Übung zur Analysis 2, SS 2010

Letztes Übungsblatt

Aufgabe 122 (6P)

Sind die folgenden Aussagen richtig? Begründen Sie Ihre Antwort kurz.

- 1. Es sei $f:[0,\infty[\to\mathbb{R}$ eine Funktion. Dann konvergiert $\int_0^\infty f(x)\ dx$ falls für alle c>0 das Integral $\int_0^c f(x)\ dx$ existiert.
- 2. Sind $p_n:[0,1]\to\mathbb{R}$ Polynome und konvergiert $(p_n)_{n\in\mathbb{N}}$ gleichmäßig gegen p, so ist p
 - (a) stetig
 - (b) ein Polynom.
- 3. Ist R>0 der Konvergenzradius der Potenzreihe $\sum_{n=0}^{\infty}a_nx^n$, so konvergiert $\sum_{n=0}^{\infty}a_nx^{n+1}$ absolut falls |x|< R.
- 4. Ist $f: \mathbb{R}^n \to \mathbb{R}^k$ partiell differenzierbar in x_0 , so ist f stetig in x_0 .
- 5. Ist $f: \mathbb{R}^2 \to \mathbb{R}_{>0}$ stetig und $\varphi: I \to \mathbb{R}$ eine Lösung der Differentialgleichung y = f(x, y), so ist φ injektiv.

Aufgabe 123 (5P)

Wir betrachten die Differentialgleichung 2. Ordnung

$$y'' + 2y' + 2y = 0, (1)$$

also y'' = f(x, y, y') mit $f : \mathbb{R}^3 \to \mathbb{R}$, f(x, y, z) = -2y - 2z. Diese Differentialgleichung modelliert eine gedämpfte Schwingung.

- 1. Zeigen Sie, dass $\varphi_i : \mathbb{R} \to \mathbb{R}$ für i = 1, 2 mit $\varphi_1(x) = e^{-x} \sin(x)$ und $\varphi_2(x) = e^{-x} \cos(x)$ Lösungen von (1) sind.
- 2. Zeigen Sie, dass jede Linearkombination $\varphi(x) = \lambda_1 \varphi_1(x) + \lambda_2 \varphi_2(x)$ mit $\lambda_1, \lambda_2 \in \mathbb{R}$ ebenfalls eine Lösung von (1) ist.
- 3. Finden Sie die Lösung $\varphi: \mathbb{R} \to \mathbb{R}$, die das Anfangswertproblem $\varphi(0) = 1$ und $\varphi'(0) = 1$ löst.

Aufgabe 124 (5P)

Welche der folgenden Integrale konvergieren? Berechnen Sie im Fall von Konvergenz den Wert des Integrals:

$$\int_0^\infty \frac{1}{x^2 + 2x + 2} \, dx$$

2.

1.

$$\int_0^\infty \frac{e^{-\sqrt{x}}}{\sqrt{x}} \, dx$$

Aufgabe 125 (4P)

Zeigen Sie, dass die Funktionenfolge

$$f_n: [0,1] \to \mathbb{R}, \quad x \mapsto \sum_{k=0}^n x^k (1-x)$$

punktweise konvergiert. Bestimmen Sie die Grenzfunktion und zeigen Sie, dass die Konvergenz nicht gleichmäßig sein kann.

Aufgabe 126 (4P)

Ein Beispiel aus der Wirtschaftsmathematik: Ein Verbraucher habe die Cobb-Douglas Nutzenfunktion $n: \mathbb{R}^2_{\geq 0} \to \mathbb{R}, \ n(x,y) = Ax^\alpha y^\beta \ \text{mit } A, \alpha, \beta > 0$ (er versucht also die Funktionswerte dieser Funktion zu maximieren, eine konkrete Wahl von A, α und β spiegelt dann die Modellierung eines realen Problems wieder, siehe http://de.wikipedia.org/wiki/Cobb-Douglas-Funktion). Gleichzeitig unterliege der Verbraucher der Budgetbeschränkung $p(x,y) \leq M$ für $P: \mathbb{R}^2_{\geq 0} \to \mathbb{R}, \ (x,y) \mapsto px + qy \ \text{mit } p,q>0$ (hierbei modellieren p und q den Preis der Waren x und y, der in diesem Modell als linear wachsend angenommen wird).

Ermitteln Sie das Haushaltsoptimum für fixe Werte von A, α , β , p und q, also den größtmöglichen Wert von n(x,y) unter der Nebenbedingung $p(x,y) \leq M$. (**Hinweis:** Warum genügt es hier den Fall p(x,y) = M zu betrachten?)