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Exercise 35

a) This is clear, the category of additive categories with only one object is isomorphic
to the category of rings.

b) One can define the additive structure point-wise.

c) Each functor assigns to the single object one abelian group M and to each mor-
phism of C (each element r ∈ R) an additive map M →M , which we may identify
with the scalar multiplication by r. This describes actually an isomorphism of
categories.

Exercise 36

Let f• : A• → B• a morphism of chain complexes. If g• : C• → A• is another morphism
such that f• ◦ g• = 0, then g•(C•) ⊆ ker(f•). Thus there exists a unique morphism
g• : C• → ker(f•) making the respective diagram commute (simply restrict the target to
ker(f•)). Thus ker(f•) is a kernel of f•. The same argument also works for coker(f•).

Exercise 37

a) Abfin is a subcategory of Ab. Since the usual kernels and cokernels of morphisms
between finite abelian groups are again finite, the corresponding requirements for
Ab = Z-Mod show that Abfin is abelian.

b) The same argument as the one in Ex. 36 shows that in Ch(R-Mod) the additive
additive structure, kernels and cokernels are simply defined degree-wise. Thus the
compatibility of kernels and cokernels for mono- and epimorphisms may also be
checked degree-wise. This shows that Ch(R-Mod) is also abelian.

Exercise 38

The proof is spelled out in the lecture notes of Chr. Schweigert (Lemma 1.5.8).


