Übung zu Algebraische und Geometrische Strukturen in der Mathematik, SoSe 2014

7. Übungsblatt – Lösungsskizze

Aufgabe P20

Wir behaupten, dass die Ordnung von (g_1, g_2) gleich kg $V(n_1, n_2)$ ist. Sei n die Ordnung von (g_1, g_2) . Da G_i isomorph zu einer Untergruppe von $G_1 \times G_2$ gilt $n_i \mid n$ für i = 1, 2, also auch kg $V(n_1, n_2) \mid n$. Sei $l = \text{kgV}(n_1, n_2)$, und schreibe $l = n_1 \cdot n'_1 = n_2 \cdot n'_2$. Dann gilt

$$(g_1, g_2)^l = (g_1^l, g_2^l) = (e_1^{n_1'}, e_2^{n_2'}) = (e_1, e_2),$$
 (1)

also $n \leq l$.

Aufgabe P21

Da Untergruppen kommutativer Gruppen immer normal sind benötigen wir einen nicht-kommutative Gruppe. Die kleinste solche ist $S_3 := \text{Sym}(\{1,2,3\})$. Die von der Transposition (12) (vertauscht gerade 1 und 2) erzeugt Untergruppe ist $H := \{\text{id}, (12)\}$, da $(12)^2 = \text{id}$. Damit gilt $(13)H = \{(13), (123)\}$. Gemäß der Vorschrift müßte also ((13)H, (13)H) auf $(13)^2H = H$ abgebildet werde, aber ((123)H, (123)H) auf $(123)^2H = (132)H \neq H$.

Aufgabe P22

- 1. Es ist zu zeigen: für $z, w \in xA \cap yB$ gilt $z^{-1}w \in A$. Da $z \in xA$ gilt z = xa mit $a \in A$ und ebenso w = xa', also gilt $z^{-1}w = a^{-1}a' \in A$. Ebenso sieht man $z^{-1}w \in B$.
- 2. Da $x \cdot (A \cap B) \subseteq xA$ und $x \cdot (A \cap B) \subseteq xB$ kann es höchstens $|G/A| \cdot |G/B|$ viele $(A \cap B)$ -Nebenklassen geben. Etwas genauer ist die Abbildung

$$G/(A \cap B) \to G/A \times G/B, \quad x(A \cap B) \mapsto (xA, yB)$$
 (2)

wohldefiniert (warum?) und injektiv.

Aufgabe H17

Wir zeigen

 φ ist bijektiv $\Rightarrow \varphi$ ist surjektiv $\Rightarrow (M, \circ)$ ist eine Gruppe $\Rightarrow \varphi$ ist bijektiv.

Ist φ bijektiv, so ist φ insbesondere surjektiv.

Ist φ surjektiv, so existiert zu jedem $n \in M$ ein n' so dass $\varphi(n',n) = (e,n)$, also $n' \circ n = e$. Also existiert (n')' mit $(n')' \circ n' = e$ und das impliziert $(n')' = (n')' \circ e = (n')' \circ n' \circ n = n$. Also gilt $n \circ n' = e = n' \circ n$ und M ist damit eine Gruppe.

Wenn (M, \circ) eine Gruppe ist, dann ist $(m, n) \mapsto (m \circ n^{-1}, n)$ ein Inverses zu φ , also ist φ bijektiv.

Aufgabe H18

- 1. Nach Definition gilt $\mathrm{SL}_n(k) = \ker(\det\colon \mathrm{GL}_n(k) \to (k\setminus\{0\},\cdot))$. Also ist $\mathrm{SL}_n(k)$ Kern eines Homomorphismus und damit eine normale Untergruppe.
- 2. Wir behaupten, dass

$$\varphi \colon \operatorname{GL}_n(k) / \operatorname{SL}_n(k) \to (k \setminus \{0\}, \cdot), \quad [A] \mapsto \det A$$

ein Isomorphismus ist. Zunächtst müssen wir überprüfen, dass φ wohldefiniert ist: für $B \in \mathrm{SL}_n(k)$ gilt

$$\varphi([A \cdot B]) = \det(A \cdot B) = \det(A) \cdot \det(B) = \det(A).$$

Also ist φ wohldefiniert. Da $\det(A \cdot C) = \det(A) \cdot \det(C)$ gilt ist φ außerdem ein Gruppenhomomorphismus. φ ist injektiv, denn aus $\varphi([A]) = 1$ folgt $A = \operatorname{SL}_n(k)$, also [A] = e in $\operatorname{GL}_n(k)/\operatorname{SL}_n(k)$. φ ist surjektiv, denn für $\lambda \in k \setminus \{0\}$ ist $\Lambda := \operatorname{diag}(\lambda, 1, ..., 1)$ ein Element von $\operatorname{GL}_n(k)$ mit $\varphi([\Lambda]) = \lambda$. Damit ist φ ein Isomorphismus.

Aufgabe H19

1. Zunächst bemerken wir, dass in jeder Zeile und jeder Spalte jedes Element genau einmal vorkommen muss und darf (eben wie bei Sudoku), da für jedes $g \in G$ die Abbildungen $h \mapsto g \cdot h$ und $h \mapsto h \cdot g$ bijektiv sind.

Da $e \cdot e = e$ gilt muss a das Neutrale Element sein. Damit ist die erste Zeiel und erste Spalte festgelegt:

0	$\mid a \mid$	b	c	d
\overline{a}	a	b	c	d
\overline{b}	b	a		
\overline{c}	c		a	
\overline{d}	d			\overline{a}

Da $b \cdot c = c$ implizieren würde dass b das neutrale Element ist muss $b \cdot c = d$ gelten und damit ist die zweite Zeile eindeutig festgelegt. Damit dann die vorletzte und letzte Spalte und damit dann die vorletzte und letzte Zeile:

0	$\mid a \mid$	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d	a	b
d	d	c	b	a

2. Wir spielen wieder Sudoku: Eines der Elemente muss das neutrale sein und wir wählen hierfür a. Damit sind die erste Spalte und Zeile festgelegt:

0	$\mid a \mid$	b	c	d
a	a	b	c	d
\overline{b}	b			
c	c			
d	d			

Die Lösung des restlichen Blocks ist *nicht* eindeutig. Wir machen die Wahl $b^2 = a$, welches die Tafel im weiteren wie folgt festlegt:

0	a	b	c	d
a	a	b	c	d
b	b	a	d	c
c	c	d		
d	d	c		

Der restliche Block kann jetzt wie in Teil 1. vervollständigt werden, oder aber wie folgt:

0	$\mid a \mid$	b	c	d
\overline{a}	a	b	c	d
b	b	a	d	c
c	c	d	b	a
d	d	c	a	b

Es bleibt noch zu beobachten, dass die Wahl von $c^2 = a$ oder $d^2 = a$ jeweils wieder entweder auf die Gruppe aus Teil 1. geführt hätte oder auf eine Isomorphe Gruppe (warum genau?). Damit haben alle Gruppe mir 4 Elementen bis auf Isomorphie eine der obigen Gestalten.

3. Da die Gruppe aus Teil 1. kein Element Ordnung 4 hat kann sie nicht zu \mathbb{Z}_4 isomorph sein (was man auch sieht ohne die Tafel ausgefüllt zu haben). Einen Isomorphismus zu $(\mathbb{Z}/2\mathbb{Z}) \times (\mathbb{Z}/2\mathbb{Z})$ ist z.B. durch

$$a \mapsto (\overline{0}, \overline{0}), \quad b \mapsto (\overline{1}, \overline{0}), \quad c \mapsto (\overline{0}, \overline{1}), \quad d \mapsto (\overline{1}, \overline{1})$$

gegeben.