Übung zur Funktionalanalysis SoSe 2015

9. Übungsblatt

Aufgabe

Aufgabe 36

Beweisen Sie:

Lemma (Lax-Milgram): Sei H ein Hilbertraum und $a: H \times H \to \mathbb{K}$ eine Abbildung mit den folgenden Eigenschaften

- a) a ist eine Sesquilinearform, also $a(\cdot,y)\colon H\to\mathbb{K}$ ist linear für alle $y\in H$ und $a(x,y)=\overline{a(y,x)}$ für alle $x,y\in H$.
- b) a ist stetig, es existiert also ein $0 \le C < \infty$ mit $|a(x,y)| \le C||x|| ||y||$ für all $x,y \in H$.
- c) a ist koerziv, es existiert also ein $0 < \gamma \le C$ (wobei C das gleiche wie in b) ist), so dass $\operatorname{Re}(a(x,x)) \ge \gamma \|x\|^2$ für alle $x \in H$.

Dann existiert ein eindeutiges $A \in L(H, H)$, so dass $a(x, y) = \langle x, Ay \rangle$ für alle $x, y \in H$ gilt. Ferner ist A bijektiv und es gilt

$$||A|| \le C$$
 und $||A^{-1}|| \le \frac{1}{\gamma}$.

Hinweis: Wenden Sie den Satz von Fréchet-Ries auf das lineare Funktional $a(\cdot, y)$ an um Ay zu konstruieren.

Bemerkung: Dieses Lemma spielt für den Beweis der Existenz von Lösungen von partiellen Differentialgleichungen eine wichtige Rolle. Wir werden später noch darauf zurückkommen.

Aufgabe 37

Sei X ein Banachraum und $T \in K(X)$. Zeigen Sie die folgenden Aussagen.

- a) Der Kern von Id T ist endlich-dimensional.
- b) Wenn $\operatorname{Id} T$ bijektiv ist, ist $(\operatorname{Id} T)^{-1}$ stetig.
- c) Falls X unendlichdimensional ist, gilt $d(\mathrm{Id}, K(X)) = 1$.

Zeigen Sie außerdem, dass man die Aussage (2) auch beweisen kann *ohne* den Satz über die offene Abbildung (bzw. eine seiner Folgerungen) zu verwenden.

Bitte wenden!

Aufgabe 38

Seien X,Y Banachräume und $T\in L(X,Y)$. Zeigen Sie, dass die beiden folgenden Aussagen äquivalent sind:

- a) T ist kompakt.
- b) Für jede beschränkte Folge $(x_n)_{n\in\mathbb{N}}$ in X hat $(Tx_n)_{n\in\mathbb{N}}$ eine konvergente Teilfolge.

Aufgabe 39

a) Sei $C^1[0,1]$ mit seiner üblichen Norm $||f||_1 = ||f||_{\infty} + ||f'||_{\infty}$. Zeigen Sie, dass die Inklusion $(C^1[0,1], ||\cdot||_1)$ in $(C[0,1], ||\cdot||_{\infty})$ kompakt ist.

Hinweis: Arzela-Ascoli.

b) Sei $M \subset C[a, b]$ relativkompakt. Zeigen Sie, dass M gleichgradig stetig ist.

Aufgabe 40

Sei $k \in C([0,1]^2)$. Der Integraloperator $T_k \colon C[0,1] \to C[0,1]$ definiert durch

$$(T_k x)(s) = \int_0^s k(s, t) x(t) dt$$

heisst Volterrascher Integraloperator. Zeigen Sie, dass T_k wohldefiniert und kompakt ist.