Exercises for Higher Structures in Differential Geometry SS 2013

Sheet 07

Exercise 34

Show inductively that if $U \subseteq X$ and $V \subseteq Y$, then

$$d^{k}f(x)(v_{1},...,v_{k}) = \operatorname{pr}_{2^{k}}\left(T^{k}(x,w_{1},...,w_{2^{k}-1})\right)$$

with $w_{2i+1} = v_{i+1}$ for $0 \le i \le k - 1$ and $w_i = 0$ else.

Exercise 35

Show that if X, Y, Z are Hausdorff spaces and $f: X \times Y \to Z$ is continuous, then for each $x \in X$ we have $\widehat{f}(x) \in C(Y, Z)$ and $\widehat{f}: X \to C(Y, Z)_{c.o.}$ is continuous.

Exercise 36

Show that if X, Y are topological spaces and X is Hausdorff and locally compact (i.e., each point in X has a compact neighbourhood), then the evaluation map

$$ev: C(X, Y) \times X \to Y, \quad (\gamma, x) \mapsto \gamma(x)$$

is continuous.

Exercise 37

Show that if M, N are manifolds, M is compact, N is locally metrisable and $O \subseteq N$ is open, then $C^{\infty}(M, O)$ is open in the d-topology on $C^{\infty}(M, N)$.

Exercise 38

Show that for a Hausdorff space X and a metrisable space Y the topology of compact convergence equals the compact open topology. **Hint:** This involves various typical compactness arguments.