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Exercise 29

Let π : Y → Z be a principal G-bundle. Show that Y ×Z Y is isomorphic to the trivial
principal G-bundle over Y . Hint: (y, y′) ∈ Y ×Z Y gives rise to a unique g ∈ G with
y′ = y · g.
————————————————————
We first observe that y · g = y · h implies g = h. In fact, if Φ is a trivialisation around
π(y) and Φ(y) = (π(y), k), then y · g = y · h implies Φ(y) · g = (π(y), kg) = Φ(y) · h =
(π(y), kh) and thus g = h. If (y, y′) ∈ Y ×G Y , then there exists a g(y, y′) ∈ G such that
y′ = y · g(y, y′), which is unique by the previous argument. Thus (y, y′) 7→ (y, g(y, y′))
is a map, which has (y, g) 7→ (y, y · g) as inverse. That the first map is smooth and
G-equivariant can be seen in local trivialisations. Thus it is an isomorphism of principal
G-bundles.

Exercise 30

Let X be a lcs such that the topology of X is induced by a countable family of semi-norms
(pn)n∈N.

a) Show that if we set p′n :=
∑

i≤n pi, we obtain another family of semi-norms inducing
the same topology on X. We may thus w.l.o.g. assume that the family satisfies
pn ≤ pn+1.

b) Show that the following statements are equivalent conditions for a sequence (xk)
in X and p ∈ X:

i) (xk)
k→∞−−−→ p in the topology of X.

ii) (d(xk, p))
k→∞−−−→ 0, where d is the metric d(x, y) :=

∑
n∈N 2−n pn(x−y)

1+pn(x−y) .

iii) (pn(xk − p))
k→∞−−−→ 0 for each n.

Moreover, if the family satisfies pn ≤ pn+1, then show that any of these conditions
is implied by

iv) (pk(xk − p))
k→∞−−−→ 0.

————————————————————

a) It is clear that p′n is a point-separating family of semi-norms and since pn ≤ p′n
we have that the topology induced from the p′n is finer that the topology induced
from the pn. Conversely, we have BJ,ε1,...,ε|J|,x ⊆ B′

J,
ε1
M

,...,
ε|J|
M

,x
, where M = max J ,

and thus he topology induced from the pn is finer that the topology induced from
the p′n.



b) i) and iii) are equivalent be the definition of the topology induced by (pn).

If (d(xk, p))
k→∞−−−→ 0, then we have for each n that pn(xk−p)

1+pn(xk−p) ≤ 2nd(xk, p) → 0

and thus pn(xk − p)→ 0. Hence ii) implies iii).

If (pn(xk − p))
k→∞−−−→ 0 for each n and ε > 0 is given, then there exists M such

that 2 · 2−M < ε. If N ∈ N is such that pn(xk − p) < 2−M for all n < M and all
k > N , then d(xk, p) < 2−M + 2−M < ε. Since ε was arbitrary this shows that iii)
implies ii).

Since for each n we have pn ≤ pk if k > n we have that iv) implies iii).

Exercise 31

Show that for a Hausdorff space X and a metrisable space Y the topology of com-
pact convergence equals the compact open topology. Hint: This involves various typical
compactness arguments.
————————————————————
Let d be a metric on Y inducing the topology. Recall that C(X,Y )c.o. has as a subbasis
consisting of the sets

bK,Uc := {γ ∈ C(X,Y ) | γ(K) ⊆ U},

where K runs through the compacts of X and U through the opens of Y . To see that
each bK,Uc is also open in C(X,Y )c take f ∈ bK,Uc. For each x ∈ K we have f(x) ∈ U
and this there exists εx > 0 such that Bf(x)(εx) ⊆ U and x ∈ Vx ⊆◦ X such that
f(Vx) ⊆ Bf(x)(

εx
2 ). Since K is compact it is covered by Vx1 , ..., Vxn and we set ε :=

1
2 min{εx1 , ..., εxn}. Then Of (K, ε) ⊆ bK,Uc: each x ∈ K is contained in x ∈ Vxi for
some i and thus γ ∈ Of (K, ε) implies

d(γ(x), f(xi)) ≤ d(γ(x), f(x)) + d(f(x), f(xi)) <
ε

2
+
εxi

2
≤ εi

and thus γ(x) ∈ U . Hence Of (K, ε) ⊆ bK,Uc and bK,Uc is open in C(X,Y )c.
To see that each Of (K, ε) is also open in C(X,Y )c.o., choose for each x ∈ K some
x ∈ Vx ⊆◦ X such that f(Vx) ⊆ Bf(x)(

ε
4). This implies

f(Vx) ⊆ f(Vx) ⊆ Bf(x)(
ε

4
) ⊆ Bf(x)(

ε

2
).

Now K is covered by Vx1 , ..., Vxn and we set Ki := K ∩ Vxi and Ui = Bf(xi)(
ε
2). If

γ ∈ bK1, U1c ∩ ... ∩ bKn, Unc,

then each x ∈ K is in some Vxi and this implies

d(f(x), γ(x)) ≤ d(f(x), f(xi)) + d(f(xi), γ(x)) <
ε

2
+
ε

2
= ε.

Thus γ ∈ Of (K, ε). This implies that bK1, U1c ∩ ... ∩ bKn, Unc ⊆ Of (K, 2ε) and since
f ∈ bK1, U1c ∩ ... ∩ bKn, Unc we see that Of (K, 2ε) is open in C(X,Y )c.o..

Exercise 32

Show that a morphism of diffeological spaces is continuous for the d-topology.
————————————————————



If f : X → Y is a morphism in Diff , then for each plot ϕ : U → X we have that
f ◦ ϕ : U → X is a plot. Thus if O ⊆ Y is open, then ϕ−1(f−1(O)) = (f ◦ ϕ)−1(O) is
open, and thus f−1(O) is open in X.

Exercise 33

Show that if M,N are manifolds, M is compact, N is locally metrisable and O ⊆ N is
open, then C∞(M,O) is open in the d-topology on C∞(M,N).
————————————————————
Since the d-topology on C∞(M,N) is the final topology for all plots we have to show that
for each U ⊆◦ Rn and for each plot ϕ : U → C∞(M,N) the inverse image ϕ−1(C∞(M,O))
is open. Note that

x ∈ ϕ−1(C∞(M,O))⇔ ϕ(x)(y) ∈ O for all y ∈M.

thus if x ∈ ϕ−1(C∞(M,O)), then there exists for each y ∈ M open neighbourhoods
x ∈ Uy ⊆◦ U and y ∈ Vy ⊆◦ M such that ϕ(Uy)(Vy) ⊆ O. Since M is compact it is covered

by Vy1 , ..., Vyn and Ũ := Uy1 ∩ Uy1 ∩ Uyn is an open neighbourhood of x. If x̃ ∈ Ũ and
ỹ ∈ M , then ỹ ∈ Vyk for some k and since x̃ ∈ Uyk we thus have ϕ(x̃, ỹ) ∈ O. Since ỹ
was arbitrary this shows x̃ ∈ ϕ−1(C∞(M,O)) and thus the latter is open.


