Übung zur Analysis 2, SS 2010

11. Übungsblatt

Aufgabe 113 (6 P)

Stimmen die folgenden Aussagen? Antworten Sie jeweils mit Ja oder Nein und begründen Sie Ihre Antwort kurz.

Extrema unter Nebenbedingungen: Es seien $\varphi = (\varphi_1, ..., \varphi_k) : \mathbb{R}^n \to \mathbb{R}^k$ und $f : \mathbb{R}^n \to \mathbb{R}$ stetig differenzierbar so dass $d\varphi(x)$ surjektiv¹ ist für alle $x \in \mathbb{R}^n$ und $M = \{x \in \mathbb{R}^n : \varphi(x) = 0\} \neq \emptyset$.

- 1. Ist $df(x_0) = 0$ für $x_0 \in M$, so ist x_0 ein lokales Minimum von f auf M.
- 2. Ist $x_0 \in M$ ein lokales Minimum von f auf M, so sind die linearen Abbildungen $df(x_0)$ und $d\varphi_i(x_0)$ für i = 1, ..., k linear abhängig.
- 3. Wenn M beschränkt ist, dann nimmt f auf M ein Maximum an.

Differentialgleichungen: Es sei $f: \mathbb{R}^2 \to \mathbb{R}$ stetig.

- 4. Ist $\varphi: I \to \mathbb{R}$ eine Lösung der Differentialgleichung y' = f(x, y) und ist (a, b) im Graph von φ , so gilt $\varphi'(a) = f(a, b)$.
- 5. f kann so gewählt werden dass $\varphi : \mathbb{R} \to \mathbb{R}$, $\varphi(x) = |x|$ eine Lösung der Differentialgleichung y' = f(x, y) ist.
- 6. Die Funktion $\varphi: \mathbb{R} \to \mathbb{R}$, $\varphi(x) = \exp(x^2)$ löst die Differentialgleichung y' = f(x,y) mit f(x,y) = 2xy.

Aufgabe 114 (3 P) – Kugelkoordinaten

Sei $f: \mathbb{R}^3 \to \mathbb{R}^3$ gegeben durch

$$f(r, \alpha, \beta) = (r \cos(\alpha), r \sin(\alpha) \cos(\beta), r \sin(\alpha) \sin(\beta))$$
.

Bestimmen Sie die Werte $(r, \alpha, \beta) \in \mathbb{R}^3$, für die $df(r, \alpha, \beta)$ invertierbar ist.

 $^{^1}$ Die Bedingung " $d\varphi(x)$ surjetktiv für alle $x\in\mathbbm{R}^n$ " fehlte auf der ursprünglichen Version des Aufgabenblatts.

Aufgabe 115 (7 P) – Extrema unter Nebenbedingungen

Seien a,b,c>0 gegeben. Bestimmen Sie den achsenparallelen Quader größten Volumens, dessen Eckpunkte auf dem Ellipsoid $x^2/a^2+y^2/b^2+z^2/c^2=1$ liegen. Gehen Sie wie folgt vor. Seien $f:\mathbb{R}^3\to\mathbb{R}$ und $\varphi:\mathbb{R}^3\to\mathbb{R}$ gegeben durch

$$f(x, y, z) = xyz$$
 und $\varphi(x, y, z) = x^2/a^2 + y^2/b^2 + z^2/c^2 - 1$.

- 1. Sei $E=\{(x,y,z)\,|\,x>0,y>0,z>0\}$. Bestimmen Sie die möglichen Extrema von f auf der Menge $M=\{(x,y,z)\in E\,|\,\varphi(x,y,z)=0\}$. (Das Volumen des Quaders ist dann V=8f(x,y,z).)
- 2. Zeigen Sie, dass die Funktion f auf der Menge

$$R = \{(x, y, z) \mid x \ge 0, y \ge 0, z \ge 0 \text{ und } \varphi(x, y, z) = 0\}$$

ein Maximum hat, und dass dieses Maximum auf M angenommen wird.

3. Bestimmen Sie den Punkt $(x, y, z) \in R$, an dem f sein Maximum annimmt, und geben Sie den Wert von f an dieser Stelle an.

Aufgabe 116 (6 P) – Parameterabhängige Integrale I

- 1. Berechnen Sie das Integral $\int_0^x e^{-ty} dy$ für t > 0 und $x \ge 0$.
- 2. Berechnen Sie das Integral

$$\int_0^x y e^{-y} \ dy,$$

zum einen durch partielle Integration und zum anderen durch Differenzieren des parameterabhängigen Integrals $\int_0^x e^{-ty}\ dy$.

- 3. Berechnen Sie die Ableitungen der folgenden Funktionen $f_i:]0, \infty[\to \mathbb{R}$ für i=1,2,3 und bestimmen Sie die dabei eventuell auftretenden Integrale explizit.
 - (a) $f_1(t) = \int_0^t \log(x^2 + \pi^2) dx$
 - (b) $f_2(t) = \int_0^{\pi} \log(x^2 + t^2) dx$
 - (c) $f_3(t) = \int_0^t \log(x^2 + t^2) dx$

Hinweis: Sie dürfen hier das Ergebnis von Aufgabe 117 ohne Beweis verwenden.

Aufgabe 117 (2 P) – Parameterabhängige Integrale II

Sei $\varphi:[a,b]\times[a,b]\to\mathbb{R}$ stetig und in der zweiten Variablen stetig differenzierbar. Für $t\in]a,b[$ sei $f(t)=\int_a^t \varphi(x,t)dx.$ Zeigen Sie, dass für alle $t\in]a,b[$ gilt

$$f'(t) = \varphi(t,t) + \int_a^t D_2 \varphi(x,t) dx .$$