Übung zur Funktionalanalysis SoSe 2015

5. Übungsblatt – Lösungsskizze

Aufgabe

Aufgabe 19

Falls zwei Elemente $x, y \in X$ die Gleichung

$$\lambda(x) = \int_{a}^{b} \lambda(\gamma(t))dt = \lambda(y)$$

erfüllen, so ist $\lambda(x-y)=0$ für alle $\lambda\in X'$, also x=y nach Korollar II.1.11. Ausserdem gilt

$$(\lambda \circ \gamma)'(t) = \lim_{h \to 0} \frac{1}{h} (\lambda(\gamma(t+h)) - \gamma(t)) = \lambda \left(\lim_{h \to 0} \frac{1}{h} (\gamma(t+h) - \gamma(t)) \right) = \lambda(\gamma'(t))$$

für $\lambda \in X'$, da λ dann stetig und linear ist. Insbesondere zeigt das, dass $\lambda \circ \gamma$ stetig differenzierbar ist. Demnach ist nach dem gewöhnlichen Hauptsatz der Differential- und Integralrechnung

$$\lambda(\gamma(s) - \gamma(a)) = \lambda(\gamma(s)) - \lambda(\gamma(a)) = \int_a^s (\lambda \circ \gamma)'(t)dt = \int_a^s \lambda(\gamma'(t))dt$$

für $\lambda \in X'$ beliebig und somit gilt nach Definition der rechten Seite

$$\gamma(s) - \gamma(a) = \int_{a}^{s} \gamma'(t)dt.$$

Aufgabe 20

(a) f_1 ist offen: $f_1|_{]0,\pm\infty[}$ ist stetig invertierbar, also bildet f_1 offene Mengen, die 0 nicht enthalten auf offene Mengen ab. Ist $0 \in O \subseteq \mathbb{R}$, so ist auch $P := O \setminus \{0\}$ offen und somit ist $f_1(P)$ offen. Ausserdem gilt $U_{\epsilon} := \{x \in \mathbb{R} : |x| < \epsilon\} \subseteq O$ für ein $\epsilon > 0$ und somit $O = U_{\epsilon} \cup P$. Da

$$f_1(U_{\epsilon}) = \{ y \in \mathbb{R}_+ : |y| < \sqrt{\epsilon} \}$$

offen ist ist somit auch

$$f_1(O) = f_1(U_{\epsilon} \cup P) = f_1(U_{\epsilon}) \cup f_1(P)$$

offen. Mit einem ähnlichen Argument (man muss jetzt P durch O ohne eine offene Nullumgebung ersetzen) sieht man, dass f_1 auch abgeschlossen ist.

(b) $f_2(\mathbb{R}) = \{(x, x^2) : x \in \mathbb{R}\}$ ist nicht offen. Allerdings ist f_2 abgeschlossen, hier kann man direkt zeigen dass für $U \subseteq \mathbb{R}$ abgeschlossen und $(x, y) \notin f(U)$ es $\epsilon, r > 0$ gibt mit $(x + U_{\epsilon}) \times (y + U_r \cap f(U)) = \emptyset$.

- (c) Da in \mathbb{Z} jede Teilmenge offen und gleichzeitig auch abgeschlossen ist ist die Gauß-Klammer eine offene und auch abgeschlossene Abbildung.
- (d) $f_4(\mathbb{R})$ ist der Rand des Einheitskreises, also nicht offen. Um zu zeigen, dass f_4 auch nicht abgeschlossen ist, betrachten wir die abgeschlossene Menge

$$U:=\bigcup_{n\in\mathbb{N}}[n+\frac{1}{n},n+1-\frac{1}{n}]$$

(Bild malen!). Dann gilt $f_4(U) = \{z \in \mathbb{C} : |z| = 1, z \neq 1\}$, was nicht abgeschlossen ist.

Aufgabe 21

Nach Definition ist die Vervollständigung eines normierten Raums $(X, \|\cdot\|)$ der Abschluss des Bildes der kanonischen Isometrie $\iota_X: X \to X''$ von X in den Bidual X'' von X, d. h. $\overline{X} := \overline{\iota_X(X)} \subseteq X''$. Sei nun $1 \le p < \infty$. Wir wollen zeigen, dass die Vervollständigung des normierten Raums $(d, \|\cdot\|_p)$ isometrisch isomorph zu $(\ell^p, \|\cdot\|_p)$ ist. Hierzu bemerken wir zunächst, dass die Restriktionsabbildung $(\ell^p)' \to d'$ ein isometrisches Isomorphismus von Banachräumen ist, da d in ℓ^p dicht liegt. Es folgt dann unmittelbar, dass die induzierte Abbildung $\eta_p: d'' \to (\ell^p)''$ ein isometrischer Isomorphismus von Banachräumen ist. Außerdem gilt $\eta_p \circ \iota_d = \iota_{\ell^p} \circ j_p$, wobei $j_p: d \to \ell^p$ die kanonische Einbettung bezeichnet. Somit ist

$$\overline{d} = \overline{(\eta_p^{-1} \circ \iota_{\ell^p} \circ j_p)(d)} = (\eta_p^{-1} \circ \iota_{\ell^p})(\ell^p) \cong \ell^p.$$

Aufgabe 22

Man bemerkt zuerst, dass $\sum_{k=1}^{r_n} |c_k^{(n)}| = ||Q_n||$.

- (a) Man kann Korollar III.2.4 in der Richtung "(b) \Rightarrow (a)" verwerden, da nach dem Weierstraßschen Approximationssatz die Polynome dicht in $C([a,b],\mathbb{R})$ sind.
- (b) Die zweite Behauptung folgt direkt aus dem Satz von Banach-Steinhaus.

In dem Fall, wo man $t_i = t_{i+1}$ erlaubt, gilt nur $\sum_{k=1}^{r_n} |c_k^{(n)}| \le ||Q_n||$. Dann ist (1) noch wahr, aber (2) nicht. Man kann leicht ein Gegenbeispiel finden: Alle t_i sind gleich, $r_n = 2n$ und $c_k^{(n)} = (-1)^k$.

Aufgabe 23

Für $x \in X$ konvergiert $T^k(x)$ gegen 0 (warum?) und da $\sum_{k=0}^{\infty} ||T^k(x)||$ konvergiert, konvergiert auch $\sum_{k=0}^{\infty} T^k(x)$. Damit liefert die lineare Abbildung

$$S: X \to X, \quad x \mapsto \sum_{k=0}^{\infty} T^k(x)$$

ein Inverses zu $id_X - T$. In der Tat, für alle $x \in X$ gilt

$$(S \circ (\mathrm{id}_X - T))(x) = ((\mathrm{id}_X - T) \circ S)(x) = \sum_{k=0}^{\infty} T^k(x) - T(\sum_{k=0}^{\infty} T^k(x)) = \lim_{n \to \infty} \sum_{k=0}^{n} T^k(x) - \sum_{k=0}^{n} T^{k+1}(x)$$
$$= \lim_{n \to \infty} x - T^n(x) = x.$$

Somit ist $\mathrm{id}_X - T$ bijektiv und folglich ist $S = (\mathrm{id}_X - T)^{-1}$ nach dem Satz über die offene Abbildung stetig.

Aufgabe 24

Es sei $K:=\ker(T)$. Dann induziert T einen stetigen Isomorphismus $\overline{T}\colon X/K\to Y$. Daher existiert ein M>0 mit $\|\overline{T}^{-1}(y)\|< M\|y\|$ für alle $y\in Y$. Sei nun $y_0\in Y$ fest. Da die kanonische Projektion $X\to X/K$ surjektiv ist, existiert ein $z_0\in X$ mit $[x_0]=\overline{T}^{-1}(y_0)$. Folglich gilt $T(z_0)=y_0$. Da außerdem $\|[z_0]\|< M\|y_0\|$ gilt, existiert also auch ein $x_0\in X$ mit $\|x_0\|< M\|y_0\|$ und $T(x_0)=y_0$.