Sheet 3 – Solutions

Exercise 10

- a) The ring structure is given by (r, s) + (r', s') := (r + r', s + s') and $(r, s) \cdot (r', s') := (rr', ss')$. It is clear that π_i are homomorphisms of rings and thus $\pi_i \circ f$ is one. Thus $(\pi_i \circ f)_{i=1,2}$ is really an element of $\operatorname{Hom}(S, R_1) \times \operatorname{Hom}(S, R_2)$. An inverse map to $f \mapsto (\pi_i \circ f)$ is given by $(f_i)_{i=1,2} \mapsto (s \mapsto (f_1(s), f_2(s)))$.
- b) ι_i is not a homomorphism of rings, since it does not map 1_{R_i} to $(1_{R_1}, 1_{R_2}) = 1_{R_1 \times R_2}$.
- c) The map $(r \otimes s), (r' \otimes s') \mapsto rr' \otimes ss'$ is well-defined on $R_1 \otimes_{\mathbb{Z}} R_2$ (why?) and turns $R_1 \otimes_{\mathbb{Z}} R_2$ into a ring (the identities like associativity and distributivity directly follow from the ones in R_1 and R_2 once the well-definedness is checked). Since $1 \otimes 1$ is the unit in $R_1 \otimes R_2$ we have that ι_1 and ι_2 are morphisms of rings. Thus $f \circ \iota_i$ is a ring homomorphism.

An inverse to $f \mapsto (f \circ \iota_i)_{i=1,2}$ is constructed as follows. For $f_i \colon R_i \to S$ consider $f_1 \cdot f_2 \colon R_1 \times R_2 \to S$. This is bi-additive and thus induces an additive map $\varphi \colon R_1 \otimes_Z R_2 \to S$. Since

$$\varphi((r \otimes s) \cdot (r' \otimes s')) = \varphi(rr' \otimes ss') = f(rr')f(ss') = f(r)f(s)f(r')f(s') = \varphi(r \otimes s) = \varphi(r' \otimes s')$$

by definition we have that φ is a morphism of rings. It satisfies $\varphi(r \otimes 1) = f_1(r)$ and $\varphi(1 \otimes s) = f_2(s)$ and thus $(f_1, f_2) \mapsto \varphi$ is an inverse to $f \mapsto (f \circ \iota_i)_{i=1,2}$.

Exercise 11

If *m* has finite order, then $\langle m \rangle \cong \mathbb{Z}_n$ for some *n* and $\mathbb{Z}_n \otimes \mathbb{Q} = 0$ since \mathbb{Z}_n has only torsion elements. Conversely, of *m* has infinite order then $\langle m \rangle \cong \mathbb{Z}$ and $\mathbb{Z} \otimes \mathbb{Q} = \mathbb{Q}$. Since $\prod_{n \ge 1} \mathbb{Z}_n$ has the element (1, 1, ...) which is of infinite order (why?) we have that $(\prod_{n \ge 1} \mathbb{Z}_n) \otimes \mathbb{Q}$ does not vanish. On the other hand, $\prod_{n \ge 1} (\mathbb{Z}_n \otimes \mathbb{Q}) = \prod_{n \ge 1} 0 = 0$.

Exercise 12

- a) No: G is always bijective to the set with four elements.
- b) Yes: $\mathbb{Z}_2 \to \mathbb{Z}_2 \oplus \mathbb{Z}_2 \to \mathbb{Z}_2$ is short exact and $\mathbb{Z}_2 \xrightarrow{\cdot 2} \mathbb{Z}_4 \to \mathbb{Z}_2$ is also.
- c) Yes: $\mathbb{Z} \to \mathbb{Z} \oplus \mathbb{Z}_2 \to \mathbb{Z}_2$ is short exact and $\mathbb{Z} \xrightarrow{\cdot 2} \mathbb{Z} \to \mathbb{Z}_2$ is also.
- d) No: \mathbb{Z} is free and from Proposition I.3.6 if follows that if $\mathbb{Z}_2 \to G \to \mathbb{Z}$ is short exact, then $G \cong \mathbb{Z}_2 \oplus \mathbb{Z}$.

Exercise 13

We show that φ_3 is injective: consider

$$\begin{array}{c} A_1 \xrightarrow{\alpha_1} A_2 \xrightarrow{\alpha_2} A_3 \xrightarrow{\alpha_3} A_4 \longrightarrow A_5 \\ \downarrow \varphi_1 \qquad \downarrow \varphi_2 \qquad \downarrow \varphi_3 \qquad \downarrow \varphi_4 \qquad \downarrow \varphi_5 \\ B_1 \xrightarrow{\beta_1} B_2 \xrightarrow{\beta_2} B_3 \xrightarrow{\beta_3} B_4 \longrightarrow B_5 \end{array}$$

If $\varphi_3(a) = 0$, then $b := \beta_3(\varphi_3(a)) = 0$ and thus $\varphi_4^{-1}(b) = \alpha_3(a) = 0$. Thus $a = \alpha_2(c)$ for some $c \in A_2$ (why?). Then $\beta_2(\varphi_2(c)) = \varphi_3(\alpha_2(c)) = \varphi_3(a) = 0$ and thus $\varphi_2(c) = \beta_1(e)$ for some $e \in B_1$ (again why?). Then $f := \varphi_1^{-1}(e)$ satisfies $\alpha_1(f) = c$ and thus $a = \alpha_2(c) = \alpha_2(\alpha_1(f)) = 0$.

The surjectivity is shown similarly.

Exercise 14

a) If each M_i is projective, then there exist modules N_i such that $M_i \oplus N_i \cong \mathbb{R}^{n_i}$ and thus

$$\bigoplus_{i} R^{n_i} \cong \bigoplus_{i} M \oplus \bigoplus_{i} N_i$$

Since the left hand side is free it follows that $\bigoplus_i M_i$ is projective (Prop. I.4.7 b)).

Now let $\bigoplus_i M_i$ be projective. Each morphism $f: M_i \to M$ factors through the inclusion $M_i \to \bigoplus_i M_i$:

and since $\bigoplus_i M_i$ is projective there exists the dotted lift α . But $\alpha \circ \iota_i$ lifts $f \circ \iota_i$, and thus M_i is projective by Prop. I.4.7 a).

b) This is shown similarly.

Exercise 15

Assume $P' \oplus P \cong M$ is free. Then

$$F := \bigoplus_{n \in \mathbb{N}} (P' \oplus P) \cong \bigoplus_{n \in \mathbb{N}} M$$

is free. On the other hand, if we apply the isomorphism to

$$P \oplus F = P \bigoplus_{n \in \mathbb{N}} (P' \oplus P) = P \oplus P' \oplus P \oplus P' \oplus \cdots$$

that switches the (2n + 1)- and (2n + 2)-summands, then we see that

$$P \bigoplus_{n \in \mathbb{N}} (P' \oplus P) \cong \bigoplus_{n \in \mathbb{N}} (P' \oplus P) \cong \bigoplus_{n \in \mathbb{N}} M$$

is free. Thus F is free and $P \oplus F$ is also free.

Exercise 16

This is spelled out in Prop. VII.10.12 the book of Jantzen and Schwermer, cf. http://www.springerlink.com/content/978-3-540-21380-2