Sheet 1 – Solutions

Exercise 1

No, for each invertible matrix A we have an isomorphism $S \to S^{\text{op}}, X \mapsto A^{-1} \cdot X \cdot A$.

Exercise 2

- a) Each polynomial x^n over \mathbb{F}_2 has the identity as associated function.
- b) If (A, X) and (B, Y) are two polynomial rings over R, then there exist unique algebra morphisms $\varphi \colon A \to B$ and $\psi \colon B \to A$ with $\varphi(X) = Y$ and $\psi(Y) = X$. Thus the composition $\varphi \circ \psi$ is the unique algebra morphism mapping Y to Y, and so equals the identity on Y. The same argument also shows that $\psi \circ \varphi$ is the identity on X.
- c) By definition we have that $x^n = (0, ..., 1, ...)$, where the 1 is in the *n*-th entry. Thus by definition we have the unique decomposition

$$(r_0, r_1, ...) = r_0 \cdot (1, 0, ...) + r_1(0, 1, ...) + ... = r_0 x^0 + r_1 x^1 + ...$$

- d) $-\mathbb{C}[x]/(x^2)$ is not free, for we have the equality $x^2 = 0$ (thus uniqueness will fail).
 - $-\mathbb{C}[x, y]$ is not a polynomial algebra over \mathbb{C} (although it is one over $\mathbb{C}[x]$), since no polynomial f in x and y will allow to write both monomials x and y as a linear combination of powers of f.
 - $-\mathbb{C}[x,y]/(x)\cong\mathbb{C}[y]$ is a polynomial algebra
 - $\mathbb{C}[X, y]/(x-y)$ is a polynomial algebra: an inductive argument shows that each f(X, Y) may we written modulo sums of powers of (x y) as a polynomial in only one variable. Thus $\mathbb{C}[x, y]/(x y)$ is isomorphic to $I/I \cap (x y)$, where $I = \{f(x, y) \mid f = \sum c_i x^i\}$. Since $I \cap (x y) = \{0\}$, we have that $\mathbb{C}[x, y]/(x y) \cong I \cong \mathbb{C}[x]$.

Exercise 3

- a) We trivially have that $\rho^{\varphi} = \rho \circ \varphi$ is a morphism of groups.
- b) The linear map $\rho(x): V \to V$ is a morphism of representations since we have

$$\rho(x)(\rho(g)(v)) = \rho(x \cdot g)(v) = \rho(x) \circ \rho(x^{-1} \cdot g \cdot x)(v) = \rho(x)(\rho^{\varphi}(g)(v))$$

c) No, take for instance $G = \mathbb{Z}_4$, acting on \mathbb{C} (considered as a *complex* vector space) by identifying \mathbb{Z}_4 with $\{1, i, -1, -i\} \subseteq \mathbb{C}^{\times}$. If we take the automorphism φ that exchanges i and -i, then any isomorphism ψ would have to satisfy $\psi(i \cdot v) = -i \cdot \psi(v)$ for all $v \in \mathbb{C}$, and thus cannot be \mathbb{C} -linear.

Exercise 4

- a) If $x, y \in Z(R[G])$, then we also have (xy)z = x(yz) = x(zy) = z(yx) = z(xy) and (x + y)z = xz + yz = zx + zy = z(x + y) for all $z \in R[G]$. This argument works of course for an arbitrary *R*-algebra. In general, Z(R[G]) is not an ideal, since it is not all of R[G] (see below) but always contains the identity δ_e .
- b) Restriction yields a Z(R[G])-module structure for each R[G]-module. Since Z(R[G]) is commutative, this is the same thing as a bimodule structure.
- c) The equality $R(Z[G]) \subseteq Z(R[G])$ follows directly from the definition. In general, equality does not hold as one sees as follows: $X \in Z(R[G])$ is equivalent to $\delta_g \star X = X \star \delta_g$ for all $g \in G$ (why?). If we write $X = \sum X_h \cdot \delta_h$, then the previous equation is equivalent to $X_{g \cdot h} = X_{h \cdot g}$, i.e. $X_h = X_{g \cdot h \cdot g^{-1}}$ for all $g \in G$. Thus X has to be constant on conjugate elements. E.g. for $G = S_3$ the functions that are constant on

 $\{(12), (23), (13)\}$ or $\{(123), (132)\}$

are in Z(R[G]), although $Z(S_3) = \{e\}$.