) — BlmR<A, C)

(the properties for ®p to define a functor follow easily from the above uniqueness assertion).
Note that for bimodules , My, 5N~ and - P, we do in general have

(M ®p N)®c P#M ®p (N ®c P),

simply since the underlying sets are not the same. Thus the functors

CX,ZW © (CX,Y,Z X id) and CX)Y,W © (id XCyvz,W)

9Note that if R = Z, then rings are precisely R-algebras.
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cannot be the same, the most one can ask for is that they are isomorphic.

Something that one can do at this point is to make choices, that means a representative in the
isomorphism class of each bimodule. However, this spoils for instance the construction of natural
morphisms of bimodules, in the case where A = B = (' is a filed this would for instance amount to
choosing a basis in each vector space and then expressing every liner map in this basis. [

Remark 8.11. Suppose C and D are bicategories. Then a homomorphism of bicategories C — D
assigns an object F(X) to each object X of C and to each pair of objects X,Y of C a functor
F(X,Y): C(X,Y) — D(X,Y). Moreover, part of the data are also for each three objects X,Y, Z of
C a natural isomorphism

VXY,2 Cr(x),F(Y),F(z) 0 F(X,Y)x F(Y,Z) = F(X,Z)ocxy,z

and for each object X of C an isomorphism

irx) — F(X, X)(ix)

in D(F(X),F(X)). These are then required to obey the coherence conditions from [Lei98, Section
1.1].

Likewise, there is a notion of transformation between homomorphisms of bicategories (what is
called a strong transformation in [Lei98, Section 1.2]) and the one of a modification of transformations
(see [Lei98, Section 1.3]). For fixed bicategories C,D (with C small), the homomorphisms, strong
transformations and modifications constitute themselves a bicategory [Lei98, Section 2.0]. L

Exercises for Appendix 8

Exercise 8.12. Let C, D, £ be categories, f, g, h, k be functors, «, 8 be natural transformations such
that

Then show that
B9(X)) o h(a(X)) = k(a(X)) o B(f(X)) (30)
for all objects X of C and that (30) defines a natural transformation 8 *«: ho f = ko g. Moreover,

if
f h

SN TN

D k &,

p q

C

then show that (§ xy) o (B*a) = (yoa)* (dof). (]

Exercise 8.13. Let (C,K) be a site such that each K(C) = {f: D — C} is a singleton. Recall
that then for each morphism f: X — C the pull-back X x¢ D exists. For objects X,Y of C we the
category Span(X,Y’) to be given by objects

xdz%y
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with f € K(X) and a morphism from (X Lz Y) to (X N Y’) to be given by a morphism
a: Z — 7' such that ffoa= fand g oa = g:

Z/
(the composition and identity in Span(X,Y) is induced from the one in C). We define a “composition
functor”

Span(X,Y) x Span(Y, Z) — Span(X, 7).

as follows. If (X JERy/EN vydwh Z) is an object in Span(X,Y) x Span(Y, Z), then we define
the composite object to be

ZXyW

z / W .
X Y Z
If (o, ') is a morphism in Span(X,Y) x Span(Y, Z), then this induces a unique morphism on the
pull-backs, which we take to be the composite morphism.

Show that this way we obtain a bicategory Span and nail down why we do (in general) not obtain
a 2-category (or under which conditions we obtain a 2-category rather than a bicategory). n

9 Weak Presheaves in Groupoids and Stacks

This section is the analogue to Section 2 for higher objects. In particular, we give
e the definition of weak presheaves in groupoids,
e the definition of stack and

e the fundamental example (in terms of principal bundles over manifolds).

The above suggest that we first lay down the foundations of presheaves in categories and groupoids.
As in the preceding section, we will use these rather abstract category theoretic concepts to justify
the geometric constructions later on.

Recall from the introduction that the theme that we follow is that of groupoidification, i.e., replace
elements in a set by objects of a groupoid, relations (equations) between the elements by morphisms
and require that the morphisms are “‘coherent”’ (in a certain sense). Moreover, we get an additional
layer of information, namely the morphisms between the objects we define this way.
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Definition 9.1. A category G is a groupoid if all morphisms are actually isomorphisms!®. If C is
a category, then a weak presheaf in groupoids on C is a weak 2-functor F': C°® — Grpd into the
category of groupoids (where we have regarded C°P as a 2-category with only identity 2-morphisms
as in Example 8.3 a)). More precisely, F' assigns

a) to each object C of C a groupoid F(C),
b) to each morphism f: D — C in C a functor F(f): F(C) — F(D) and

c) to each pair of composable morphisms g: E — D and f: D — C a natural transformation'!

F(D)
FVF(;VQ)W
o W
F(C) F(fog) F(E)

such that F'(id.) = idp(cy (the identity natural transformation) for each object C' and for each triple
of composable morphisms h: FF — F, g: £ — D and f: D — C the diagram

(F(h)F(g))F(f) F(h)(F(9)F(f))
= x

F(g,h)idp(y) idpn) F(f.9)

= AN

F(gh)F(f) F(h)F(fg)  (31)
Ty =
\ /
F(fgh)
commutes, where F'(g, h)idp(s) and idg ) F(f, g) denote the natural transformations

C— F(g,h)(F(f)(C)) and  C = F(h)(F(f,9)(C)).

A morphism a: F — G between the weak presheaves in groupoids F' and G is a pseudonatural
transformation of weak 2-functors. More precisely, it assigns

a) to each object C of C a functor «(C): F(C) — G(C) and

b) to each morphism f: D — C a natural transformation

V\
\ﬂ/

0Note that there is another related definition of groupoid as generalisation of a group in which the multiplication is
only partially defined. this is not what we mean here (although the concepts are related).

"Note that our natural transformations are automatically natural equivalences since we consider functors and natural
transformations with target in the 2-category of groupoids, rather than arbitrary categories.
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such that for each pair of composable morphisms g: ¥ — D and f: D — C the diagram

G(g)a(D)F(f) G(9)G(f)e(C)
a(9)F(f (f,9)a(C)
a(E)F(g9)F(f) G(fg9)e(C)
a(E)F(f,g %
a(E)F(fg)
commutes. ]
Remark 9.2.  a) In Definition 9.1 we allowed the weak 2-functor F' not to preserve the compo-

2

sition of morphisms, but to spoil this by a “coherent” choice of natural transofromation. One
can also allow F' not to preserve the identity in a similar fashion (this is what is also called a
morphism of bicategories). However, while the first relaxion is crucial in order to obtain inter-
esting structure, one can show that one may replace a morphism of bicategories always by an
isomorphic weak 2-functor. Thus the second relaxion would not bring in additional generaliry
(and makes things considerably more complicated.)

Morphisms of weak presheaves in groupoids compose in an obvious way and build a category
this way. One may also define 2-morphisms between morphisms as modifications between
pseudonatural transformations (again, when regarding C°P as a 2-category with only identity
2-morphisms). This then gives a (strict) 2-category of weak presheaves in groupoids on C,
denoted Grpd®” (cf. Corollary 8.7). (]

We first give a couple of examples of groupoids.

Example 9.3. a) Each set X can be seen as a groupoid if we define X to be the objects of the

b)

groupoid and morphisms to be only identity morphisms. In this way Set embeds into Grpd.

Each category D gives rise to a groupoid D* we take the same objects but only invertible
morphisms. Since functors preserve invertible morphisms the assignment D — D* actually
describes a 2-functor Cat — Grpd.

If (C,K) is a site and C has arbitrary coproducts, then for each R = {f;: D; - C | i € I} €
K (C) we obtain a groupoid C'(R) with set of objects [1;e; Di, morphisms [[, ;c; Di x¢ D;. The
identity morphism is induced by the morphisms D; — D; xX¢ D;, the source by the morphisms
Tij - Dl X D]’ — DZ and the target by Pij - Dl Xc Dj — Dj for Tij and pPij as in

Pij
Di X Dj —_— Dj

Wijl J(fj .
D, — ¢

The composition is given by

(]_[l)2 Xc Dj) XHiDi ((HDk X Dl)) = H Dz’ Xc Dj Xc Dk M ]_[l)z Xc Dk.
i, k,l D jk i,k
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The flip D; x¢ Dj — Dj xc D; endows C (R) with an inversion and thus turns it into a groupoid.
Note that we strictly speaking do not have constructed a category C(R), but rather a category
object in C.

d) If G is a Lie group and M is a manifold, then the category Bun(M,G) is a gropuoid (cf.
Exercise D.14). ]

Example 9.4. a) By Example 9.3 a), each presheaf in Set can be turned into a weak presheaf
in groupoids by composing it with the embedding Set — Grpd.

b) The fundamental example of a weak presheaf in groupoids is the following. Fix some Lie group
G. Then we set

BG: Man®® —» Grpd, M — Bun(M,G),
(f: M = L)~ (f*: Bun(L,G) — Bun(M, G)),

where we fix
f1(P) = f*(m: P — L) = {(m,p) € M x P| f(m) =m(p)},

for f: M — L smooth and 7: P — L a principal G-bundle (cf. Lemma D.9) and define for a
morphism ¢: P — @ of principal G-bundles over L the morphism f*(¢): f*(P — L) — f*(Q — L)
to be given by (m,p) — (m,¢(p)). Then f* is a functor (cf. Remark D.10). If g: N — M and

f: M — L are smooth, then we have (f o g)*(P) # ¢*(f*(P)) in general, but rather

(fo9)*(P) ={(n,p) € N x P| f(g(n)) = 7(p)}

and
g (f*(P)) ={(n,m,p) € N x M x P | g(n) =m and f(m)=n(p)}.

Thus ©(f,9): ¢*(f*(P)) — (f o 9)*(P), (n,m,p) — (n,p) is an isomorphism of principal G-
bundles (with inverse (n,p) — (n,g(n),p)) that is obviously natural. Since the diagram (31)
commutes (check this!), this defines the weak presheaf BG in groupoids.

c¢) Consider the assignment
BGiv: Man® — Grpd, M — B(C*(M,Q)), f: M — L~ (f*: B(C®(L,G)) — B(C*(M,Q)))

where B(C*°(M, G)) denotes the groupoid with one object and morphisms the smooth functions
M — G. This forms a groupoid if we define the composition of morphisms to be the point-wise
multiplication of functions. Clearly, f*: C*°(L,G) — C*°(M,G) is a group homomorphism
and thus describes a functor. If g: N — M is another smooth function, then we have that the
functors (f o g)* and ¢g* o f* are identically the same (check this!). We thus may take ¢(f,g)
to be the identity natural transformation. Note that this is the variant of BG, where we assign
to M not the category of all principal G-bundles over M, but the full subcategory with object
the trivial principal bundle (this subcategory is isomorphic to B(C*°(M,G))). (]
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We now turn to the definition of a stack. For this recall that Section 2 emphasised that mani-
folds (or more generally speaking objects of an arbitrary category) may be viewed as representable
presheaves. Moreover, we saw in Section 3 and 7 how to first consider smooth structures on C*° (M, N)
as sheaves Diff (M, N) and then identifying them as actually coming from differential geometric
structure (more precisely a manifold structure). Notice also that Theorem 4.10 tells us that the pre-
scription of smooth functions from opens in R is sufficient in order to describe the (global) manifold
structure on locally metrisable manifolds.

Although we try to promote the perspective to stacks given here as natural, there exist many
different perspectives to them. They may also be defined in terms of fibered categories, which are
equivalent to weak presheaves in groupoids by the Grothendieck construction. Sometimes smooth
stacks are introduced in a rather ad-hoc fashion as “Lie groupoids modulo Morita equivalence”. This
highlights the differential geometric structure that one has on a smooth stack, and we will discuss the
equivalence of this approach and ours in length later on. Likewise, smooth stacks can equivalently
be defined as the category of (left principal) Lie gorupoid bibundles, we will also come back to this
in the sequel.

However, the underlying idea is always that a stack is something that is built out of objects that
are parametrised (by open subsets of a topological space or by some arbitrary category) that behave
well under gluing.

In order to define what a stack is we first have to define what a matching object is. Following
the idea of groupoidification, we have to replace elements in a set by objects of a groupoid, relations
(equations) between the elements by morphisms and require that the morphisms are “‘coherent”’ (in
a certain sense). Moreover, we get an additional layer of information, namely the morphisms between
the objects we define this way.

Definition 9.5. Let (C, K) be a site and let F': C°> — Grpd be a weak presheaf in groupoids. If
R={fi:D;— Cliel}e K(C)isacover in K(C), then an object in Match(R, F') consists of
elements

(Xi)ier € [TOD(F(D)  and  (@i)ijer € [[ Mor(F(Di x¢ D;))
el i,J€1
such that

pij: F(mij)(Xi) = Fpi;)(X;)  and  F(prg)(pi) o F(pry) (@) = F(pr;)(eix) (32)
where 7;;: D; x¢ Dj — D; and p;;: D; xo Dj — Dj are the projections from the pull-back and pryis
the morphism from the triple pull-back to the double pull-back that omits the I-th component'?. We
will often abbreviate D; x¢ D; by D;j and F'(m;;)(X;) by Xj Dy, (and similarly for multiple pull-backs
and other obvious morphisms between them). Then (32) reads

Pij - Xi|Dij — Xj‘Dz'j and SOij|Dijk o SOjk|Dijk = Spik|Dijk: .
A morphism in Match(R, F) from ((X;)ier, (¢ij)ijer) to (Ya)ier, (¢ij)ijer) is an element
(ew)ier € [ [ Mor(F(Dy))

el

12Note that we have canonical isomorphisms D; X ¢ (Dj x¢ Di) 22 (D; X¢ Dj) X¢ Dg, so we may omit parentheses
in multiple pull-backs.
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such that «;: X; — Y; and O‘j|Dij 0 ij = jj 0 ai’Dij for all 4,5 € I, i.e., each diagram

commutes. [}

Lemma 9.6. If(C, K) is a site and F': C°? — Grpd is a weak presheaf in groupoids, then Match(R, F')

is for each R = {fi: D; — C | i € I} € K(C) a category with respect to idx, ,,;) = (idx,) and
(i) o (Bi) = (i 0 Bi). Moreover,

F(C) = Match(R, F), (X = ((XIp,)icr, (i (F, X))ijer)), (e (alp,)ier), (33)
where i (F, X) = F(f;,m;)(X)" o F(f;, pi;)(X), is a functor.
Proof. This is straight forward and left as Exercise 9.16. n

According to the idea of groupoidification, we have to replace the equality in the definition of a
sheaf (cf. Definition 2.27) by the corresponding notion for categories. The groupoidified version of a
bijection is clearly an equivalence of categories.

Definition 9.7. If (C, K) is a site and F': C°® — Grpd is a weak presheaf in groupoids, then F
is a stack if for each R € K(C) the functor F'(C') — Match(R, F) from (33) is an equivalence of
categories. The 2-category St ¢ k) of stacks on (C, K) is the full 2-subcategory of Grpd®” whose
objects are stacks. [

Remark 9.8. There exist weakened versions of the notion of a stack: if for each R € K(C) the
functor F'(C') — Match(R, F') from (33) is fully faithful, then F' is called separated (or a prestack).m

Example 9.9. If (C, K) is a subcanonical site, then each representable sheaf h¥ is a stack if we
regard h¢ as a (weak) presheaf of groupoids as in Example 9.4 a). Indeed, there are by definition
no 2-morphisms (on neither the source, nor the target of the weak presheaf). Thus each object in
Match(R, F) is indeed a matching family and there are no non-identity morphisms in Match(R, F').
Thus F(C) — Match(R, F) is an equivalence of categories if and only if it a bijection on the sets
of objects, which is the same as the sheaf property. A stack that is isomorphic to some h® is then
called representable. u

The following is our key example.

Proposition 9.10. The weak presheaf in groupoids
BG: Man®® — Grpd, M — Bun(M,G), (f: M — N)~— (f*: Bun(N,G) — Bun(M, G)),

from Example 9.4 b) is a stack for the open cover topology on Man.
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Proof. Let R = {U; — M | i € I} be an open cover of some manifold M. We first show that the
functor BG(M) — Match(R, BG) is essentially surjective.

An object in Match(R, BG) is given by principal G-bundles P; — U; and isomorphisms ¢;; : Pi|Uij
such that gaij\Uijk o ‘ij|Uijk = pikl Uise: For the sake of simplicity let us assume that ¢;; = id'3. Then
we set

pP=1[A/~
i€l
where we denote the elements of P; by p; and define p; ~ ¢; if mi(p;) = 7;(q;) (in Uj; € M) and
©ij(pi) = q;. Then we have a well-defined map 7: P — M, [p;] — m;(p;). We have for each i € I a
bijection
T (Ui) = B, [g] — o' (4))

that we declare to be a diffeomorphism. Since the coordinate changes are then given by
P; 3 pi = pij(pi) € P

and since these are diffeomorphisms, this gives rise to a well-defined manifold structure on P. More-
over, if (U; j)jes, is a cover of U; and ®; ;: Wi_l(Um) — U;,j x G are local trivialisations of F;, then
(Ui,j)jesiier is a cover of M and @, ;: 7r_1(UZ-7j) = w;l(Ui,j) — U;j x G are local trivialisation of
P. Since the trivialisation changes of P; are compatible with the G-action so are the ones of P
and thus P is a principal G-bundle. Clearly, P|; — P, [q;] — gp;jl(qj) provide an isomorphism in
Match(R,BG) to (P;);er and thus BG(M) — Match(R, BG) is essentially surjective.

To check that BG(M) — Match(R, BG) is fully faithful, let P,Q — M be a principal G-bundles
and let a;: Pl — Q|y. be isomorphisms such that a;l U, = O‘J”Uij' Then there exists a unique
a: P — @ such that af; = i, given by p — «;(p) if p € P|y;,. Thus BG(M) — Match(R, BG) is
fully faithful. n

The following is our key not-example.

Proposition 9.11. The weak presheaf in groupoids

— Pj|Uijs

BGyriv: Man® — Grpd, M — B(C®(M,G)), f: M — L+ (f*: B(C®(L,G)) — B(C™(M,Q)))

from Ezample 9.4 c¢) is not a stack for the open cover topology on Man.

Proof. Let R = (U;)icr be an open cover of M. An object in Match(R, BGy,,) is a family of
smooth functions (g;;: Usj = G); jer (recall that U; xy Uj = U; N U;j = Uyj) such that

'gij’Uijk ' gjk’Uz‘jk - gik|Uijk : (34)

A morphism from (g;;) to (h;) is given by a family of smooth functions (f;: U; — G)ier such that

filv,, - 9i5 = Pij - flu,, -

13This is not always the case but can be assumed without loss of generality. The more general case will also follow
from Theorem 11.16 below.
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In order to see that

BGtm'v(M) — Match(R,Bva), (* — (hij = e), [f M — G] —> ((f|U7, : UZ' — G)ZEI))

is in general not essentially surjective, we have to give an example of a group G and a manifold M,
an open covering (U;)icr of M and (gi;: Uijj — G); jer satisfying (34) such that there does not exist
(fl U, — G)ie[ with

gi = filty, - flu, -

This is the case for instance if G = {£1}, M = S, (U, Us) is a cover by two open arcs, g1 = goo = 1,
g12 = 1 on one component and g1 = —1 on the other component of Uy N Us. [

Remark 9.12. In the preceding proofs, we have seen that the category Match(R, BGy ) is just
the subcategory of Match(R, BG) where all bundles (FP;);cr are assumed to be trivial. The proof of
Proposition 9.10 then shows that we can “glue” the trivial bundles in order to obtain a new bundle.
But this bundles does not have to be trivial, and thus is not isomorphic to an object of BGyyip, (M).
The upshot of this is:

Principal bundles form a stack since one can “glue” them along compatible isomorphisms,
whereas trivial principal bundles do not form a stack since one can glue trivial bundles and
obtain a possibly non-trivial bundle.

Exercises for Section 9

27

Exercise 9.13. Let Z, act on C (from the right) by z.[s] := p(z,[s]) ;=€ - 2.

a) Show that C/Z,, together with the quotient topology and the quotient map C — C/Z,, is the
limit of the diagram
CxZnZHCLCx2Zy (35)

in Top.

b) Show that C/Z,, does not possess a manifold structure such that C — C/Z,, is smooth and the
limit of in Man. Hint: The corresponding statement is true if one considers the action of Z,,
on C\{0}. Assuming that there also exists a chart around 0 - Z,, in C/Z,,, consider the smooth
curve R — C and show that this cannot be mapped to a smooth curve in the quotient (for
instance if n = 2). ]

Exercise 9.14. a) Let C be a category with finite products. Define the notion of a group object
in C (your definition should yield that group objects in Man are Lie groups), along with
morphisms of group objects. Assure yourself that the definition also works if C does not have
arbitrary products but only the products occurring in the definition and generalise the notion
to groupoid objects (and morphisms of them).

b) Show that group objects (respectively morphisms between those) in PShe are those functors
C — Set (respectively natural transformations) that have values in Grp (respectively in group
homomorphisms). Conclude that the category of group objects in PShe is Grp®”.



Lie Groupoids as Generalisations of Manifolds 65

¢) Does the same also work in the same manner for algebra objects? n

Exercise 9.15. Work out Example 9.3 ¢) in the case of the open covering topology of Top explicitly.
Even more explicitly, describe C(R) for R the open covering of S! by two (respectively three) open

connected arcs such that each e’ is for n = 2 (respectively n = 3) contained in only one arc. ]

Exercise 9.16. If (C,K) is a site and F': C°> — Grpd is a weak presheaf in groupoids, show
that Match(R, F') is for each R = {fi: D; — C | i € I} € K(C) a category with respect to
id(Xi,%'j) = (idXi) and (al) ° (61) = (ai © Bl) ]

10 Lie Groupoids as Generalisations of Manifolds

This short section contains the following:

e definitions of Lie groupoids (in particular infinite-dimensional), smooth functors and smooth
natural transformations between them

e examples

e an illustration of why smooth functors are not general enough (for instance for describing weak
equivalences of Lie groupoids appropriately).

As stacks are groupoid versions of sheafs we need a groupoid version of manifolds if we want to
investigate “stacks with smooth structure”. This role will be played by Lie groupoids.

Note: In the same way as groupoids should be thought of as a generalisation of sets, Lie groupoids
should be thought of as a generalisation of manifolds (sets with additional smooth structure). Lie
groupoids can also be seen as a generalisation of Lie groups (an more generally as a generalisation
of Lie group bundles), but this will not be our perspective here.

Definition 10.1. In the sequel we will frequently have to refer to pull-backs of maps that are mot
uniquely specified from the setting. In this case we write X xJ;g Y for the pull-back of f: X — Z
and g: Y — Z (in case that one map is a submersion). In order to simplify notation we will from
now on assume that the pull-back is always given by the submanifold

XY ={(xy) € X xY | f(x) =g(y)} € X x Y,

rather than a abstractly defined manifold up to diffeomorphism.

A Lie groupoid X = (X1 =2 Xo) consists of a smooth manifold X; (elements of X; are called
morphisms) and X, (elements of X are called objects), two submersions s,t: X7 — X (called
source and target), and smooth maps i: Xg — X3, ¢: X x;ﬁ X1 — X1, 02 Xi — X (called identity,
composition and inversion) satisfying the axioms of a small groupoid:

s(c(x,y)) = s(y) and t(c(z,y)) = t(x) for all (x,y) €: X3 xi&i X1
c(z,c(y, 2)) = c(e(x,y), 2) for all (z,y,2) € X1 x;i X, X_L;(Z X1,
s(i(x)) = t(i(z)) = x for all z € Xy,
c(z,i(s(x))) = x = c(i(t(x)),z) for all x € X,
s(t(x)) = t(z) and t(1(x)) = s(z) for all x € X7,
c(z, () = i(t(z)) and c(c(x),x) =i(s(x)) for all z € X.
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We will often denote c(z,y) by z -y and «(z) by 7 1. ]

The discussion of morphisms of Lie groupoids will be a bit longer and will not be finished before
the end of Section 11. So let us first consider some examples.

Example 10.2. a) Each smooth manifold M gives a Lie groupoid M with M, = M, = M and
all structure maps the identity on M (note that M xr M = M).

b) Each Lie group G gives a Lie groupoid BG with BG; = G, BGy = * and composition and
inversion induces my multiplication and inversion in G.

¢) If U = (U;)is7 is an open cover of a manifold M, then the Cech groupoid CU is a Lie groupoid
(cf. Example c)) with respect to the smooth structure on [[;.;U; coming from declaring
[lic; Ui = M to be a local diffeomorphism (and similarly for [, ;c; Uij)-

d) If G is a Lie group acting smoothly from the right on some manifold M, then we get a action
groupoid M x G with (M x G)g = M, (M x G); = M x G and structure maps given by

s(m,g) =m-g, t(m,g)=m, (m,g)-(m.g,h)=(m,gh), t(m,g)=(m.g,g~").
Note that in the special case that M = x we get BG = * x G.

e) If M is a smooth manifold, then we obtain a Lie groupoid Pair(M) with Pair(M); = M x M,
Pair(M)y = M, s(m,n) =n, t(m,n) =m, (m,n) - (n,l) = (m,l) and ¢((m,n)) = (n,m). This
is called the pair groupoid of M.

f) Let m: P — M be a principal G-bundle. Then we obtain a modified version of the pair groupoid
of P as follows. Consider the action of G on P x P from the right via (p,q).g := (p.g,q.9)-
Since the local trivialisations ®: 771(U) — U x G of P commute with the G-action, we have
that

(Plyx Ply)/G=(UxGxUxG)/G=UxU x G,

which we take to endow (P x P)/G with a smooth manifold structure. The maps s,t: (P X
P)/G — M, s([p,q]) = 7(q), t([p, q]) = 7(p) are well-defined, as well as the composition map

(Ip, q)) - ([v,w]) == ([p, w.5(q,v))),

where 6: P X3 P — G is the map uniquely determined by (p,q) = (p,p- d(p,q)) (see Exercise
D.16 and note that if s([p, ¢]) = t(Jv, w]), then (¢,v) € P x s P). Finally, the identity is given
by m — [®71(m,e),® 1 (m,e)] if m € U (note that this is also well-defined on M) and the
inversion is given by [p, ¢] — [q,p]. The resulting Lie groupoid is also called the gauge groupoid
of P and is denoted by Gauge(P). L]

Remark 10.3. There is an obvious source for morphisms and 2-morphism of Lie groupoids: A
smooth functor f: X — Y of Lie groupoids consists of smooth maps fo: Xg — Yy and fi: X1 = 11
such that it is a functor of the underlying groupoids. A smooth natural transformation a: f = ¢
between the smooth functors f, g is a smooth map a: Xg — Y7 constituting a natural transformation
from f to g. We will denote the category of smooth functors from X to Y and smooth natural
transformations between them by Fun®™(X,Y). ]
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Lemma 10.4. The composition of functors and horizontal composition of natural transformation
induces a composition functor

c: Fun®(X|Y) x Fun®"(Y, Z) — Fun®"(X, 7).
Together with the identity functor this constitutes a 2-category Lie-Grpd¥un,

Example 10.5. a) If f: M — N is a smooth map, then we obtain a smooth functor f: M — N,
uniquely determined on objects by m — f(m). Obviously, we have go f = go f. Note that each
smooth functor is of this form and that there are no non-trivial smooth natural transformations
between two such functors.

b) If ¢: G — H is a morphism of Lie groups, then we obtain a smooth functor By: BG — BH,
uniquely determined by g — ¢(g) on morphisms. Note again that each smooth functor
BG — BH is of this form, but now a smooth natural transformation «: ¢ — 9 is a element
h € H such that h-(g)-h™! =(g) forall g € G.

c) If ¢: G — H is a morphism of Lie groups and f: M — N is a smooth function such that
f(m.g) = f(m).p(g), then there is an induced smooth functor f x ¢: M x G — N x H, given
on morphisms by (m, g) — (f(m),¢(g)). A smooth natural transformation a: f x ¢ = g x 9
between two such smooth functors is then given by a smooth map a: M — H such that
a(m) - ¢(g) -a(m)™t =(m) forallme M, g € G. ]

Proof. We only have to check that the usual compositions of functors and natural transformations
preserve the property of being smooth. But this is obviously true since these compositions are given
by compositions of smooth functions. =

However, smooth functors and smooth natural transformations do not give the most general
notion of morphisms and 2-morphisms between Lie groupoids. This is in particular due to the
following failure.

Remark 10.6. Suppose Z is a Lie groupoid. Then we have the weak presheaf
Fun®"(- ,7): Man®® — Grpd
of groupoids, given by
M Fun®*(M,Z) (f: N — M)— Fan®**(f, 7)) := (f*: Fun®**(M, Z) — Fun®**(N, 7)),

where f* denotes the pull-back of functors and natural transformations along the map f. Since
(fog)* = g*of*, we may take the identity as transformation Fun®™ (g, Z)oFun*™(f, Z) = Fun®™(fo
g, Z) to complete the definition of Fun®( - , Z) as a weak presheaf in groupoids.

However, note that if Z = BG for a Lie group G, then Fun® (M, BG) = B(C*> (M, G)), since
there is only one smooth functor M — BG. Thus BGyy = Fun®( - , BG) (cf. Example 9.4 ¢)),
and thus Fun®™( - , Z) is in general not a stack. (]



Smooth Stacks 68

11 Smooth Stacks

In this section we construct the bicategory of smooth (infinite-dimensional) stacks. The construc-
tion is motivated by the observation of the last section that smooth functors between Lie groupoids
are not general enough for describing certain phenomena. The section comprises

e a discussion of actions of Lie groupoids on manifolds,

the definition of bibundles between Lie groupoids

e a discussion of why bibundles generalise smooth functors

the construction of the tensor product of bibundles

the construction of the bicategory Bun of Lie groupoids and bibundles and bibundle morphisms
(compare to the case of algebras, bimodules and bimodules morphisms).

We have already seen how to remedy the failure of BGy,;, to being a stack by considering BG
instead (cf. Proposition 9.10).

’ For this we need to interpret principal bundles as (generalised) morphisms from M to BG.

Those who feel uncomfortable with the preceding statement should recall that something very
similar happens when considering bimodules of algebras as generalisations of morphisms between
them. This leads to a more flexible notion of morphism between rings, that helps for instance in
characterising rings that have isomorphic module categories (cf. [Wei94, Section 9.5] or [Lam99,
Section 18]).

Technically, the aforementioned passage will be done by considering bibundles between Lie
groupoids.

Definition 11.1. If P is a manifold and X is a Lie groupoid, then a smooth right action of X on P
is given by a smooth map o: P — Xy and an a map

p: Px% X1 — P,
frequently denoted by p.z := p(p, ) such that

o(p.x) = s(x) for all (p,z) € P xg(’z X1,

p.(x-y) = (p.x).y for all (p,x,y) € P xx, X1 Xx, X1,
pi(x) =pforall pe Px € Xy

The map o is also called moment map or anchor map and the map p is also called action map (note
that it plays a role similar to the source map, whence the symbol o). We then also say that P
is a right X -space. One similarly defines a smooth left action of X on P and a left X-space (by
substituting ¢ by s in the above definition).

A morphism of (right) X-spaces is a smooth map f: P — @ such that og o f = 0g and that
f(m.x) = f(m).x for all (m,z) € P xx, X1 (note that then (f(m),z) € Q xx, X1). ]
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Example 11.2. a) Each Lie groupoid acts on its own manifold of morphisms with source map
as anchor map.

b) A right action of NV on M is the same thing as a smooth map f: M — N, since the action map
is entirely determined by requiring n.i(x) = n.

c) A right action of BG on M is the same thing as a right action of the Lie group G on M (in
the sense of Definition B.6). ]

Remark 11.3. Note that the preceding example tells us that a principal G-bundle over M can be
viewed simultaneously as right BG-space and a left M-space. In order to generalise this to arbitrary
Lie groupoids we will need a slightly different perspective to principal bundles in comparison to
the definition in Section D. Let M be a smooth manifold and G be a Lie group. We define the
category G-Spﬁ}r of principal G-spaces over M to have as objects right G-spaces P and a submersion
m: P — M such that 7(p.g) = 7(p) forallpe P, g€ Gand P x G — P xp P, (p,g) — (p,p.g) is a
diffeomorphism A morphism in G-Sp 1\/; is a morphism ¢: P — Q of G-spaces such that 7%o0¢ = 7%
Then G-Sp%; is canonically isomorphic to Bun(M, G) (cf. Exercise 11.17). (]

Definition 11.4. Suppose Y is a Lie groupoid and M is a smooth manifold. Then a principal Y -
bundle over M is a manifold P, together with a smooth right action (o, p) of Y on P and a surjective
submersion 7: P — M such that 7(p.y) = w(p) for all (p,y) € P x;;)t Y7 and such that the map

P X?zlf Yi = Pxu P, (py) = (p,py)

is a diffeomorphism. A morphism of principal Y-bundles P, Q) over M is a morphism of right Y-spaces
f: P — Q@ such that 790 f = ="

If, moreover, X is another Lie groupoid, then a right principal Y -bundle over X is a manifold P,
together with a smooth right action (o, p) of Y and a smooth left action (7, A) of X such that that
actions commute:

o(r.p) =c(p) forall (z,p)€ Xy xy P
T(py) =71(p) forall (p,y)eP xg,’ot Y1
(xz.p)y=a.(py) forall (z,p,y)€ X1 x} P x({%t Y:
and the right action of Y and 7: P — Xy turn P into a principal Y-bundle over Xy (note that the
first two conditions make o and 7 behave even more like a source and target map). We denote such

a right principal Y-bundle over X shortly by 5 Py, a more exhaustive illustration of the relations of
the different maps is

)E?PQH

A morphism ¢: v Py, — 5@y of principal right Y-bundles over X is a morphism ¢: P — @
of right Y-spaces and left X-spaces. The obvious composition and identity morphism then give a
category Bun(X,Y) of right principal Y-bundles over X. =
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Lemma 11.5. For each two Lie groupoids X,Y the category Bun(Y, X) is a gropuoid.

Proof. The proof is completely analogous to the one for principal bundles (cf. Exercise D.14) and
thus omitted. (]

Example 11.6. Let X,Y be Lie groupoids and let f: X — Y be a smooth functor. Then we obtain
a right principal Y-bundle P(f) over X by setting

P(f) = Xo xP'Vi, 7(z,y) =2, o(z,y) = s(y)

and

o (z,y) = (), L) y), (29) -y = (2,59
This defines the left and right actions of X and ¥ and they commute since we clearly have
m((z,y)y) =z =71((x,9)), o (2,9) =s(y) =o((z,y))
and
(@' (z,y)y" = ("), (A@) y) ) = @), L (@) - (y-y) =2"(z,y-y) =2"((z,9).9).

Moreover, 7: P(f) — Xp is a submersion since t: Y7 — Yj is so (cf. Proposition C.8). Eventually,
the induced map

P(f) X(}Tf;)t Y1 = P(f) X Xo P(f), ((z,y), y/) = ((z,y), (z,y - y/))
is a diffeomorphism, since ((x,), (z,9')) — ((z,y),y "' - ¥) provides an inverse for it.
We sometimes call P(f) the bundlisation of the smooth functor f. If a: f = g is a smooth
natural transformation, then we obtain a morphism P(«): P(f) — P(g) (z,y) — (z,a(x) -y). We
obviously have P(a o ) = P(a)o P(8) and P(idy) = idp(s). Thus P can be interpreted as a functor

P: Fun®"(X,Y) —» Bun(Y, X). L]

If we want to consider right principal Y-bundles over X as generalisations of smooth morphisms
between Lie groupoids, then we need a way to compose them. This composition should be thought
of as somehow analog to the composition of bimodules, if interpreted as generalised morphisms of
rings.

Remark 11.7. Suppose X,Y, Z are Lie groupoids and Py~ is a right prinicpal Y-bundle over X
and ,.Q, is a right principal Z-bundle over Y. We denote by 7: P — Xp, 0: P = Yy, 7': Q = Yj
and o’: Q — Zy the respective anchor maps. The depiction of this situation is

/

p b p
leP\[\YlmQ[\Zl

IZERNIZARN '

We construct a new principal Z-bundle y P ®y Q » over X as follows.
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In order to construct the underlying manifold we first consider the pull-back
o,
Pxy Q.
Note that the pull-back Px‘;’OTIQ exists since 7’ is a submersion. Now there is a map w: P xg,’OT/Q — Y,

(p,q) — o(p) = 7'(q), and we obtain a right action of Y on P ng,gl QQ with 7 as anchor map by setting

1

(r,0)y = (py,y "-q).

We endow the quotient (P xg,’OT/ Q)/Y of this action, i.e., the quotient of the equivalence relation
(p,q) ~ (' d) & () = Wy, y~ ") for some y € V1,

with the quotient topology. This turns the quotient map u: (P xg,;)T/ Q) — (P ng,;)T/ Q)/Y into a

continuous map. Since for each y € Y the map (p,q) — (p.y,y "

we have that

.q) is a homeomorphism of P xg,’OT/ Q
(0 G P X" Q) - (O.Y — UyeyO.y @ P x3" Q)
and since O.Y = p~1(u(0)) we have that u is an open map. ]

Lemma 11.8. In the setting of the previous remark, there exists a unique manifold structure on
P®yQ:=(Pxy Q)Y

turning the quotient map p: (P xgr,;;/ Q) — P ®y Q into a surjective submersion. Moreover, T
induces a well-defined map P ®y Q — Xo, [(p,q)] — 7(p) (which we also denote by T), that is again
a surjective submersion.

Proof. We first observe that [(p,q)] — 7(p) is indeed well-defined since we have 7(p.y) = 7(p)
by assumption. Since 7: P — Xj is a surjective submersion there exists an open cover (U;);cs of
Xo such that there exist S;: U; — P smooth with 7 0 S; = idy, for each ¢ € I. From the open
cover (17Y(U;) =: P,)ic; of P we obtain the open cover (P; ®y Q)icsr of P ®y Q (where we set
Py Q:= (P, ng,;;/ Q)/Y, which is open since p is s0).

We will have to make extensive use of the diffeomorphism P x x, P — P xg',;)t Y1, (p,y) — (p,p.y),
whose inverse we denote by (pr; x¢): Px;f,;)tYl — Pxx,P. Note that then we have t(§(p, p')) = o(p)),

s(0(p,p')) = o(p'), 6(p,p'.y) = 6(p,p') -y, p-6(p,p')~" = p' and (p,p) = i(o(p)). From this we can
construct a homeomorphism

i P @y Q = Ui x32%7 Q. [(p,9)] = (r(p), 8(Si(7(p)), p)-0).
This is well-defined, since
s(0(Si(7(p)).p)) = 7'(a), a(Si(r(p))) = 7'(5(Si(7(p)), p)-q)

and
—1

(T(py), 6(Si(r(p-y)), p-y)y™-q) = (7(p),8(Si(7(p)), p)-q)
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(check this!). The inverse of ®; is given by (x,q) — [(Si(z), q)].
We endow P ®y @ with the smooth structure turning all ®; into diffeomorphisms. This yields a
well-defined manifold structure on P ®y @ since the “chart changes”

— O'OS',T/ foge] i7T/
D0 @t Uy x5 77 Q = Uy x5 (w,q) = (2,0(Si(2)), Sj(2)).q)

are smooth (and thus diffeomorphisms) for all 4,j € I.

It remains to check that p and 7 are submersion. If we apply the preceding construction to the
right principal bundle ) = Y; over Y, then we obtain a diffeomorphism P; = U; xy; Y;, with respect
to which the quotient map P; x QQ — P; ®y @Q is given by prs: U; Xy, Y1 Xy, @ — U; Xy, Q. Since this
is a submersion, so is p. Since surjective submersions are effective epimorphisms (cf. Definition 12.1
and Exercise 12.9), the target manifold is uniquely determined up to diffeomorphism. Eventually,

we also have that [(p, q)] — 7(p), which is locally given by pr;: U; xg,gsi"rl Q — Uj;, is a submersion.m

Remark 11.9. Note that the previous statement is in the literature often proved by employing the
fact that in finite dimensions the quotient of a manifold by a proper action of a Lie groupoid is
again a manifold and the quotient map is a submersion. This statement is not true true any more
in infinite dimensions: if we take a non-complemented subspace Y of a Banach space X, then the
quotient map X — X/Y is not a submersion (the differential of any local smooth right inverse of the
quotient map would have a continuous linear right inverse of the projection as differential). However,
XxY = X xX, (z,y) — (z,x +y) is a homeomorphism and thus in particular proper.

The situation becomes ways more subtle if one requires that the tangent spaces of the source
and target fibres are complemented. In this case one can in principle try to invoke implicit function
theorems to obtain a a similar statement also in infinite dimensions. However, the most simple proof
in the greatest generality of the construction of P know to the author is the one from the preceding
lemma. [

Proposition 11.10. In the setting of the previous remark, the maps P @y Q — Xo, [(p,q)] — 7(p)
and P ®y Q — Zy, [(p7 Q)] = UI(Q)a along with

zl(p @)l = =p,g)] and [(p,q)]z:=[(p,q2)] (36)

are all well-defined and turn P Qy @ into a right principal Z-bundle over X, which we denote by
XP Ky QZ'

Proof. We have already seen that 7 is well-defined and [(p, ¢)] — 0/(q) is well-defined since ¢/(y.q) =
o’(q) by assumption. This implies that (36) is well-defined, and obviously the two actions commute.
Since 7 is a submersion by the preceding lemma, it remains to check that the induced map

(P®y Q) xzy Z1 = (P®y Q) Xx, (P®Y Q), [(p,9)],z~ ([, 9)],[(p,q-2)]) (37)

is a diffeomorphism. The inverse to this map is given by
([ @), [, D) = ([ @), 8(a. 6(p,p) ~0"))
(check that this is well-defined!), which is smooth since in local coordinates given by the smooth map
U X757 Q) x (U TP Q) 5 Ui x5 Q, (0, (2,4 v (2,6(0,4)),

Thus (37) is a diffeomorphism. ]
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The following is the “consistency check” for the above construction of “composition bundles”.

Lemma 11.11. If f: Y — X and g: Z — Y are smooth functors of Lie groupoids, then there is a
unique isomorphism v(f,g): ,P(g9) ®y P(f)x — 4,P(f og)x that makes the diagram

P(g) ®y P(f)

ZO/ \Xl
\P (fo g)/

commute.
Proof. This is left as Exercise 11.22. m

Remark 11.12. If we have morphisms a: y Py, — xP'y and 8: Q, — yQ', of right principal
bundles, then we obtain an induced morphism

axfB: xP®y Qy— xP' @y Q'4, [(p,9)] — [(ap), B(q))]

of principal bundles (the smoothness is a straight-forward check in local coordinates). Since this
assignment is obviously compatible with composition and identities, we obtain a functor

®y: Bun(X,Y) x Bun(Y, 7)) - Bun(X, Z2), (xPy,yQy)— xP®y Qy, (a,8)— axf.

If X,Y,Z and W are Lie groupoids and y Py (respectively @, and 4Ry, ) is a right principal
Y-bundle (respectively Z-bundle and @-bundle) over X (respectively Y and Z), then we have a
canonical isomorphism

Cxyzw(P,Q,R): x(P®y Q)®z R)y — x(P®y (Q®z R))w,
induced from the diffeomorphism
(P xg,g Q) x%o’T R— P XUY;)T (Q x%o’T R)

given by restricting the identity of P x @ x R to the pull-back. Note that Cxy zw (P, @, R) is not
the identity, since source and target are not the same manifolds (they do even not have the same
underlying set). However, C'y y,zw constitutes a natural isomorphism Cxy zw: ®zo(®y xid) =
®y o (id x®z), where Cx y zw evaluates on morphisms to the unique morphism induced on the
corresponding pull-backs (check the naturality condition as an exercise!).

Moreover, for each Lie groupoid X there is a canonical principal X-bundle i(X) over X, simply *Comme:
given by i(X) = X1 with anchor maps 7 = ¢t and o = s and left and right action by composition in X. ;i‘gl;;};lf simj
If Py is a principal Y-bundle over X, then we have isomorphisms Ly y (P): y Py — yi(X)®x Py
and Rxy(P): y Py — y P ®y i(Y)y, given by

Lxy(P)(p) = [(p,i(m(p)))] and  Rxy(P)(p) = [(i(o(p)), p)]-

As above, we leave it as an exercise to complete the definition of natural isomorphisms Lxy: id =
®Xo(z’><id) and Ry y: id= C®y (id Xi). [
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Lemma 11.13. If f: N — M is a smooth map and P is a principal Z-bundle over M, then the
principal Z-bundle P(f)®pr P is canonically isomorphic to N X pr P, together with pry: N x P — N
as surjective submersion and the right action of X on the second factor.

Proof. This is left as Exercise 11.23. =
Theorem 11.14. The assignment (X,Y) — Bun(X,Y),

®y: Bun(X,Y) x Bun(Y, Z) — Bun(X, 2)
and X — P(idx), together with Cx y,zw, Lxy and Rx)y constitute a bicategory Bunp,.

Proof. It only remains to check that Cxy zw, Lxy and Rxy make the corresponding diagrams
commute, but this follows readily from the uniqueness assertion in the definition of the corresponding
pull-backs. [

We now return to the motivation for considering principal bundles as generalised morphisms
between Lie groupoids. The original problem was to the failure of

Fun®"(- ,Z): Man®® — Grpd
to being a stack (cf. Remark 10.6). We now know that we should instead consider
Bun(- ,Z7): Man®® - Grpd, M +— Bun(M, 7).

We will now complete this assignment to a weak presheaf in groupoids and show that it is indeed a
stack.

Remark 11.15. If L, M are smooth manifolds, Z is a Lie groupoid and f: M — L is smooth, then
we obtain a smooth functor f: M — L and thus a principal L-bundle ,,P(f), over M. Plugging
this as first argument into (11.14) yields a functor B

If, moreover, g: N — M is smooth, then we have isomorphisms
Cnnz(P(g), P(f), P) ™' yP(g) ©m (P(f) @1 P)z = n (P(g) @um P(f)) @1 Py

and
v(f,9) @ridp: y(P(g) @M P(f)) ®L Py — nP(fog)®L Py

of principal Z-bundles over N. We set
¢(f,9) =~(f,9) @1 idp oCnarz(P(g), P(f), P)™"
Clearly, ¢(f,g) is a natural transformation. ]

We now can finally prove the main result of this section.
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Theorem 11.16. Let X be a Lie groupoid. Then the assignment BX : Man®® — Grpd
M—Bun(M,X), (f:M—=>L)—f* and (f:M —L,g: N—M)— ¢(f,9)

18 a weak presheaf in groupoids. Moreover, it is a stack for the open cover and the surjective submer-
ston coverage on Man.

Proof. The proof is in both cases almost entirely analogous to the one of Proposition 9.10. We
repeat here the proof for the surjective submersion coverage for convenience. Recall that f: N — M
is a smooth map and P is a principal X-bundle over M, then P(f) ®,s P is canonically isomorphic
to N x s P. We will throughout identify P(f) ®p P with N x5 P via this isomorphism.

Let R = {f: U — M} be a cover of some manifold M. Then we have the canonical maps
pry, pro: U xpy U — M and also prg, pry, prg: U xpy Uxy — U xpy U. We first show that the functor
F(M) — Match(R, BX) is essentially surjective. An object in Match(R, BX) is given by a principal
X-bundles over U and an isomorphism ¢: pri(P) — prj(P) such that pr%(gp)opr%(gp) = pr5(p). Since
f: U — M is a surjective submersion, there exists an open cover (U;);er of M and S;: U; — U such
that f o S; =idy,. From this we obtain smooth maps

HSZHUI%U and HSiXSj5HUij_>UXMU-
( ( (2] (2%]
We now set P; := S*(P) =U; xf}f P, i.e., we have principal X-bundles

)\i:id Pi
U; YN P, Y\ X

o
U; Xo

with 7;(u;, p) = us, 0i(us, p) = o(p) and (u;, p).x = (u;, p.z). Moreover, the isomorphism prj(P) — pr5(P)
is given by (u,v,p) — (u,v,(u,v,p)) and induces isomorphisms

wij = (Si x ;)" (¢): Uij xp P — Usj X Py (uig, p) = (wig, p(Si(uiz), Sj(uiz), p))-

From this we now construct the manifold [[, P;. We abbreviate the element (u;,p) € P; also by
p; and define an equivalence relation on [, P; by setting

pi~qj e Ti(p) = 7(q;)  and  wii(pi) = 9ij(g5)-

Then we set
Q:=[]P/~,
i€l
endowed with the quotient topology. The quotient map [[,.; P; — @ is clearly open since it is a local
homeomorphism. Since 7; 0 ;' = 7; 0 90;]-1 we have a well-defined map 7: Q — M, [p;] — 7i(p;). We
have for each ¢ € I a bijection

TN U) = B, gi]~ e5'(g)
that we declare to be a diffeomorphism. Since the coordinate changes are then given by

Pi 3 pi = 95 (pii(pi) € P
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and since these are diffeomorphisms, this gives rise to a well-defined manifold structure on ). Then 7
is a smooth submersion since the restriction of T to each 771(U;) is so. Moreover, we get a well-defined
smooth map o: @ — X1, [pi] — oi(p;) and an induced right action of X by [p;].z := [p;.z].

In order to check that @) is a principal X-bundle over M we have to check that

Qx5 X1 = QX371 Q. (Ipilx) = ([pil [pi)-2) (38)
is a diffeomorphism. But we already know that

P Xg(’f) X =P X‘IFJ’T P, (p,z)— (p,p.x)

is a diffeomorphism, whose inverse we denote by (pr; x4). An element of Q x}/ @ is a pair
[(ui,p), (vj,q)] with v = v (as elements of M), o;(u;) = 7(p) and o;(v;) = 7(¢). This implies
0j(ui) = 7(¢(p)) and thus (¢(p), q) € Px[;" P. With this we obtain the inverse ([(ui;,p)], [(uij,q)]) —

([(uij, p)], 6(¢(p), q)) to (38).
By construction we have f*Q = {(u, [(ui,p)] | Si(ui) = 7(p) and f(u) = u;}. Thus

(Si(ui),u,p) € (U x4 U) <7 P
and we obtain an isomorphism
frQ—= P (u,[(ui, p)]) = o(Si(ui), u, p)

of principal X-bundles over U with inverse p — (7(p), [f(7(9))i, ¥;;" (f(T(p))is» p)]). This provides an
isomorphism in Match(R, BX) from f*(P) to @ and thus F(M) — Match(R,BX) is essentially
surjective.

To check that F(M) — Match(R,BG) is fully faithful, let P,Q — M be a principal X-bundles
over M and let

a: f1(P) = f1(Q),  (u,p) = (u,a(u,p))

be an isomorphism such that prj o = prja (ie., a(u,p) = a(v,p) if f(u) = f(v)). Then there
exists a unique 3: P — @ such that o = f*(8). Indeed, if S: U,y — U is a smooth and local
right inverse of f, then 3(p) = a(S(7(p)),p) is smooth and independent of the choice of S. Thus
F(M) — Match(R,BQG) is fully faithful. =

Exercises for Section 10

Exercise 11.17. Show that each principal G-space over M is in fact a principal G-bundle over M and
that the functor G-Spgj — Bun(M, G) yields an isomorphism of categories G-Spﬁ’; ~ Bun(M,G)m

Exercise 11.18. Let G be a Lie group, acting on itself by right translation. Show that the action
groupoid G x G is actually equal to the pair groupoid Pair(G). [

Exercise 11.19. Fill in the details of the construction of the gauge groupoid Gauge(P) of a principal
G-bundle 7: P — M over G. In particular, show that the identity map M — (P x P)/G, m
®~(m,e),® (M, e) (for @ a local trivialisation at m) is well-defined, that the composition map
[(p, q)], [(v,w)] = [(p,w.0(q,v))] is well-defined and smooth and that the inversion map is given by
[(p,q)] — [(¢,p)] and is smooth. ]
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Exercise 11.20. Let G be a Lie group and M be a manifold. Show that a principal BG-bundle
over M is the same thing as a principal G-bundle over M. Then show that the bundlisation P(f) of
a smooth functor f: M — BG always gives the trivial principal G-bundle over M. [

Exercise 11.21. Show that the bundlisation functor

P: Fun®(X,Y) — Bun(Y, X).
is fully faithful, but in general not essentially surjective. =

Exercise 11.22. Show that composition of principal bundles is compatible with composition of
smooth functors (under bundlisation), i.e., that if f: Y — X and g: Z — Y are smooth functors
of Lie groupoids, then there is a unique isomorphism v(f,g): ,P(g9) ®y P(f)x — ,P(fog)y that
makes the diagram

P(g) ®y P(f)

ZO/ \Xl
\P( /

fog)

commute. [}

Exercise 11.23. Show that f: N — M is a smooth map and P is a principal Z-bundle over M,
then the principal Z-bundle P(f)®js P is canonically isomorphic to N x s P, together with pr;: N x
P — N as surjective submersion and the right action of X on the second factor. ]

Exercise 11.24. Let G be a Lie group and w: P — M be a principal G-bundle over M. Suppose
that G acts smoothly on a lcs V' from the left by linear continuous automorphisms (i.e, we have a
homomorphism A: G — GI(V) such that the action map G x V' — V is smooth). Then we may view
V' as a principal pt-bundle over BG (pt is the point, so a principal pt no additional structure). Then
we can build the bundle o

P xpgV,

which is a principal pt-bundle over M. Show that
PxpgV =(PxV)/G,

where G acts on P x V via (p,v).g := (p.g,g~'.v). Moreover, show that P x g V is in fact a vector
bundle over M (which is usually called the vector bundle associated to P via \). (]

Exercise 11.25. (The Hopf fibration) Let S be the three sphere, given by S% = {(z,w) € C? |
2Z+ww = 1}. Then S! = {z € C | 27 = 1} acts on S® by (z,w).z = (2 - z,w - ). Show that
S$3/81 =2 82 and that the quotient map turns S® into a principal S!-bundle over S? (with respect to
the above identification). ]

12 Subcanonical Sites
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This short section collects the concepts from topos theory on subcanonical sites that we need in
the following sections.

The fact that in the representable functors in Example 2.29 were sheaves was not a coincidence.
We usually want that they are, and now consider under which condition on the site this is the case.

Definition 12.1. Let (C, K) be a site and R := {f;: D; — C | i € I} be a cover in K(C). Define
JR to be the category with set of objects {D; | i € I} and
f

Di—' D,
Jr(D;, Dj) = f € C(D;, Dy) N commutes

Then Jg is a subcategory of C, and the inclusion Jgp — C defines a diagram A of type Jgr in C.
By definition, (fj: D; — C)ier is a cocone over A, since for each morphism f: D; — D; in Jg the
diagram

commutes. If (f;: D; — C);er is actually universal (a colimit), then R is called an effective-epimorphic
cover. If each R € K(C) is effective-epimorphic for each object C' of C, then the site (C,K) (or
sometimes also only the coverage K) is called subcanonical. ]

The importance of this definition is the following

Proposition 12.2. A site (C, K) is subcanonical if and only if each representable presheaf is a sheaf.

Proof. We only show the if part, the only if part is left as Exercise 12.7. Let h%, X ~ C(X,Z)
be representable, R := {f;: D; = C' | i € I} be a cover of C and (g;) € [[,C(D;, Z) be a matching
family. We want to check that (g;: D; — Z);er is a cocone over Jgr. To this end, we claim that if ¢
satisfies fj o ¢ = f; (makes the inner square of the following diagram commute), then it also satisfies
gj © ¢ = g; (makes the diagram without f;, f; and C' commute):

D; x¢ D, LD

ij{ 90 ij

D—>C

\

Indeed, from the universal property of the pull-back
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we obtain a morphism h: D; — D; x¢ Dj such that ¢ = p;; o h and 7;; o h = idp,. Thus
gj o =gjopijoh=giomjoh=g.

This implies that (g;: D; — Z);er is a cocone over Jr and thus there exists a unique morphism
k: C — Z such that g; = ko f; = h?(f;)(k) for all 4. This is precisely the condition on h? for being
a sheaf. .

With a similar idea as in the previous proof we also show the following

Lemma 12.3. Le (C,K) be a site such that each cover in K(C') consists of a single morphism
{f: D — C}. Then (C,K) is subcanonical if and only if for each cover the morphism f: D — C' is
a colimit (or coequaliser) for the two canonical morphism D x¢ D = D.

Proof. We only show the if part, the only if part is left as Exercise 12.8. Let R = {f: D — C'} be
a cover of C. We have to show that whenever we have g: D — E with the property

(¢ € C(D, D) satisfies fop=f) =g=go,

then there exists a unique h: C — E such that g = ho f:

Note that ¢ is variable, so that D EN C' is then a colimit for the diagram
{ “’CD ‘80 € C(D, D) satisfies f oy = f}

If one such morphism ¢g: D — FE is given, then it also make

commute. Since f: D — (' is assumed to be the coequaliser there now exists a unique h: C — F
satisfying g = h o f. =

Definition 12.4. Let f: C' — D be a morphism in a category such that the pull-back D x¢ D exists.
Then f is called an effective epimorphism if f: D — C is a colimit for the two canonical morphisms
D xeD=D. m
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Remark 12.5. One calls a square

CLEl

J

B2 .D

of morphisms in a category C cartesian if (C £> E;)i=12 is a limit (pullback) of Es 2, p & B and
cocartesian if (E; gy D);—1, is a colimit of Es <£ C f—1> FE4. Thus in the previous lemma, f: D — C
is a colimit for D x¢c D = D if and only if the square

DxgD——C

|

C—C

is cartesian and cocartesian (a limit and a colimit). ]

Example 12.6. a) The local section coverage on Top is subcanonical: if f: D — C' is surjective
and admits local sections, then
DxecD——D

| ]

D——C

is cartesian and cocartesian. Indeed, if we use the realisation D x¢ D = {(d,d’) € D x D |
f(d) = f(d)}, then a continuous map g: D — E makes both maps D xc D — E coincide iff
f(d) = f(d') implies g(d) = g(d'). Thus there is a well-defined and unique map h: C — E
with ¢ = h o f. Since f admits local sections, h is locally expressible as g o o for some section
o:V CC — D and thus h is continuous. [ ]

Exercises for Section 12

Exercise 12.7. Show the only if part of Proposition 12.2: If each representable functor on a site
(C, K) is a sheaf, then the site is subcanonical. m

Exercise 12.8. Show the only if part of Lemma 12.3: If the covers of a coverage consist only of
singletons {f: D — C'}, then the morphism f: D — C is a colimit (or coequaliser) for the two
canonical morphism D x¢ D = D if the site (C, K) is subcanonical. (]

Exercise 12.9. Show that Man, together with the surjective submersion coverage is a subcanonical
site. .

A Differential Calculus in Infinite Dimensions

In this appendix we give the background on differential calculus in locally convex spaces.

If we want to understand function spaces like C°°(S1, R) as geometric objects (smooth manifolds),
then we first have to understand the differentiability properties of maps between infinite-dimensional
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vector spaces. The approach to infinite-dimensional differential calculus that we take here goes back
to Hamilton [Ham82] and Milnor [Mil84]. More recently, Glckner and Neeb used this approach in
a quite general account on infinite-dimensional Lie groups [GN14]. Note that this approach does
note require the modelling spaces to be complete (see [G1602]), which makes the notion quite easy
accessible.

Definition A.1. If X is a real vector space, then a half-norm on X is a map p: X — R>( such that
p(t-x) = |t| - p(z) and p(z + y) < p(x) + p(y) for each t € R, z,y € X. If, in addition, p(z) = 0
implies = 0, then p is called a norm on X. The norm of a vector is also often denoted by |lz|. A
family (p;)ier of semi-norms on X is said to separate the points of X if

pi(x)forallie [ =2 =0

holds.
A topology 7 on X is called vector topology if it is Hausdorff and the addition and scalar multi-
plication
XxX =X, (ryyy—z+y RxX-X, (tzo)-—t-x

are continuos (with respect to the product topology). The pair (X, 7) (often simply abbreviated by
X) is then called topological vector space (shortly tvs). A morphism of topological vector spaces
is a linear map that is continuous. With respect to composition of maps this defines the category
TopVect of topological vector spaces. The morphisms from X to R will throughout be denoted by
X'. n

Example A.2. a) If pis a norm on X, then the sets
Bea:={ye X |p(z—y) <e} (39)
form the basis for a vector topology on X.
b) If (pi)ier is a family of semi-norms on X that separate the points of X, then the sets
Bty ={y € X | piy(x —y) <ep for 1 <k < [J[} (40)

(where J C I runs through all finite subsets of I) form a basis for a vector topology on
X. If ker(pn) == {x € X | pp(z) = 0} is the kernel of p,, then X/ker(p,) is a normed
space and the topology induced by (40) is precisely the initial topology for the projections
Tn: X — X/ ker(py).

If X is a topological vector space and there exists a family of semi-norms such that the induced
topology is the originally given one, then we say that X is a locally convex space (shortly lcs).
Note that the semi-norms are not part of the data of a lcs, but that local convexity is (by
definition) a property of the topology. If fact, a vector topology on X is locally convex if and
only if it possesses a basis of zero neighbourhoods that are convex. Supplements on this notion
can be found in [Rud91, Ch. I.1] and [Wer00, Ch. VIII]. If we restrict to locally convex spaces,
then we obtain the category Lcs as a full subcategory of TopVect.

c) If (p1,...,pn) is a finite family of semi-norms on X that separates the points of X, then

p(l‘) = max{pl(x), apn(x)}
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defines a norm on X (note that the co-norm on R™ is of this form). In this case, the topologies
on X that are induced by (39) and (40) coincide. In this case we call X normable. If X is
complete is complete with respect to the metric d(f, g) := p(f — g), then X is a Banach space.

If X is a vector space and d: X x X — Rxg is a translation invariant metric on X (i.e., if we
have d(z — z,y — z) = d(z,y) for all x,y,z € X), then the pair (X,d) is called metric vector
space. The topology induced from d then turns X into a topological vector space. This need
not be locally convex, as the example

d((x1,72), (y1,92)) == (V]r1 — v1| + V]z2 — v2|)?

shows. Moreover, the metric will be (in general) not compatible with the scalar multiplication
in the sense that d(t - z,t-y) = |t|d(x,y), since then x — d(0,z) defines a norm on X inducing
the same topology.

A natural source for metric vector spaces that are not normable is the following. If (py)nen is
a countable family of semi-norms on X, then the assignment

= Z 27" min{p,(x —y), 1} (41)

neN

defines a translation invariant metric on X. If X is complete with respect to d, then X is
called Fréchet space. Observe that the topology on X that is induced by d coincides with the
topology induced by (40) (cf. Exercise A.15).

For instance, on RN = [], .y R we have the semi-norms p,((z;)) = |2,| that clearly separate
the points. The induced topology is the product topology. This is even a Fréchet space (why?).

The first geometrically motivated example of a lcs is the vector space C(X,R) of all continuous
real valued functions on a topological space X. If X is compact, then we have on C'(X,R) the
norm

Poo(f) = sup{[f(2)] : 2 € X},

which is finite sine f(X) C R is compact and thus bounded. Since the limit of a uniformly
convergent sequence of continuous functions is again continuous (see [Wer00, Ex. I.1.c] if you
have not seen the argument in this generality before) it also follows that C'(X,R) is a Banach
space.

If X is not compact, then a similar construction works if we assume that there exists a sequence
K1, Ky, ... of compact subsets wiht U;en/K; = X (this applies for instance to X = R™ and thus
to each submanifold of R™). By replacing K, with K U ... U K,, we may assume without loss
of generality that K1 C K5 C .... From this we obtain the family of semi-norms

pu(f) := sup{|f(z)| : x € Ky},

which is finite since f(K,) C R is bounded. Then (p,)nen separates the points of C'(X,R),
since

po(f)=0¥neN& flp. =0¥neN& f=0

follows from U;eyK; = X. The resulting topology turns C(X,R) into a Fréchet space. In
order to check that C'(X,R) is complete, take a Cauchy sequence (fi)ren with respect to the
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metric (41). Then ( fx|f, ) is a Cauchy sequence in C'(K,,R) (check this!) and thus has a limit
gn € C(Kn,R). Since for m < n we have that g,|x is a limit of f|Kn‘K = flg, (check
this!) it follows that gn|r = gm and thus

x> gp(x)ifx € K,

defines an element f € C(X,R). Since (p,(fx — f))ren converges to 0 for each n € N, it follows
that f, — f in the metric (41) (check this!).

g) Now suppose X is compact, Y is an lcs and (p;);er is a family of point-separating semi-norms
on Y. Then

Pi(f) = sup{pi(f(x)) : € X}

is a point-separating family of semi-norms on C'(X,Y’) which endows C'(X,Y") with the structure
of a les. If, moreover, I is countable and Y is a Fréchet space, then C(X,Y’) then is so. In fact,
if (fx)ken is a Cauchy sequence in C(X,Y), then (fx)ken is a Cauchy sequence for each = € X.
Since Y is complete we may define

fla):= lim fi(z).

In order to check that f is continuous it suffices to check that 7,0 f is continuous for each n € N,
where 7,: Y — Y/ker(py) is the canonical projection. Since Y/ker(p,) is complete [Rud9l,
Theorem 1.41], it is a Banach space. We thus have that the point-wise limit of (7, (fx(z)))ken
is continuous and coincides with 7, o f. Thus f is continuous. Since the topology on C'(X,Y")
may also be constructed as the initial topology for the maps C(X,Y) — C(X,Y/ker(p,)),
f > my o f (check this!) we may deduce limy_, o fr = f from limy_, oo 7, 0 fr = m, o f for each
n € N.

If X is not compact, but if we assume that there exists a sequence K1, Ko, ... of compact subsets
with U;enK; = X, then we have the point-separating family of semi-norms

P, i =sup{pi(f(z)) 2 € K} L]
which endow C(X,Y) with the structure of a lcs. As above we may conclude that C(X,Y) is

a Fréchet space if Y is so.

Lemma A.3. If X,Y are two topological vector spaces, then a linear map f: X — Y is continuous
if and only if it is continuous in 0.

Proof. We have to show that if f is continuous in 0, then it is continuous in each x¢ € X. Since the
translations x — x — x¢ and y — y + f(zo) are continuous, we have that the composition of

= x—x0 > flx—z0) = f(2) — flz0) = (f(x) — f(20)) + f(20) = f(2)
is continuous in zy. Since this maps equals f, this shows the claim. u

The following two theorems are of fundamental importance for us.

Theorem A.4. If X is a topological vector space that possesses a compact zero neighbourhood, then
X is finite-dimensional.
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Proof. This is [Rud91, Thm. 1.1.22]. L]

Theorem A.5 (Hahn-Banach). If X is a lcs, then the continuous linear functionals separate the
points of X, i.e., for each two x,y € X with x # y there exists some X\ € X' such that \(z) # \(y).

Proof. This is [Rud91, Sect. 1.3] or [Wer00, Cor. VIII.2.13]. L]

The following notion is the reason for dealing with locally convex spaces, instead of even larger
classes of spaces.

Definition A.6. Let X be a lcs and v: [a,b] — X be continuous. Then we say that x € X is the
weak integral of v and write x = f;'y(t)dt if and only if \(x) = fab A(y(t))dt for each X\ € X'. In the
latter expression, the integral is the usual integral of continuous real-valued functions on [0, 1]. ]

Lemma A.7. The weak integral of v is unique if it exists.

Proof. If z and y are both weak integrals of v, then we have by definition

for each A € X'/, and thus by Hahn-Banach that = = . [

The following is an important source for continuous maps:

Proposition A.8. If X is les, P is a topological space and f: [a,b] x P — X is continuous such
that for each p € P the integral f; f(t,p)dt exists, then p — fff(t,p)dt 18 continuous.

Proof. This is a more or less direct consequence of the Hahn-Banach Theorem, cf. [GN14]. [

With these results in shape, we can now turn to differentiability questions on locally convex
spaces.

Definition A.9. Let X, Y belcs, U C X be open and f: U — Y be a map. We will abbreviate this
by f:UGX =Y.

a) We say that f is differentiable if for each z € U and v € X the differential

4 (2)(v) = Tim LEF 50 = f(@)

s—0 S

0
= %f(a: + sv) .
exists in X. In order to simplify notation, we sometimes also write df (z,v) for df (z)(v). If,
moreover, the map U x X — Y, (z,v) — df(z)(v) is continuous with respect to the product
topology, then f is said to be continuously differentiable or shortly a C'-map. We denote the
set of all Cl-maps f: U @ X — Y by CY(U,Y).

b) We define the higher differentials recursively by setting d' f(z)(v) := df (x)(v) and

0 0

@1 () (01, 00) 1= A )@ 0 ) (00,0 0) = e

(x + s1v1 + ..., sKUE)
s1=...=s;=0
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for k > 2. We say that f is k-fold differentiable if all d’(z,v1, ...,v;) exists for 1 < j < k. If,
moreover, the maps

Ux XF =Y, (z,01,...,0) — d¥(z,v1, ..., 0p)

are continuous with respect to the product topology, then we say that f is k-fold continuously
differentiable or shortly a C*-map. We say that f is smooth if it is C* for each k € Ny (defining
a C%map to be a continuous map). We denote the set of all C*-maps (respectively smooth
maps) f: U @ X — Y by C*(U,Y) (respectively C>®(U,Y)). [

Remark A.10. There are several other natural definitions of C' and C* maps on locally convex
spaces.

a) A more convenient definition for f to be a C*-map would be to demand f to be a C'-map and
df to be a C*~1-map (the latter defined recursively). This is the definition in [Nee06].

b) One could also define f to be a C¥-map if it is a C*~!-map (defined recursively) and D*~1 f (also
defined recursively with D f := df) is a C'-map. Noting that D*f = d(D*~1 f) = D*~1(df), an
easy induction argument shows that this notion is equivalent to the one given in a).

¢) A more general notion of C'-map is to define f: U @ X — Y to be C! if there exists a
continuous map

UM = {(z,0,8) e UX X xR |z 4+sveU} =Y

such that
f(x+sv) — f(z) =t fH(z,v,t) for all (z,v,t) € UM,

Note that this definition works if X,Y are merely topological modules over a topological ring
(cf. [BGNO4]). If X,Y are lcs, then this notion of C'! map it is equivalent to the above one (cf.
Exercise A.18). As above, this gives rise to two definitions of C* maps that are both equivalent.

Eventually, all these notions of C¥-maps are (for les X,Y) equivalent to the one given in Definition
A.9. In fact, it is trivial that C* in any of a)-c) implies C* in the sense of Definition A.9, since
d* only evaluates D*f in directions with multiple 0’s. Moreover, C* in the sense of Definition A.9
implies C* in the sense of c) by [BGNO04, 7.4]. Be aware that this is due to the fact that we are
working with locally convex spaces. For non-locally convex spaces, the above notion of smoothness
is not the appropriate one (cf. [Gl604a]). ]

Example A.11. If X, Y arelcs and f: X — Y is continuous and linear, then f is C!, since df (z,v) =
f(v). This also shows that d*f = 0 for each k > 2 and thus that f is in particular smooth. If,
moreover, Z is a les, U C Z is open and ¢g: U — X is C¥, then from the definition it follows
immediately that f o g is C*¥ and that d*(f o g) = f o d¥g.

One also sees that df (z,v) = f(v) holds for each linear map, so that differentiability does not
imply continuity in general. =

Remark A.12. It is in general not easy to prove, that a given arbitrarily defined map f: U — Y
is (continuously) differentiable or even smooth. Note that this is also the case in finite dimensions,
where smooth maps often come from power series (and thus actually from analytic functions).
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It will be important to have a similarly rich source for smooth maps between infinite-dimensional
manifolds as well. However, power series will not serve this purpose (or rather in a quite limited
way ), since that spaces that we consider will not be normable. [

Proposition A.13. Let X,Y belcs and f: U @ X — Y be CL.
a) For any x € U the map v — df (x,v) is real linear and continuous.

b) We have the Fundamental Theorem of Calculus: Ifx € U, v € X such that z+1[0,1Jv C U,
then

flz+v) = f(x) —i—/o df (x + tv)(v)dt.

In particular, f is locally constant if and only if df = 0.
¢) f is continuous.
d) If f is C* for k > 2, then for each x € U the functions d*(x)( -) are symmetric and n-linear.

e) We have the Chain Rule: If, moreover, Z is a lcs and g: V @ Z — U is O, then fog is C*
and

d(fog)(z,w)=df(g(z),dg(z,w)) for all z € V,w € Z.

Proof. a) We only proof the additivity in order to illustrate the idea. For each A € X’ and
v,w € X we define F(s,t) := A(f(x + sv + tw)). This is a continuous map defined on some
open neighbourhood of 0 in R?. It has the continuous partial derivatives

3} 0
gF(s,t) = A(df (x + sv,tw)(v)) and aF(s,t) = Adf (x + sv, tw)(w)),

which are continuous. Thus from finite-dimensional calculus we know that F' is continuously
differentiable and dF'(0,0) is linear. This implies that

Adf (2,0 +w)) = d(Xo f)(z, v+ w) = dF((0,0)(1,1)) = dF((0,0)(1,0)) + dF((0,0)(0, 1))
— d(\o f)(z,v) + d(ro f)(z,w) = Ndf(z,v) + df (z, w)).
Since A was arbitrary, this shows that df (z,v + w)) = df (z,v) + df (x,w) by Hahn-Banach.

b) It follows from the Fundamental Theorem for continuous cunctions from R to R that

1 1
Af(z4v) = f(2) = A(f(z+0)) = A(f(2)) = / d(Ao f)(x+tv)(v)dt = A </ df (z + fU)(“)C“)
0 0
for each \ € X'.
c) Is omitted, cf. [Nee06, Lem. I1.2.3]. The case that X is metrisable is also treated in Section 4.

d) Follows from the corresponding finite-dimensional statement as in part a).
e) Is left as Exercise A.18. (]
Remark A.14. Observe that we have not used any completeness assertion on the locally convex

spaces in order to prove the chain rule. This makes the approach via Definition A.9 and the derived
characterisation from Remark A.10 c) particularly handy. m
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Exercises for Appendix A

Exercise A.15. Let (p,)nen be a countable point separating family of semi-norms on the vector
space X. Then show that the topologies induced by (40) and the metric (41) coincide. n

Exercise A.16. Fill in the details of Example A.2 f). For this it could help to first show /realise the
following fact: If d is a metric on X, then

d'(z,y) = min{d(z, y), 1}
is an equivalent metric on X (i.e., idx is continuous with respect to d and d'). [

Exercise A.17. Let X1,...,X,,,Y belcs and f: X; x ... x X;;, = Y be continuous and multi-linear.
Show that f is smooth. [

Exercise A.18. Let X,Y belcs, f: U @ X — Y be a map and set Ul := {(z,v,5) € U x X xR |
x+sv € U}. Show that f is a Cl-map if and only there exists a continuous map O gl — ¥ such
that

W@, v,8) = © (f(z +50) — (@) i s £0. (42)

s
Hint: Try
1 :
(3,0, 5) = {0 df (z + stv)(v)dt  ifz+1[0,1]s CU
s(f(xz+sv)— f(x)) else
and use the fact that integrals depend continuously on their integrands.

Observe that (42) implies in particular that df (x,v) = fl1(x,v,0) and thus that df is continuous.
Use this to show the Chain Rule: If f: U @ X - Y and g: V @ Z — U are C'-maps, then so is
fogand

d(f o g)(2)(w) = df (9(2))(dg(z)(w)). =

B Manifolds and Lie Groups

In this appendix we define the category Man of (possible infinite-dimensional) manifolds (with
boundary). Moreover, we also treat Lie groups and some examples of them.

We now turn to the definition of (abstract) manifolds. As probably known from the undergraduate
courses, the idea of a manifold should be a “somehow curved” object that locally looks like an open
subset of a (locally convex) vector space.

Definition B.1. Let M be a Hausdorff topological space. A chart on M is a homeomorphism
e:U—=pU) C X,

for X, alcs and U @ M and ¢(U) ©@ X, open. Two charts p: U — ¢(U) and ¢: V — (V) are
compatible if the map
pUNV) = h(UNV), o0 (e (z)



Manifolds and Lie Groups 88

and its inverse are smooth in the sense of Definition A.9'4. An atlas on M is a family (¢;: U; = ¢;(U;));e;
of pairwise compatible charts with U;c;U; = M. The set of all atlases is ordered with respect to

((,OZ'Z U, — SOl(Ul))zEI < (1/)]': Uj — ¢j(Uj))j€J = I C J and ©Y; = Py Vi el

and a smooth manifold is the pair (M, A), where A is a maximal atlas on M. We will often simply
say that M is a smooth manifold, assuming that 4 is understood. If all the Ics X, is some atlas are
isomorphic (as Ics), then we find an equivalent atlas in which all X, are equal to some lcs X. In this
case M is also said to be modelled on X1,

If (M, A) is a smooth manifold and (N, B) is a smooth manifold, then a map f: M — N is smooth
if for each chart ¢: U — ¢(U) occurring in A and chart ¢: V' — (V') occurring in B, the coordinate
representation

pUN V) = o(V), z=o(f(e™ (2) (43)

is smooth in the sense of Definition A.9. We then also call f a morphism of manifolds. We denote
the set of morphisms between smooth manifolds by C*°(M, N) and call them also smooth maps. If
there is no risk of confusion with the notation for diffeological spaces, then we use Diff (M) to refer
to the diffeomorphisms of M, i.e., the invertible elements in C°°(M, M).

In case that (43) is only a C*-map for some k € Ny, then we call f is a C*-map. Clearly, f is
smooth if and only if it is C* for each k € Ny. [

Remark B.2. a) From the Chain Rule it follows that compatibility of charts is an equivalence
relation. From this it follows, in turn, that a maximal atlas is uniquely determined by the
choice of a single (not necessarily maximal) atlas. Likewise, it also follows from the Chain Rule
that for a map f: M — N to be smooth it suffices to check (43) only for charts from two
atlases on M and N, determining the respective maximal atlases.

b) It follows from the chain rule that the composition of smooth maps between manifolds is again
smooth. Thus we obtain the category Man of manifolds modelled on locally convex spaces if
we set

Man(M,N) :={f: M — N | f is smooth}

with respect to the composition of smooth maps. Note that the restriction to locally convex
spaces was important for obtaining the Chain Rule in Proposition A.13 e). As always, re will
put a cardinality bound on the manifolds that we consider and thus turn Man into a small
category (cf. Remark 2.6).

c) We call a manifold in which all X, are Fréchet spaces, (respectively Banach or finite-dimensional
spaces) a Fréchet (respectively Banach or finite-dimensional) manifold. In contrast to this, a
metrisable manifold is one whose underlying topological space is metrisable and a manifold in
which all X, are metrisable is a locally metrisable manifold.

d) Each manifold will give rise to a diffeological space (see Section 3). In this context we will use
the term smooth map to refer to a morphism of manifolds (a morphism in Man), rather than
a morphism of diffeological spaces. However, we will see in Section 4 that these concepts agree
on locally metrisable manifolds. ]

“From this it follows in particular, that if U NV # ), then the lcs that p(U) and (V) are open subsets of are in
fact isomorphic.
5By the previous footnote and an easy compactness argument this is for instance the case if M is connected
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Example B.3. a) Each set X is a manifold modelled on R? = {0} if we endow it with the discrete
topology. This provides a functor §: Set — Man, which is left adjoint to the forgetful functor
F: Man — Set. Since we have that each map f: 6(X) — M is automatically smooth we have

Man(6(X), M) = Set(X, M)

and thus § 4 F.

b) Each lcs X is a manifold with respect to the identity as (global) chart. Likewise, each U C X
is a manifold with the inclusion U — X as (global) chart.

¢) Each submanifold of R"™ is a smooth manifold.

d) If My, ..., M, are smooth manifolds, each modelled on some X;, then their product My x..., X M,
is a smooth manifold, modelled on X; X ... x X,,. Note that this is possible since charts
vi: Ui — ¢;(U;) give rise to a chart

©1 X . Op: Up x ... % Un — (pl(Ul) X ... X gon(Un)

This is not possible for infinite products any more, i.e., the category Man do not possess
arbitrary products. [

Constructing more exciting examples of smooth manifolds is not so easy, since smooth maps
between lcs are not easily constructed in an ad-hoc way. Natural candidates for such gadgets would
be mapping spaces, i.e., C>°(M, N) for M and N say finite-dimensional manifolds.

On the other hand, the tool that we will get to know in Section 4 will provide us with a rich source
of such maps. For the moment we will develop the theory mostly with finite-dimensional examples.

Note also that by Whitney’s Embedding Theorem, each finite-dimensional manifold which is
paracompact is a submanifold of some R™ [Pra07, Section 3.1].

Definition B.4. Let G be a group which is also a smooth manifold modelled on some lcs X. If the
group operations

GxG—G, (gh)—~g-h, and G—=G, grg!

are smooth maps, then we call G a Lie group modelled on X. A morphism f: G — H between
Lie groups G, H is a group homomorphism which is also a smooth map. This defines the category
LieGp of Lie groups. It is a (non-full) subcategory of Man and of the category Gp of groups. =

Example B.5. a) Finite-dimensional Lie groups are for instance matrix Lie groups like GL,(R)
or SL,(R). Clearly, GL,(R) = det (R \ {0}) C R™ is open and thus naturally a manifold.
The matrix multiplication is a polynomial in the matrix entries and thus smooth (cf. Exercise
A.17). The inversion is by Cramer’s Rule given by a rational function on GL,(R) and thus also
smooth. Moreover, SL,(R) = det™!(1) is a submanifold by the Regular Value Theorem. Thus
the restrictions of the multiplication and inversion maps are also smooth on SLy,(R).

b) Let A be a Banach space and m: A x A — A, (z,y) — z -y be an associative, bilinear
multiplication with identity 1 € A that satisfies

-yl < =]l - lyll-
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Then A is also called Banach algebra. In a Banach algebra the multiplication m is continuous:
if (zn,yn) — (z,y), then (x, - yn) = x -y, since

|Znyn — Y|l = |Znyn — 2Yn + 2yn — 2y|| < [|20Yn — 2Ynl| + [|2yn — zy||
<llzn — z||lynll + lz[|lyn — yll — 0.

In particular, m is smooth (cf. Exercise A.17). Moreover, we have that if ||z|| < 1, then 1 — x
is a unit since
[e.@]
n : n
(1—w)-7;)x :nh%n;ol—x =1.
If a € Ais a unit, and ||z|| < |[a™}|| 7!, then a — 2 = a(1 — a~'z) and |ja~ x| < 1 implies that
1 —a 'z is a unit and thus is @ — . This implies that the group A* of units in A is open
and thus naturally a smooth manifold. We have already seen that the group multiplication is
smooth and it will we shown in Exercise B.10 that a — a~! is also smooth. Thus A is a Lie
group.
This applies in particular to the Banach algebra A = B(X) of bounded linear operators on
the Banach space X with respect to the operator norm. Thus Aut(X) := B(X)* is a Lie
group, modelled on B(X). Another example of a Banach algebra is C(Y, A) for Y a compact
topological space and A another Banach algebra with respect to (f-g)(y) := f(y)-g(y) and the
supremum norm (cf. Exercise B.11). Clearly, f: Y — A is invertible if and only if f(y) € A*
for each y € Y. Thus
(Y, 4)" = C(Y, A)

is a Lie group modelled on C(Y, A). Examples thereof include for instance C(Y,R*), C(Y,C*)
or C(Y,GL,(R)). "

One of the most important things that Lie groups can do is that they can act on other manifolds.

Definition B.6. If M is a manifold and G is a Lie group, then a smooth left action of G on M is
an abstract left action G — Diff(M) such that the map G x M > (g, m) — g.m € M is smooth.
This is also referred to as a smooth left G-space. Smooth right actions are defined similarly. An
action is called faithful, free and transitive if the underlying abstract action is so. A morphism of
smooth G-spaces M, N is a smooth equivariant map f: M — N, i.e., we have f(g.m) = g.f(m) for
all g € G,m € M,n € N. We denote the set of morphisms between G-spaces by C*°(M, N)®. [

The following actions will be of particular importance for us.

Definition B.7. A torsor over a Lie group GG is a smooth right G-space M such that the map
M xG— Mx M, (m,g)— (m,m.g) is a diffeomorphism. ]

Example B.8. Each Lie group G is naturally a left and a right G-torsor with respect to the group
multiplication. We clearly have C°°(G,G) = G for both, the left and the left G-action. ]

Lemma B.9. If M is a G-torsor, then G = M as G-space and G = C®(M, M) as groups (non-
canonically).

Proof. If we fix some my € M, then each m may be written uniquely as m = mg.g and we denote
suggestively mg ' m := ¢g. Then m — mg 1. m is smooth and has as inverse the smooth map
g — my.g. If we pre-and postcompose with the identification M = @, then we obtain a bijective
group homomorphism G — C*°(M, M)%. n
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Exercises for Appendix B

Exercise B.10. Let A be a Banach algebra and denote by A* the group of units in A. Show that
the inversion ¢: AX — A*, a +— a~! is smooth by the following steps

a) Verify that a=! —b~! = a~'(a — b)b~! for each a,b € A*.
b) Calculate di(a)(v) and conclude that ¢ is of class C*.
¢) Show inductively that if ¢ is of class C*, then d¢ is of class C*¥ and conclude that ¢ is of class

C* for each k € Ny. m

Exercise B.11. If A is a Banach algebra and X is a compact topological space, show that C(X, A)
is a Banach algebra with respect to (f - g)(z) := f(z) - g(x) and the supremum norm

[flloo := sup{[|f(z)[| : = € X}. =

C Fibreproducts

This section contains a self-contained treatment of submersions and fibreproducts in infinite
dimensions (the necessary background for Lie groupoids and the construction of the surjective sub-
mersion coverage on Man).

In this section we will introduce fibreproducts, the perhaps most important tool for the construc-
tion and understanding of higher geometric objects. For the moment this is a purely technical notion,
but it will later play a foundational rle for the understanding of smooth stacks. Supplements on this
sections can be found in [Lan99, Section II.2].

Remark C.1. Recall from functional analysis that a subspace X7 < X of a tvs is called comple-
mented if there exists a tvs X such that X = X; x Xs. Then X; is automatically closed in X.

The condition on being complemented is equivalent to the existence of a continuous projection
m: X — X with 7(X) = X;. In fact, if 7 is given, then ker(7) < X is closed and X; x ker(7) — X,
(z,y) — x+y is continuous with inverse given by z — (7 (z), x—7(x)). Conversely, if p: X — X1 xX>
is an isomorphism of tvs, then ¢! o pr; o provides a continuous projection onto Xj.

Another condition for being complemented is that the projection X — X/X; has a continuous
linear right inverse o: X/X; — X. Indeed, if o is given, then x — z—o(x+ X1) provides a projection
onto X and if X =2 X x Xy, then X — X/X; = X5 admits a linear an continuous right inverse,
provided by Xs — X7 x Xo. n

Definition C.2. Let M be a smooth manifold and N C M a subset. Then a submanifold chart (for
N) is a chart ¢: U — ¢(U) @ X such that there exists Y C X closed and o(UNN) = o(U)NY.
If N is covered by domains of submanifold charts, then NV is called submanifold of M. If, moreover,
N is closed in M, then it is called closed submanifold. If G is a Lie group, then a Lie subgroup
is a subgroup H C G which is also a submanifold. If H is also closed, then it is called closed Lie
subgroup.

If N C M is a submanifold and in the above definition, each Y can be chosen to be complemented,
then N is called split submanifold. Clearly, a split Lie subgroup is a Lie subgroup that is a split
submanifold. [
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Remark C.3. a) Each submanifold is in fact a manifold, where an atlas is determined by all the
charts on M which are also submanifold charts for N (as defined above). This is called the
induced manifold structure on N. Note that this determines the manifold N uniquely.

b) If f: M — P is smooth, then f|, is smooth for the induced manifold structure, since the cor-
responding coordinate representations are smooth for the atlas of submanifold charts (restric-
tions of smooth maps to closed subspaces remain smooth in the induced topology). Likewise,
if g: Q@ — M is smooth and ¢g(Q) C N, then g is smooth as a map to N with the induced
manifold structure.

c) Each open subset U @ M is a submanifold, which is automatically split. We then call U
also an open submanifold. Note also that submanifolds of finite-dimensional manifolds are
automatically split, we thus omit the term split from the notation.

d) If N C M is a split submanifold, then the inclusion N < M can locally be written as the
injection X7 < X; x {0} C X of a complemented subspace. More generally, if P is an arbitrary
manifold, then a map f: P — M is called an immersion if it is locally given by the inclusion
of a complemented subspace, i.e., for each p € P there exist charts p: U — ¢(U) @ X; of P
and ¢: V — ¢(V) @ X of M such that X; < X is complemented, p € U, f(U) C V and the
coordinate representation 1) o f o ! is the restriction of the inclusion X; < X to p(U). =

Example C.4. a) If G is a finite-dimensional Lie group and H < G is a closed subgroup, then
H is a submanifold and thus a closed Lie subgroup, see [Hel01, Theorem II1.2.3] or [Mic08,
Theorem 5.5].

b) Let f: M — P be smooth and g = pry: N X P — P be the projection. Then
M xp (N x P) = {(m,n,p) | f(m) = pry(n,p) = p}

is a split submanifold of M x N x P. In fact, let ¢: U — ¢(U) be a chart of M and ¢ x £: V X
W — (V) x £(W) be a product chart of N x P. Then

(ma Tl,p) = ((,0(771)7 ¢(n)7 f(p) - g(f(m))) (44)

defines a chart of M x N x P with inverse
(z,,2) = (¢ (), v (1), (2 + £(f (¢ M (2))))).

Moreover, (m,n,p) € (UNf~1(W))xV x W maps under (44) to (z,y,0) if and only if f(m) = p,
ie., if (m,n,p) € M xp (N x P). Thus (44) is a submanifold chart for M xp (N x P). (]

Remark C.5. Note that already for Banach-Lie groups it is not true any more that closed subgroups
are Lie subgroups. Indeed, if G is the additive group of the Hilbert space ¢?(N), then for each n € N
we consider the group H := {(z,,) € (*(N) | 2, € 2Z}. Since \;(z,) = ; is continuous for each 4
we have that H = [,y )\;1(%2) is closed. It is non-discrete (in the induced topology), since each

open ball B (0) contains the sequence which is zero except at n = 2m, where it is ﬁ But no

neighbourhogd of 0 in H can contain a continuous path 7 connecting 0 with (x,) # 0, since then
Ao~y would take all values between 0 and x;. Thus no neighbourhood of 0 in H can be homeomorphic
to an open subset of a lcs, since the latter would admit continuous paths joining sufficiently close
distinct points. [
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The dual version of an immersion is that of a submersion, i.e., a smooth map that can locally be
written as the projection onto a complemented subspace.

Definition C.6. Let M, N be manifolds and f: M — N be smooth. Then f is a submersion if for
each m € M there exist charts ¢: U — ¢(U) @ X of M and ¢: V — ¢(V) @ X; of N with m € U,
f(U) €V, X; <X complemented and a continuous projection 7: X — X; with 7(X) = X; such
that the coordinate representation 1 o f o ! is the restriction of 7 to o(U). [

The most important source of submersions will be bundle projections, that we introduce in
Appendix D. We here already give some basic examples of those.

Example C.7. a) If G is a finite-dimensional Lie group and H < G is a closed subgroup, then
G/H carries a unique manifold structure such that G — G/H is a submersion, see [DKO00,
Corollary 1.11.5] or [Mic08, Theorem 5.11].

b) If M is a manifold and M — Misa covering of M, then M has a unique manifold structure
such that M — M is a local diffeomorphism. Indeed, M — M is a local homeomorphism and
we may thus pull charts that are defined on sufficiently small open subsets in M via M — M
back to charts around each point of M. Thus the coordinate representation of M — M is the
identity, and thus in particular a projection. [

Proposition C.8. Let f: M — P, g: N — P be smooth maps and g be a submersion. Then M X p
N = {(m,n) | f(m) =g(n)} is a split submanifold of M x N and the projection pri: M x, N — M
is a submersion.

Proof. Let (m,n) € M xp N and let ¢: V. — (V) @ Y be a chart on N, &: W — (W) @€ Y
be a chart on P such that n € V, g(V) C W and £ o go1~! = 7 for some continuous projection
m:Y — YY) with 7(Y) = Y7. After shrinking ¢(V') and {(W) if necessary, we may assume w.l.o.g.
that Y = Y] x Y3 for Y2 <Y closed, that ¢(V) = Vi x Vo with V; @ Y;, that (W) C V; and that
T = pry:

1% v D(V) —Z5 Vi x Vs

T

g V) TW———¢(W)—W;

As in (44) we obtain from this a chart of M x N

U N W) x V) 3 (m,n) = (p(m),1(n), 2(n) = £(f(m))) € p(U) x Vi x Va (45)

with inverse

(2,y,2) = (¢~ (@), 07y 2 +E(f(07 (2)))))

such that (m,n) € (UNf~H(W)xV)N(Mx pN) if and only if (m,n) maps under (45) to (z,y,0). Thus
(45) is a submanifold chart. Since (m,n) was arbitrary, this shows that M xp N is a submanifold
of M x N and since pry: M x N — M is smooth, so is the restriction to M xp N. Moreover,
its coordinate representation in with respect to the charts (45) and ¢ is given by pr;, and thus
pri: M x N — M is a submersion. n
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Corollary C.9. If f: M — P and g: N — P are smooth an either f or g is a submersion, then the
pull-back M xp N exists in Man. Moreover, the forgetful functor Man — Top maps M xp N to
the pullback of f: M — P and g: N — P in Top.

Note that the last assertion is non-trivial, since in general the forgetful functor Mlan — Top does
not preserve pull-backs.

Proof. If k: Q — M and [: Q — N satisfy fok = gol, then h: Q@ — M x N, q¢ — (k(q),1(q))
is smooth and takes values in M xp N, and is uniquely determined by requiring pr, oh = k£ and
pryoh =1. n

In practice it is good to have criterions for a map to be a submersion that are easier to check
that the definition.

Proposition C.10. a) A smooth map f: M — N between finite-dimensional manifolds is a sub-
mersion if and only if for each m € M the tangent map Ty f: TpnM — Ty N (see Appendix
D) is surjective.

b) A smooth map f: M — N between Banach-manifolds is a submersion if and only if for each
m € M the tangent map T f: TynM — Ty N (see Appendix D) is surjective and ker(T,, f) <
TwM is complemented.

c) A smooth map f: M — N between Banach-manifolds is a submersion if and only if it admits
smooth sections through each point in M, i.e., for each m € M there is V @ N with f(m) € V
and o: V. — M smooth such that o(f(m)) =m and foo =idy.

Proof. b) is [Lan99, Proposition 11.2.3] and this clearly implies a).

If f: M — N admits sections through each point, then T, f is surjective for each m € M since
Tf(m)o provides a continuous and linear right inverse to Ty, f: T M — Ty N. Since Ty, N =
T,/ ker(T,, f) this shows also that ker(7,, f) is complemented. L]

We end this section by a discussion of the following fundamental notion for differential topology.
Definition C.11. Let M, N be manifolds and f: M — N be smooth and Q C N be a split subman-
ifold. Then f is transversal over Q if for each m € f~(Q) and submanifold chart : V — Vi x V4
with ¢ (f(m)) = (0,0) there exists U @ M such that m € U, f(U) C V and that

ULvavixv 22y, (46)

is a submersion. n

The following proposition is crucial.
Proposition C.12. If f: M — N is transversal over a split submanifold Q of N, then f~1(Q) is a
split submanifold of M.

Proof. Since (46) is a submersion we may assume, after possibly shrinking U and V5, that we have
charts ¢: U — Uy x Uy of U (where U; @ X; are open zero neighbourhoods in some lcs X7 and X5)
and &: Vo — Uz (w.lo.g. p(m) = (0,0) and £(0) = 0) of V5 such that

f valx%prz%

| Js

Us
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commutes. We claim that ¢ is a submanifold chart for f~1(Q), i.e., that
PUNfHQ)) = U)N (U1 x {0}).
Indeed, we have for x € U that
f(@) € Q & pry(¥(f(2))) = 0 & pry(p(w)) = 0 & ¢(x) € pry ' (0) = Ur x {0},
where the first equivalence follows from the fact that 1 is a submanifold chart. This shows the claim.m

Corollary C.13. If f: M — N is a submersion, then the fibre f='(n) is a split submanifold for
eachn € N.

D Locally Trivial and Principal Bundles

This section contains a quick treatment of different types of bundles (in particular infinite-
dimensional ones), in particular vector bundles, principal bundles and Lie group bundles.

We now come to a very important concept encoding most of the structure in differential geometry.
There is a close similarity to the concept of a submersion: a submersion is a morphism of manifolds
that is locally a projection to a factor in a product space, where a bundle is a space that is locally a
product of spaces.

Definition D.1. Let X,Y,Z be manifolds. Then the trivial bundle (over Z with fibre X) is the
projection pry: Z x X — Z. A locally trivial bundle with fibre X is a smooth map 7: Y — Z such
that there exists an open cover (U;);er of Z and diffeomorphisms ®;: 7= 1(U;) — U; x X, called local
trivialisations, such that the diagram

WU — 2 LU x X (47)

s

commutes. We will frequently use the notation Y|, := 7~ (U) for U @ Z (note that this is then also
locally trivial bundle over U). We shortly refer to 7: Y — Z (or simply Y') as bundle (over Z). We
refer to X as the fibre, to Y as the total space and to Z as the base of the bundle. A smooth map
o: Z — Y such that m o 0 = idyz is called a section of the bundle. The set of all sections is denoted
by I'(m: Y — Z) (shortly I'"(Z) and IT'"(U) := F”(ﬂ"y'U Yy = U)).

Ifm: Y — Z and n’: Y’ — Z are bundles over Z with fibre X, then a morphism from Y — Y’ of
bundles is a smooth map f:Y — Y’ such that

y—1 Ly

N
z

commutes. A morphism from Y to the trivial bundle is called a trivialisation and in case that it
exists Y is called trivialisable. Obviously, compositions of bundle morphisms are bundle morphisms.m
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Example D.2. a) If G is a finite-dimensional Lie group and H C G is a closed subgroup, then H
is a submanifold and on G/H there exists a unique manifold structure such that 7: G — G/H
is a submersion (cf. Examples C.4 a) and C.7 a)). In particular, there exists an open cover
(Ui)ier and o;: U; — G such that 7o 0; = idy, (one may always define o; in local coordinates
that render 7 a projection). Then

' (U;) = Ui x H, g~ (x(g),0i(n(g)) " - g) (48)
is a local trivialisation, i.e., it is smooth, has
Us x H— 77 (U, (y,h) = oily) - b (49)

as smooth inverse and makes (47) commute. Thus 7: G — G/H is a bundle with fibre H.

The same construction applies to infinite-dimensional G if we assume that H is a closed Lie
subgroup and that G/H carries a manifold structure turning G — G/H into a submersion.

b) Each covering m: M — N is a bundle. By definition, there exists an open cover (U;);er of N
such that 7=1(U;) 2 F x U; for F a discrete set.

c) Let M be a manifold modelled on the les X and (¢;: U; — ;(U;) @ X);er be an atlas for M.
Then we define the tangent bundle to M to be the set

T™M := (H ©i(U;) x X) / ~,
iel

where we define (;,v) € ¢;(U;) x X to be equivalent to (y;,w) € ¢;(U;)x X if y; = p;(w; ()

and

w = d(p; o p; ) () (v).

This defines an equivalence relation due to the chain rule. If we endow T'M with the quotient
topology of the disjoint union topology, then this becomes a manifold, since we have the charts

Toi: pi(Ui) x X = ¢i(U;)) x X € X x X, [(z;,v)] = (w,0)

(where we have identified ¢;(U;) x X with the subset of T'M that have an (automatically unique)
representative in ¢;(U;) x X). We get a canonical map 7: TM — M, [(z;,v)] = ¢; ' (z;) (note
that this is well-defined). This is clearly smooth since the coordinate representation is the
projection pry: ¢;(U;) x X — ¢;(U;). Moreover, 7 1(U;) = ¢;(U;) x X, so that the identity
provides a local trivialisation. Thus 7w: TM — M is a bundle with fibre X. [

In many cases, bundles have actually more structure than just being bundles. We now turn to
those structured bundles and their additional properties.

Remark D.3. Let m: Y — Z be a bundle with fibre X. For each two local trivialisations ®; j: 7= (U; ;) — U; jx
X we consider the diffeomorphism

®;0 @ Uiy x X = Upj x X, (50)

which we also call trivialisation change. Since ®; and ®; make (47) commute it follows that
<I>i(<I)]71(y, x)) = (v, vij(y,x)), where @;;: Uj;x X — X is smooth. Moreover, we have y;;(z, ¢ji(x,y)) =
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y and thus that for all 7,5 € I and each z € Uj; the map y — ¢;;(z,y) is a diffeomorphism of X,
which we denote by ¢;;(z). Depending on which additional structure X has and whether ¢;;(z)
preserves this structure we call m: Y — Z a

vector bundle X is alcs and there exist trivialisations { lcs
Lie group bundle if X is a Lie group (®i)ier with U;erU; = Z such that { Lie groups
principal G-bundle X = G is a Lie group ) each ¢;j(x) is an isomorphism of G-torsors

This scheme also applies to define Lie algebra bundles, (matrix) algebra bundles and other types of
bundles whose fibres have additional structure. ]

Example D.4. a) The bundle 7: G — G/H for H C G a closed Lie subgroup and 7 a submersion
is a principal H-bundle. In fact, the trivialisation changes are given by

Ujx H—= Uy x H, (y,h) = oi(y) - h > (w(oi(y) - h),05(y) " - 0i(y) - h)

and thus each ;;(z) (defined as above) is in fact the torsor isomorphism h — o;(y) "' 0i(y) - h.

b) Coverings have no additional structure, they are simply bundles with discrete fibres. However,
if the covering m: M — N is regular, then M is a G-principal bundle, where G is the group of
deck transformations of the covering.

c) The tangent bundle 7: TM — M is a vector bundle. Indeed, the trivialisation changes are
given by
Uij x X 3 (xi,0) = (i, d(pj 0 ;) (@:)(v)) € Uy x X

(why?), and each d(¢; o ; *)(2;) is an isomorphism of lcs. The fibres T;, M := 7~ (m) are
called the tangent spaces in m. They are lcs that are (non-canonically) isomorphic to X. [

In case that bundles have additional structure, we surely also want the morphisms to preserve
this additional structure.

Remark D.5. Let 7: Y — Z and ’: Y’ — Z be bundles with fibre X and f: Y — Y’ be a bundle
morphism. If ®;: 771(U;) — U; x X and ®,: 7'~ (U;) — U; x X are local trivialisations, then we
have

(I);ofoq);lt UxX—->UxX, (y,2)— (y,&(y,x)) (51)

for &: U; x X — X smooth. If the maps x — &;(y,z) (denoted by & (y) in the sequel) preserve the
additional structure on X that we might have, then it is a morphism of structured bundles, i.e., f is
a morphism of

vector bundles les
Lie group bundles if each &;(x) is a morphism of Lie groups . [
principal G-bundles G-torsors

Lemma D.6. For each manifold M the category Bun(M,G) of principal G-bundles over M is a
groupoid, i.e., each morphism is automatically invertible.

Proof. The proof is left as Exercise D.14. u
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One nice feature of structured bundles is that they allow for additional structures on the total
space and on the set of sections.

Remark D.7. Let 7: Y — Z be a structured bundle with fibre X i.e., there exists a family (®;);es
of local trivialisations such that each ;;(x) is an isomorphism of the structure in question.

a) If m: Y — Z is a vector bundle, then we can define for each y € Y and A € R the element
Ay =07 (A Pi(y)),

if z:=m(y) € U; each R acts on U; x X by A (2,2) := (2, A - z). This is well-defined, since if
A Uz‘j, then

PN j(y) = 271N 25(27(Pi(y))) = 57 (D5(D7 (A i(y)))) = @7 (A~ Ri(y)),

where the equality in the middle follows from the linearity of ¢;;(2), i.e.,
A @597 (2,2)) = (2,4 9i(2)(2)) = (2,035(2)(A - ) = 25(D7 (2,1 - ).
In a similar fashion, we may add two elements in the same fibre of 7 : if 3,9’ € 7=1(2), then
vty =07 (@ily) + Biy))
if z € U; and (2, z) + (2,2) := (2,2 + 2’). This is well-defined since ¢;;(z) is additive and thus
®5H(D(y) + Pily) = 05 (R;(27 (Di(y))) + (@7 (Ri(1)))) =
(@ (071 (ily) + 071 (@ily)))) = 27 (Rily) + i(y)).

This defines a smooth and partially defined addition map +: Y xx Y — Y that is associative,
commutative and distributive over the above R-action (these assertions can easily be checked in
local coordinates). In particular, the fibres of 7 are lcs isomorphic to X. Moreover, this leads to
a vector space structure on the sections I'"(Z) by point-wise operations, since for o, 7 € I'""(Z)
the map z — (0(z),7(2)) has values in Y xx Y.

b) If m: Y — Z is a Lie group bundle, then we obtain a partially defined multiplication map
m:Y xx Y — Y which is associative (wherever defined) and admits inverses. In particular,
the fibres of 7 are Lie groups isomorphic to X and the sections carry a group structure, defined
by point-wise operations.

c) If m: Y — Z is a principal G-bundle, i.e., the fibres are right G-spaces and the trivialisation
changes ®; o ®; ! are equivariant with respect to the right action (z,g) - h := (2,9 - h) of G on
U; X G, then we obtain a smooth right action of G on Y by setting

yg:=2(®i(y)  9)
if z := m(y) € U;. This is well-defined since if z € Uj;, then

N (®5(y) - g) = 7 (®;(27 1 (i(y)) - 9) = 5 H(@(®;(Ri(y) - ) = B;H(D;(y) - 9).
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Moreover, each fibre Y, := 7~!(2) is a G-torsor since G is so and

V.2y— ®(2) e {z} xG=GC

is an isomorphism of G-spaces by definition. Thus Y might be thought of as a “parametrised”
family of G-torsors. ]

Example D.8. If H C G is a closed Lie subgroup and 7: G — G/H is a submersion, then we obtain
a right H-action of H on G from the previous description. From (48) and (49) it follows that this is
given by

g-h=0i(n(g)) - oi(r(g) " g-h=g-h.

More generally, one can show that if 7: Y — Z is a locally trivial bundle with fibre some Lie group
G and if there exist trivialisations ®; that are morphisms of right G-spaces (for the action of G' on
U; x G by right multiplication in the second component), then 7: Y — Z is a principal G-bundle
and the induced action of G on Y coincides with the original one.

Note that this also tells one how to distinguish between Lie group bundles with fibre G and
principal G-bundles. Both are locally trivial bundles, but for principal bundles the trivialisations
have to preserve the right G-action, while for a Lie group bundle the trivialisations have to be
compatible with the Lie group structure on the fibres. u

Lemma D.9. Ifn: Y — Z is a locally trivial bundle, then w is a submersion and for each smooth
map f: M — Z the projection pry: M xXzY — M from of the pull-back M xzY = {(m,y) € M xY |
fim) =7(y)} is a locally trivial bundle. Moreover, if m: Y — Z is a vector bundle (respectively, a
Lie group bundle or a principal G-bundle), then so ispri: M xz Y — M.

Proof. Since pry: U;xX — Uj; is a submersion it is clear that 7: Y — Z isso. Let ®@;: 7T_1(U7;) — U; x
X be a local trivialisation of Y. Then a local trivialisation of M xz Y over pry ' (f~Y(U;)) =
f1U;) xz Y is given by

F(@): fTHU) %2 Y — fTHU) x X, (myy) = (m,pra(®i(y)))
with inverse
PN U x X = fTHU) x2 Y, (myz) = (m, @7 (f(m), 2)).
From this it follows that the trivialisation changes are given by
FHUy) x X 3 (myz) = (m, 05(f(m)) (@) € f7H(Uyy) x X,

where ¢;;(z) are the trivialisation changes of Y. If some additional structure on X in preserved
by each ¢;;(x), then it is also preserved by each ¢;;(f(m)) and thus M xz Y is a vector bundle
(respectively, a Lie group bundle or a principal G-bundle) if Y is so. [

Remark D.10. The bundle M Xz Y in the previous proposition if called pull-back bundle of
7:Y — Z along f: M — Z and is denoted by f*(Y). If ¢: Y — Y’ is a bundle morphism,
then

ffY) = 1Y), (m,y) = (m,e(y))
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is a bundle morphism, also called the pull-back f*(¢) of ¢ along f. Clearly, f*(¢) is a morphism of
vector bundles (respectively Lie group bundles or principal bundles) if ¢ is so. m

Sometimes it is important to talk about morphisms of bundles over different base spaces.

Definition D.11. If 7: Y — Z and ¢: M — N are a locally trivial bundles (respectively vector
bundles, Lie group bundles or principal bundles) and f: N — Z it smooth, then a morphism of
locally trivial bundles (respectively vector bundles, Lie group bundles or principal bundles) covering
f is a respective morphism ¢: M — f*(Y). Asamap to f*(Y) = N xzY it is completely determined
by its second component M — Y, since the first component has to agree with f. We will throughout
identify a bundle morphism ¢: M — f*(Y') with its second component pryop: M — Y. We denote
a bundle morphism also shortly by the diagram

M-y

o f £ .

N ——

Example D.12. If M, N are smooth manifolds (modelled on fixed lcs X and Y') and f: M — N is
smooth, then there is a bundle morphism T'f: TM — TN covering f, given by

(i, 0)] = [(Wi(f (07 (20))), d(W5 0 f 0 o1 (@) (0)))],

where 1 : V; = 1;(V}) is some chart with f(z;) € V. Note that this is smooth and does not depend
on the choices of the charts. The bundle morphism 7'f is sometimes also called the differential of
f. Its restriction to the tangent space 1;,M is a continuous linear map denoted T,,f. We clearly
have T'(f o g) = Tf o Tg, so that T can be understood as a functor Man — Man. Not that if
f:U@X — Y is smooth, then TU = U x X and Tf is given by (z,v) — (f(x),df(x)(v)). In this
case we thus have df = pr, oT'f.

If G is a Lie group, then G is modelled on some fixed lcs X. In fact, if p: U — ¢p(U) @ X is an
arbitrary chart, then (¢ o A;': g-U — @(U) @ X)geq is an equivalent atlas of G (where A, denotes
the left multiplication with g). If u: G x G — G denotes the group multiplication, then it follows
that

TG = T.G x G, vy (Tpg-1,4(0,v9),9)

is a bundle morphism covering idg with inverse
Teg X G = TG, (ve, g) = Thigg,e)(0,ve).
Thus the tangent bundle of a Lie group is always trivialisable. =

Note that in the last example we implicitly mad use of the following easy lemma.

Lemma D.13. If f: O @ X — Y is smooth, then so is d*: U x X*¥ =Y.

Proof. The proof is left as Exercise D.17. ]
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Exercises for Appendix D

Exercise D.14. Show that morphisms of principal G-bundles are in local trivialisations (51) always
given by (y,g9) — &(y) - g, where &: U;; — G is smooth. Deduce from this that morphisms of
principal bundles are automatically isomorphisms. [

Exercise D.15. Let 7: Y — Z be a bundle. Show that
UeZ)—»T"U):={yeC®U,Y)|noy=idy}
is a sheaf on Openy. This is also called the sheaf of sections of m:' Y — Z. [

Exercise D.16. Let 7: Y — Z be a principal G-bundle. Show that Y xz Y is isomorphic to the
trivial principal G-bundle over Y. Hint: (y,4') € Y xzY gives rise to a unique g € G withy’ = y-gm

Exercise D.17. Show that if f: O @ X — Y is smooth, then so is d*: U x X* =Y. ]
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