Übung zur Funktionalanalysis SoSe 2015

4. Übungsblatt – Lösungsskizze

Aufgabe

Aufgabe 13

Sei pr: $X \to X/U$, $x \mapsto [x]$ die natürliche Quotientenabbildung. Wir bemerken zunächst, dass

$$||[x]||_{O} := d(x, U)$$

für $x \in X$ eine Norm auf dem Quotienten X/U definiert. Somit ist das Paar $(X/U, \|\cdot\|_Q)$ ein normierter Raum. Nach Aufgabe H9 existiert also ein Element $f \in (X/U)'$ mit $f([x_0]) = \|[x_0]\|_Q = d$ und $\|f\|_{\text{op}} = 1$. Wir betrachten nun die Abbildung

$$\lambda := d^{-1} f \circ \operatorname{pr} : X \to \mathbb{K}.$$

Dann gilt $\lambda \in X'$, $\lambda(x_0) = 1$ und $\lambda(x) = 0$ für alle $x \in U$. Außerdem gilt

$$|\lambda(x)| = d^{-1}|f([x])| \le d^{-1}||[x]||_Q \le d^{-1}||x||.$$

Somit ist $\|\lambda\|_{\text{op}} \leq d^{-1}$. Andererseits ist $\|f\|_{\text{op}} = 1$. Also existiert eine Folge $(x_n)_{n \in \mathbb{N}}$ in X, so dass $\|[x_n]\|_Q < 1$ für alle $n \in \mathbb{N}$ und $f([x_n]) \to 1$ für $n \to \infty$. Wir wählen schliesslich noch eine Folge $(y_n)_{n \in \mathbb{N}} \subseteq U$, so dass $\|x_n + y_n\| < 1$ für alle $n \in \mathbb{N}$. Dann folgt

$$|\lambda(x_n + y_n)| = d^{-1}|f([x_n])| \to d^{-1}$$

und somit $\|\lambda\|_{\text{op}} = d^{-1}$ wie gewünscht.

Aufgabe 14 (a) Als Komposition \mathbb{R} -linearen Abbildungen (auch $x \mapsto ix$ ist \mathbb{R} -linear) ist $\tilde{\lambda}$ \mathbb{R} -linear, und $\operatorname{Re}(\tilde{\lambda}) = \lambda$ gilt nach Konstruktion. Es ist nur noch $\tilde{\lambda}(ix) = i\tilde{\lambda}(x)$ zu zeigen:

$$\tilde{\lambda}(ix) = \lambda(ix) - i\lambda(iix) = \lambda(ix) - i\lambda(-x) = i(\lambda(x) - i\lambda(ix)) = i\tilde{\lambda}.$$

(b) Natürlich ist $\lambda=\mathrm{Re}(\varphi)$ \mathbb{R} -linear. Wir bemerken dann, dass $\mathrm{Im}(z)=-\mathrm{Re}(iz)$ für alle $z\in\mathbb{C}$. Daher ist für $x\in X$

$$\begin{split} \varphi(x) &= \operatorname{Re}(\varphi(x)) + i \operatorname{Im}(\varphi(x)) \\ &= \operatorname{Re}(\varphi(x)) - i \operatorname{Re}(i\varphi(x)) \\ &= \operatorname{Re}(\varphi(x)) - i \operatorname{Re}(\varphi(ix)) \\ &= \lambda(x) - i \lambda(ix) = \tilde{\lambda}(x). \end{split}$$

(c) Die Implikation " \Rightarrow " gilt wegen $|\text{Re}(z)| \leq |z|$ für alle $z \in \mathbb{C}$. Für die andere Implikation sei $\lambda(x) = c|\lambda(x)|$ für ein $c = c_x$ mit |c| = 1. Dann gilt für alle $x \in X$

$$|\lambda(x)| = c^{-1}\lambda(x) = \lambda(c^{-1}x) = |\operatorname{Re}(\lambda(c^{-1}x))| \le p(c^{-1}x) = p(x).$$

(d) Die Behauptung ist eine unmittelbare Konsequenz von Teilaufgabe (c).

Aufgabe 15

Es gibt eine abzählbare Menge $\{x_i\}_{i\in\mathbb{N}}$, so dass $U\cup\{x_i\}_{i\in\mathbb{N}}$ in X dicht ist. Durch Weglassen überflüssiger Vektoren können wir $x_{n+1}\notin U\bigoplus \operatorname{span}\{x_0,\ldots,x_n\}$ für alle $n\in\mathbb{N}$ erreichen, so dass $V=U\bigoplus \operatorname{span}\{x_0,\ldots,x_n,\ldots\}$ noch dicht in X liegt. Wie in dem ersten Schritt des Beweises der reellen Version des Satzen von Hahn-Banach aus Vorlesung können wir die Linearform λ unter Erhaltung ihrer Norm stets um eine Dimension erweitern. Somit liefert eine vollständige Induktion eine Forsetzung $\tilde{\lambda}$ von λ auf V mit $\|\tilde{\lambda}\| = \|\lambda\|$. Nach Satz ??? existiert dann auch eine normgleiche Fortsetzung zu einem stetigen Funktional $\tilde{\lambda}\colon X\to\mathbb{R}$.

Aufgabe 16

Wir betrachten nur 1 . Der Fall <math>p = 1 lässt sich ähnlich beweisen. Zunächst folgt aus der Hölderschen Umgleichung, dass $\sum_{n=1}^{\infty} s_n t_n$ tatsächlich konvergiert und dass

$$|(Tx)(y)| \le ||x||_q ||y||_p$$

gilt für alle $x=(s_n)\in \ell^q$ und $y=(t_n)\in \ell^p$. Wegen der Linearität von Tx und T, folgt hieraus die Wohldefiniertheit von T sowie $||Tx|| \leq ||x||_q$. Außerdem ist T injektiv, denn aus Tx=0 folgt $s_n=(Tx)(e_n)=0$ für alle $n\in\mathbb{N}$ (wobei e_n wie üblich den n-ten Einheitsvektor bezeichnet) und deshalb ist x=0. Wir zeigen nun, dass T isometrisch und surjektiv ist. Sei hierzu $y'\in(\ell^p)'$ und setze $s_n=y'(e_n)$ für $n\in\mathbb{N}$ und $x=(s_n)$. Wir zeigen, dass

$$x \in \ell^q$$
, $Tx = y'$ und $||x||_q \le ||y'||$.

Zu diesem Zweck definieren wir

$$t_n := \begin{cases} |s_n|^q / s_n & \text{für } s_n \neq 0, \\ 0 & \text{für } s_n = 0. \end{cases}$$

Für alle $N \in \mathbb{N}$ gilt

$$\sum_{n=1}^{N} |t_n|^p = \sum_{n=1}^{N} |s_n|^{p(q-1)} = \sum_{n=1}^{N} |s_n|^q$$

sowie

$$\sum_{n=1}^{N} |s_n|^q = \sum_{n=1}^{N} s_n t_n = \sum_{n=1}^{N} t_n y'(e_n) = y' \Big(\sum_{n=1}^{N} t_n e_n \Big) \le ||y'|| \Big(\sum_{n=1}^{N} |t_n|^p \Big)^{\frac{1}{p}} = ||y'|| \Big(\sum_{n=1}^{N} |s_n|^q \Big)^{\frac{1}{p}}.$$

Es folgt

$$\left(\sum_{n=1}^{N}|s_n|^q\right)^{\frac{1}{q}} \le \|y'\|$$

für alle $n \in \mathbb{N}$, daher ist $x \in \ell^q$ und $||x||_q \le ||y'||$. Um schliesslich Tx = y' einzusehen, bemerken wir, dass nach Konstruktion $(Tx)(e_n) = y'(e_n)$ für alle $n \in \mathbb{N}$ gilt. Da Tx und y' linear sind, stimmen sie auch auf $\ln\{e_n : n \in \mathbb{N}\} = d$ überein, und da sie stetig sind, auch auf $\overline{d} = \ell^p$. Daher gilt Tx = y'.

Aufgabe 17

Der Beweis der Isometrie ist wie in Aufgabe 16. Um zu zeigen, dass T nicht surjektiv ist, betrachten wir zunächst das Funktional lim : $c \to \mathbb{K}$, $\lim y := \lim_n t_n$ und setzen es mit dem Satz von Hahn-Banach zu einem stetigen Funktional $\lambda : \ell^{\infty} \to \mathbb{K}$ fort. Hätte λ eine Darstellung $\lambda(y) = \sum_{n=1}^{\infty} s_n t_n$ mit $x = (s_n) \in \ell^1$, so wäre $(e_k = k$ -ter Einheitsvektor)

$$s_k = \lambda(e_k) = \lim e_k = 0 \quad \forall k \in \mathbb{N},$$

also $\lambda = 0$. Dies liefert einen Widerspruch.

Aufgabe 18

Sei $\lambda : \ell^p \to \mathbb{K}$ ein stetiges lineares Funktional. Dann ist leicht zu sehen, dass $\lambda^{-1}(B_R(0))$ für jedes R > 0 eine konvexe, offene und nicht leere 0-Umgebung von ℓ^p ist. Nach Aufgabe H3 gilt also $\lambda^{-1}(B_R(0)) = \ell^p$. Folglich ist $\lambda(\ell^p) \subseteq B_R(0)$ für alle R > 0 und somit $\lambda(x) = 0$ für alle $x \in \ell^p$, d. h. wir erhalten wie gewünscht $\lambda = 0$.