Exercises for Algebra II, WS 12/13

Sheet 2

Exercise 5

Prove or disprove the following assertions:

- a) Any ring is faithful as a module over itself.
- b) Any commutative ring is torsion free as a module over itself if and only if it is an integral domain.
- c) Any free module over an integral domain is faithful as a module over itself.
- d) Any free module is torsion free as a module over itself.

Exercise 6

If $(M_i)_{i \in I}$ is a family of *R*-modules, show that $((\prod_{i \in I} M_i), \pi_i)$ with $\pi_i((m_i)_{i \in I}) = m_i$ is a direct product (here $\prod_{i \in I} M_i$ denotes the product of the M_i as sets).

Show also that that $(\bigoplus_{i \in I} M_i, \iota_i)$ with $\iota_i(m) = m \cdot \delta_i$ (where δ_i is the usual δ -function at i) is a direct sum. Here $\bigoplus_{i \in I} M_i$ denotes

$$\{(m_i)_{i\in I}\in\prod_{i\in I}M_i\mid m_i\neq 0 \text{ for only finitely many } i\}.$$

Exercise 7

Let A be a commutative ring and I be an ideal of A.

- a) Show that for each A-module M the map $A/I \otimes_A M \to M/IM$, $(a + I) \otimes x \mapsto ax + IM$ is an isomorphism of A-modules.
- b) Each A/I-module is also an A-module. Show that for A/I-modules M, N we have $M \otimes_{A/I} N \cong M \otimes_A N$.
- c) Compute $\mathbb{Z}_m \otimes_{\mathbb{Z}} \mathbb{Z}_n$ and $\mathbb{Z}_m \otimes_{\mathbb{Z}_m} \mathbb{Z}_n$ (the latter if *m* is a multiple of *n*).

Exercise 8

Show that $\mathbb{Q}/\mathbb{Z} \otimes_{\mathbb{Z}} \mathbb{Q} = 0$ and $\mathbb{Q}/\mathbb{Z} \otimes \mathbb{Z}_n = 0$ for each $n \in \mathbb{N}^+$.

Exercise 9

Prove or disprove the following assertions:

- a) In \mathbb{Z} , the sum of 15 \mathbb{Z} and 6 \mathbb{Z} is direct.
- b) In \mathbb{Z} , the sum of $p\mathbb{Z}$ and $q\mathbb{Z}$ is direct if gcd(p,q) = 1.
- c) \mathbb{Z} cannot be the direct sum of any two submodules.
- d) k[x] cannot be the direct sum of any two submodules.
- e) A commutative ring A is a field if and only if each module over A is free.