Exercises for Algebra II, WS 12/13

Sheet 8 – Solutions

Exercise 35

- a) This is clear, the category of additive categories with only one object is isomorphic to the category of rings.
- b) One can define the additive structure point-wise.
- c) Each functor assigns to the single object one abelian group M and to each morphism of \mathcal{C} (each element $r \in R$) an additive map $M \to M$, which we may identify with the scalar multiplication by r. This describes actually an isomorphism of categories.

Exercise 36

Let $f_{\bullet} \colon A_{\bullet} \to B_{\bullet}$ a morphism of chain complexes. If $g_{\bullet} \colon C_{\bullet} \to A_{\bullet}$ is another morphism such that $f_{\bullet} \circ g_{\bullet} = 0$, then $g_{\bullet}(C_{\bullet}) \subseteq \ker(f_{\bullet})$. Thus there exists a unique morphism $g_{\bullet} \colon C_{\bullet} \to \ker(f_{\bullet})$ making the respective diagram commute (simply restrict the target to $\ker(f_{\bullet})$). Thus $\ker(f_{\bullet})$ is a kernel of f_{\bullet} . The same argument also works for $\operatorname{coker}(f_{\bullet})$.

Exercise 37

- a) $\mathbf{A}\mathbf{b}^{\text{fin}}$ is a subcategory of $\mathbf{A}\mathbf{b}$. Since the usual kernels and cokernels of morphisms between finite abelian groups are again finite, the corresponding requirements for $\mathbf{A}\mathbf{b} = \mathbb{Z}\text{-}\mathbf{Mod}$ show that $\mathbf{A}\mathbf{b}^{\text{fin}}$ is abelian.
- b) The same argument as the one in Ex. 36 shows that in **Ch(R-Mod)** the additive additive structure, kernels and cokernels are simply defined degree-wise. Thus the compatibility of kernels and cokernels for mono- and epimorphisms may also be checked degree-wise. This shows that **Ch(R-Mod)** is also abelian.

Exercise 38

The proof is spelled out in the lecture notes of Chr. Schweigert (Lemma 1.5.8).