Übung zu Algebraische und Geometrische Strukturen in der Mathematik, SoSe 2014

9. Übungsblatt

Aufgabe P26

Es wirke eine endliche Gruppe G auf einer endlichen Menge X. Es sei $n \in \mathbb{N}_{>1}$ und $\{x_i \mid i \in I\}$ ein Repräsentantensystem der Bahnen, sodass $n \mid |X|$ und $n \mid [G:G_{x_i}]$ für alle $x_i \notin X^G$ gilt. Zeigen Sie, dass dann auch $n \mid |X^G|$ gilt.

Aufgabe P27

Es sei $k \subseteq E$ ein Teilkörper.

1. Zeigen Sie, dass

$$Gal(k \subseteq E) := \{ \varphi \in Aut(E) : \varphi|_k = id_k \}$$

eine Untergruppe von $\mathrm{GL}(E)$ ist, wenn wir E als Vektorraum über k auffassen.

2. Sei $p \in k[X]$ ein Polynom, $\alpha \in E$ eine Nullstelle von p und $\varphi \in Gal(k \subseteq E)$. Zeigen Sie, dass dann $\varphi(\alpha)$ wieder eine Nullstelle von p ist. Schließen Sie, dass $Gal(k \subseteq E)$ auf den Nullstellen von p wirkt.

Aufgabe P28

Bestimmen Sie Gal($\mathbb{R} \subseteq \mathbb{C}$). Welchem Sachverhalt über Polynome in $\mathbb{R}[X]$ entspricht in diesem Fall P27 Teil 2.?

Hausübungen

Aufgabe H23 (3P)

Sei G eine Gruppe.

- 1. Zeigen Sie, dass $G^{(n+1)}$ eine normale Untergruppe von $G^{(n)}$ ist, wobei $G^{(n)}$ für $n \in \mathbb{N}_{\geq 0}$ induktiv definiert ist durch $G^{(0)} := G$ und $G^{(n+1)} := (G^{(n)})'$.
- 2. Zeigen Sie, dass Untergruppen von auflösbaren Gruppen wieder auflösbar sind.
- 3. Sie, dass wenn $N \subseteq G$ eine normale Untergruppe ist und G auflösbar ist, dann auch G/N auflösbar ist.

Bitte wenden!

Aufgabe H24 (5P)

Für einen Körper k sei $H_3:=\left\{\begin{pmatrix}1&a&x\\0&1&b\\0&0&1\end{pmatrix}\mid a,b,x\in k\right\}$ die 3-dimensionale Heisenberg Gruppe.

- 1. Zeigen Sie, dass H_3 eine Untergruppe von $\mathrm{GL}_3(k)$ ist.
- 2. Ist H_3 auch eine normale Untergruppe? Begründen Sie Ihre Antwort!
- 3. Bestimmen Sie das Zentrum $\mathbb{Z}(H_3)$. Ist H_3 abelsch?
- 4. Die Gruppe H_3 wirkt auf k^3 durch Matrixmultiplikation, also durch

$$H_3 \times k^3 \to k^3, (A, x) \mapsto A.x := A \cdot x$$

Bestimmen Sie von dieser Wirkung die Bahn und den Stabilisator von $e_2 := \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \in k^3$. Ist die Wirkung transitiv?

5. Bestimmen Sie $H_3^{(n)}$ für alle $n \in \mathbb{N}_{\geq 0}$. Ist H_3 auflösbar?