Übung zur Funktionalanalysis SoSe 2015

1. Übungsblatt – Lösungsskizze

Präsenzübungen

Aufgabe P1 Aus der Definition ist klar ersichtlich, daß d positiv definit und symmetrisch ist. Die Dreiecksungleichung folgt aus einer einfachen Fallunterscheidung (Für x=z is d(x,z)=0 und die Dreicksungleichung erfüllt. Für $x \neq z$ muß auch $x \neq y$ oder $y \neq z$ und damit die Dreiecksungleichung gelten.). Somit definiert d in der Tat eine Metrik. Für beliebiges $x \in M$ gilt für $\epsilon < 1$, daß $B_{\epsilon}(x) = \{x\}$, und für $\epsilon \geq 1$, daß $B_{\epsilon}(x) = M$.

Aufgabe P2 Die Abbildung d ist offensichtlich symmetrisch und positiv definit, da $\|\cdot\|$ eine Norm ist. Für den Fall, daß x,y und z nicht alle unterschiedlich sind, folgt die Dreiecksungleichung, da d positiv definit ist. Im anderen Fall bemerken wir zunächst, daß die Dreiecksungleichung (für die Norm $\|\cdot\|$) $\|x-y\| \le d(x,y)$ impliziert. Für den Fall, daß P,x und z auf einer Geraden liegen, d.h. $P \in L(x,z)$, wobei L(x,z) eine Gerade durch x und z bezeichnet, gilt also für jedes $y \in \mathbb{R}^n$ mit der Dreiecksungleichung für $\|\cdot\|$

$$d(x,z) = ||x - z|| \le ||x - y|| + ||y - z|| \le d(x,y) + d(y,z).$$

Für $P \notin L(x,z)$ unterscheiden wir folgende Fälle. Für $y \notin L(P,x)$ gilt im Fall $P \notin L(y,z)$ für jedes $y \in \mathbb{R}^n$, daß $d(x,z) = \|x-P\| + \|P-z\| \le \|x-P\| + \|P-y\| + \|y-P\| + \|P-z\| = d(x,y) + d(y,z)$ mit zweifacher Anwendung der Dreiecksungleichung; und im Fall $y \in L(P,z)$ für jedes $y \in \mathbb{R}^n$, daß $d(x,z) = \|x-P\| + \|P-z\| \le \|x-P\| + \|P-y\| + \|y-z\| = d(x,y) + d(y,z)$ mit einfacher Anwendung der Dreiecksungleichung. Der Fall $P \in L(x,z)$ folgt dann aus Symmetrie.

Aufgabe P3 (1) \Rightarrow (2): Angenommen $x \in X \setminus M$ ist ein Häufungspunkt von M. Da $X \setminus M$ offen ist, gibt es eine ϵ -Umgebung $U_{\epsilon}(x) \subset X \setminus M$, d.h. die keine Elemente von M enthält. Das ist ein Widerspruch.

 $(2)\Rightarrow(1)$: Angenommen $X\backslash M$ ist nicht offen. D.h. es gibt ein $x\in X\backslash M$, so daß für jedes $\epsilon>0$, die ϵ -Umgebung $U_{\epsilon}(x)$ nicht in $X\backslash M$ enthalten ist. Insbesondere enthält jede dieser Umgebung mindestens ein Element m aus M (insbesondere $m\neq x$) und damit ist x ein Häufungspunkt von M, der nicht in M enthalten ist.

Aufgabe P4 Sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge. Da ein metrischer Raum genau dann kompakt ist, wenn er folgenkompakt ist, können wir annehmen daß es eine konvergente Teilfolge $(x_{n_k})_{k\in\mathbb{N}}$ mit Grenzwert x gibt. Dann muß aber auch $x_n \longrightarrow x$ gelten: Sei $\epsilon > 0$ und N derart, daß $d(x_{n_k}, x) < \frac{\epsilon}{2}$ für alle $k \geq N$. Sei zusätzlich M derart, daß $d(x_n, x_m) < \frac{\epsilon}{2}$ für alle $n, m \geq M$. Dann gilt mit $k \geq \max\{N, M\}$ für alle $n \geq \max\{N, M\}$:

$$d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
.

Aufgabe P5 (1) Die Isometrie f is injektiv, denn aus f(x) = f(y) folgt $d_Y(f(x), f(y)) = 0$ also $d_X(x, y) = 0$ und damit wiederum x = y, wobei jeweils die positive Definitheit von d_X und d_Y benutzt wurde.

- (2) Ist f zusätzlich surjektiv und $U \subset X$ offen, so gibt es für jedes $y \in f(X)$ ein $x \in U$ mit y = f(x). Da U offen ist, gibt es eine ϵ -Umgebung $U_{\epsilon}(x)$, die in U enthalten ist, und wegen der Isometrieeigenschaft und Surjektivität muß gelten $f(U_{\epsilon}(x)) = U_{\epsilon}(f(x))$, d.h. f(U) ist offen.
- (3) In (1) haben wir gezeigt, daß eine Isometrie injektiv ist. Eine surjektive Isometrie ist also bijektiv und die Umkehrfunktion $f^{-1}: Y \to X$ ist definiert. Sei $U \subset Y$ offen, dann ist f(U) nach (2) offen, f^{-1} also insbesondere stetig (ebenfalls ist f stetig wegen $f^{-1}(U_{\epsilon}(f(x))) = f^{-1}(f(U_{\epsilon}(x))) = U_{\epsilon}(x)$ wie oben).

Hausübungen

Aufgabe H1 (1) Sei $(x_n)_{n\in\mathbb{N}}$ eine Cauchy-Folge in M. Wegen der Vollständigkeit von X existiert ein $x\in X$ mit $\lim_n x_n=x$. Da M nach Vorraussetzung abgeschlossen ist, folgt somit unmittelbar $x\in M$. Also ist M vollständig.

(2) Ist M nicht abgeschlossen, so gibt es einen Punkt $x \in X \setminus M$, so dass für jedes $n \in \mathbb{N}$ ein Element $x_n \in M \cap B_{\frac{1}{n}}(x)$ existiert. Es folgt somit $x = \lim_n x_n$ im Widerspruch zur Voraussetzung, dass M vollständig ist. Also muß M abgeschlossen sein.

Aufgabe H2 Für $n \in \mathbb{N}$ und $f \in C^{\infty}([0,1],\mathbb{K})$ sei $p_n(f) := ||f^{(n)}||_{\infty} = \sup_{t \in [0,1]} |f^{(n)}(t)|$. Wir zeigen zunächst, dass die Abbildung

$$d: C^{\infty}([0,1], \mathbb{K}) \times C^{\infty}([0,1], \mathbb{K}) \to \mathbb{R}, \quad d(f,g) := \sum_{n=0}^{\infty} 2^{-n} \frac{p_n(f-g)}{1 + p_n(f-g)}$$

eine Metrik ist. Da d offenbar positiv, symmetrisch und translationsinvariant ist, genügt es zu zeigen, dass für jedes $n \in \mathbb{N}$ und alle $f, g \in C^{\infty}([0,1], \mathbb{K})$

$$\frac{p_n(f-g)}{1+p_n(f-g)} \le \frac{p_n(f)}{1+p_n(f)} + \frac{p_n(g)}{1+p_n(g)} \tag{1}$$

gilt. Die Dreiecksungleichung für beliebige Elemente $x, y, z \in C^{\infty}([0, 1], \mathbb{K})$ folgt dann aus (1) für f := x - y und g := y - z. Um zu sehen, dass (1) für jedes $n \in \mathbb{N}$ und alle $f, g \in C^{\infty}([0, 1], \mathbb{K})$ gilt, betrachte drei nichtnegative Zahlen a, b, c mit $c \leq a + b$. Dann gilt

$$\frac{1}{a+b} \le \frac{1}{c}$$

und es folgt, dass

$$\left(1 + \frac{1}{c}\right)^{-1} \le \frac{a}{1+a+b} + \frac{b}{1+a+b}$$

Wegen

$$\frac{a}{1+a+b} + \frac{b}{1+a+b} \le \frac{a}{1+a} + \frac{b}{1+b}$$

ist die Behauptung schliesslich eine Konsequenz der Relation

$$\frac{c}{1+c} \le \frac{a}{1+a} + \frac{b}{1+b}.$$

Wir zeigen nun, dass der Raum $(C^{\infty}([0,1],\mathbb{K}),d)$ ein Fréchet-Raum ist. Sei hierzu $(f_m)_{m\in\mathbb{N}}$ eine Cauchy-Folge in $C^{\infty}([0,1],\mathbb{K})$. Dann folgt aus der Definition der Metrik, dass für jedes $n\in\mathbb{N}_0$ die Folge $(f_m^{(n)})_{m\in\mathbb{N}}$ der n-ten Ableitungen gleichmäßig gegen eine stetige Funktion $f^n:[0,1]\to\mathbb{K}$ konvergiert. Weiterhin folgt aus dem Hauptsatz der Differential- und Integralrechnung, dass

$$f^{n}(t) - f^{n}(t_{0}) = \int_{t_{0}}^{t} f^{n+1}(s) ds$$

für alle $t, t_0 \in [0, 1]$ mit $t_0 < t$ gilt (der Fall $t < t_0$ funktioniert analog). Die Funktion f^n , $n \in \mathbb{N}_0$, ist also stetig differenzierbar mit $(f^n)^{(1)} = f^{n+1}$. Insbesondere folgt hieraus mittels Induktion, dass die Funktion $f := f^0$ unendlich oft differenzierbar ist mit $f^{(n)} = f^n$ für alle $n \in \mathbb{N}$. Somit gilt nach Konstruktion, dass $d(f, f_m) \to 0$ für $m \to \infty$, d.h. der Raum $(C^{\infty}([0, 1], \mathbb{K}), d)$ ist vollständig. Es bleibt noch zu zeigen, dass jede Nullumgebung eine konvexe Nullumgebung enthält. Hierfür bemerken wir zunächst einmal, dass die Bälle

$$B_{r,n}(0) := \{ f \in C^{\infty}([0,1], \mathbb{K}) \mid p_n(f) < r \}, \quad r \in \mathbb{R}_+, n \in \mathbb{N},$$

offenbar konvex sind. Im folgenden zeigen wir, dass diese Bälle auch offen sind und eine Umgebungsbasis bilden. Sei hierzu r>0 und $k\in\mathbb{N}$, so dass $\sum_{n\geq k+1}2^{-n}<\frac{r}{2}$. Sei außerdem $q_k:=\max\{p_j\,|\,1\leq j\leq k\}$. Weil die Funktion $s\mapsto\frac{s}{1+s}$ für $s\to 0$ gegen Null konvergiert, können wir ein t>0 wählen mit $\frac{tr}{1+tr}<\frac{r}{2}$. Weil die Funktion $s\mapsto\frac{s}{1+s}$ aber auch monoton steigend ist, folgt dann aus $q_k(f)< rt$, dass

$$\sum_{i=1}^{k} 2^{-j} \frac{p_j(f)}{1 + p_j(f)} < \sum_{i=1}^{k} 2^{-j} \frac{rt}{1 + rt} < \frac{r}{2}.$$

Somit gilt

$$B_{rt,k}(0) \subseteq B_{r,d} := \{ f \in C^{\infty}([0,1], \mathbb{K}) \mid d(f,0) < r \}.$$

Sei andererseits 0 < r < 1 und $n \in \mathbb{N}$. Falls $d(f, 0) < t < \frac{r}{2^n}$, dann folgt

$$2^{-n} \frac{p_n(f)}{1 + p_n(f)} < t,$$

was wiederum $p_n(f) < r$ impliziert, . Also enthält $B_{n,r}(0)$ den Ball $B_{t,d}(0)$. Zusammenfassend haben wir somit gezeigt, dass $(C^{\infty}([0,1],\mathbb{K}),d)$ ein Fréchet-Raum ist.

Aufgabe H3 Angenommen $V \subset B_r(0)$ ist offen und konvex. Es gibt also ein $0 < \epsilon < r$ mit $B_{\epsilon}(0) \subset V$. Sei $0 < \delta < \epsilon$ und x^i die Folge definiert durch $x^i_j = 0$ für $j \neq i$ und $x^i_i = \delta^{\frac{1}{p}}$. Offensichtlich gilt $x^i \in B_{\epsilon}(0)$, insbesondere also $x^i \in V$. Für beliebiges $N \in \mathbb{N}$ und

$$\lambda_i := \frac{1}{\sum_{n=1}^{N} \frac{1}{n^{\frac{1}{p}}}} \frac{1}{i^{\frac{1}{p}}}$$

gilt außerdem $\sum_{i=1}^N \lambda_i = 1$. Wegen der Konvexität von V muß also $y := \sum_{i=1}^N \lambda_i x^i$ in V enthalten sein. Gleichzeitig gilt

$$\Delta_p(y) = \sum_{n=1}^{\infty} |\sum_{i=1}^{N} \lambda_i x_n^i|^p = \sum_{n=1}^{N} |\lambda_n \delta^{\frac{1}{p}}|^p = \delta \frac{\sum_{n=1}^{N} \frac{1}{n}}{\left(\sum_{n=1}^{N} \frac{1}{n^{\frac{1}{p}}}\right)^p}.$$

Da die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert, die harmonische Reihe $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{1}{p}}}$ wegen $\frac{1}{p} > 1$ jedoch konvergiert wird $\Delta_p(y)$ beliebig groß für genügend großes N. Insbesondere finden wir ein N mit $y \notin V$. Das Gegenbeispiel geht auf Tychonoff zurück.