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The main purpose of this course is to present some of the main ideas of infinite-dimensional Lie
theory and to explain how it differs from the finite-dimensional theory. In the introductory section,

we present some of the main types of infinite-dimensional Lie groups: linear Lie groups, groups of

smooth maps and groups of diffeomorphisms. We then turn in some more detail to manifolds mod-
eled on locally convex spaces and the corresponding calculus (Section II). In Section III, we present

some basic Lie theory for locally convex Lie groups. The Fundamental Theorem for Lie group-valued-
functions on manifolds and some of its immediate applications are discussed in Section IV. For many

infinite-dimensional groups, the exponential function behaves worse than for finite-dimensional ones

or Banach–Lie groups. Section V is devoted to the class of locally exponential Lie groups, i.e., those
for which the exponential function is a local diffeomorphism in 0. We conclude these notes with a
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Lie algebra the Lie algebra of a global Lie group?
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I. Introduction

Symmetries play a decisive role in the natural sciences and throughout mathematics.
Infinite-dimensional Lie theory deals with symmetries depending on infinitely many parameters.
Such symmetries may be studied on an infinitesimal, local or global level, which amounts to
studying Lie algebras, local Lie groups and global Lie groups, respectively.

Finite-dimensional Lie theory was created in the late 19th century by Marius Sophus Lie,
who showed that in finite dimensions the local and the infinitesimal theory are essentially equiv-
alent. The differential-geometric approach to finite-dimensional global Lie groups (as smooth
or analytic manifolds) is naturally complemented by the theory of algebraic groups with which
it interacts most fruitfully. A crucial point of the finite-dimensional theory is that finiteness
conditions permit to develop a full-fledged structure theory of finite-dimensional Lie groups in
terms of the Levi splitting and the fine structure of semisimple groups.

In infinite dimensions, the passage from the infinitesimal to the local level and from there
to the global level is not possible in general, whence the theory splits into three properly distinct
levels. A substantial part of the literature on infinite-dimensional Lie theory exclusively deals
with the level of Lie algebras, their structure, and their representations. However, only special
classes of groups, such as Kac–Moody groups or certain direct limit groups, can be approached by
purely algebraic methods. In particular, this is relevant for many applications in mathematical
physics, where the infinitesimal approach is convenient for calculations, but a global perspective
would be most desirable to understand global phenomena. We think that a similar statement
applies to non-commutative geometry, where derivations and covariant derivatives are ubiquitous,
but global symmetry groups have been neglected.

In these lectures, we concentrate on the local and global level of infinite-dimensional Lie
theory, as well as the mechanisms allowing or preventing to pass from one level to another. Our
studies are based on a notion of Lie group which is both simple and very general: A Lie group
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simply is a manifold, endowed with a group structure such that multiplication and inversion
are smooth maps. The main difference compared to the finite-dimensional theory concerns the
notion of a manifold: The manifolds we consider shall not be finite-dimensional, but modeled
on an arbitrary locally convex space. It is quite useful to approach Lie groups from such a
general perspective, because this enables a unified discussion of all basic aspects of the theory.
To obtain more specific results, it is essential to focus on individual classes of Lie groups. In
this introduction, we discuss several classes of infinite-dimensional Lie groups without going into
details. The main purpose is to give an impression of the enormous variety of infinite-dimensional
Lie groups.

Some history

The concept of a Banach–Lie group, i.e., a Lie group modeled on a Banach space, has been
introduced by G. Birkhoff in [Bi38]. The step to more general classes of infinite-dimensional
Lie groups modeled on complete locally convex spaces occurs first in an article of Marsden and
Abraham [MA70] in the context of hydrodynamics. This Lie group concept has been worked out
by J. Milnor in his Les Houches lecture notes [Mil83] which provide many basic results of the
general theory. The observation that the completeness condition on the underlying locally convex
space can be omitted for the basic theory is due to H. Glöckner ([Gl02a]). This is important for
quotient constructions because quotients of complete locally convex spaces need not be complete.

There are other, weaker, concepts of Lie groups, resp., infinite-dimensional manifolds. One
is based on the “convenient setting” for global analysis developed by Fröhlicher, Kriegl and
Michor ([FK88] and [KM97]). In the context of Fréchet manifolds, this setting does not differ
from the one mentioned above, but for more general model spaces it provides a concept of a
smooth map which does not necessarily imply continuity, hence leads to Lie groups which are
not topological groups. Another approach is based on the concept of a diffeological space due
to J.-M. Souriau ([So85]) which can be used to study spaces like quotients of R by non-discrete
subgroups in a differential geometric context. It has the important advantage that the category
of diffeological spaces is cartesian closed and that any quotient of a diffeological space carries a
natural diffeology. On the other hand, this incredible freedom creates some quite ugly creatures.

Throughout these notes, K ∈ {R,C} and all vector spaces are real or complex. For two
topological vector spaces V,W , we write L(V,W ) for the space of continuous linear operators
V →W and put L(V ) := L(V, V ).

I.1. Linear Lie groups

In finite-dimensional Lie theory, a natural approach to Lie groups is via matrix groups, i.e.,
subgroups of the group GLn(R) of invertible real n×n -matrices. Since every finite-dimensional
algebra can be embedded into a matrix algebra, this is equivalent to considering subgroups of
the unit groups A× := {a ∈ A: (∃b ∈ A)ab = ba = 1} of finite-dimensional unital associative
algebras A . The advantage of this approach is that, under mild completeness assumptions, one
can define the exponential function quite directly via the exponential series and thus take a
shortcut to several deeper results on Lie groups. This approach also works quite well in the
context of Banach-Lie groups. Here the linear Lie groups are subgroups of unit groups of Banach
algebras, but this setting is too restrictive for many applications of infinite-dimensional Lie theory.

Let V be a locally convex space and A := L(V ) the unital associative algebra of all
continuous linear endomorphisms of V . Its unit group is the general linear group GL(V ) of
V , but unfortunately there is no natural manifold structure on GL(V ) if V is not a Banach
space. In particular, it is far from being open, as follows from the fact that if the spectrum of
the operator A is unbounded, then 1 + tA is not invertible for all sufficiently small values of t .
Therefore it is much more natural to consider a class of well-behaved associative algebras instead
of the algebras of the form L(V ) for general locally convex spaces.
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We shall see that the most natural class of algebras for infinite-dimensional Lie theory are
the so-called continuous inverse algebras (CIAs). These are unital locally convex algebras A with
continuous multiplication such that the unit group A× is open and the inversion is a continuous
map A× → A .

Remark I.1.1. (a) Each unital Banach algebra A is a continuous inverse algebra. In fact, if
‖ · ‖ is a sub-multiplicative norm on A with ‖1‖ = 1, then for each x ∈ A with ‖x‖ < 1 we
have 1− x ∈ A× with

(1− x)−1 =
∞∑

k=0

xk,

and the geometric series, also called the Neumann series, converges uniformly on each ball Br(0)
with r < 1. We conclude that A× contains B1(1) and that inversion is continuous on this ball.
Now elementary arguments imply that A× is open and that inversion is continuous (Exercise I.1).

(b) For each Banach space V , the algebra L(V ) of continuous linear operators on V is a
unital Banach algebra with respect to the operator norm

‖ϕ‖ := sup{‖ϕ(v)‖: ‖v‖ ≤ 1},

hence in particular a CIA.
(c) For each CIA A and n ∈ N , the matrix algebra Mn(A) also is a CIA when endowed

with the product topology obtained by identifying it with An2
(cf. [Bos90], Exercise I.3).

(d) If M is a compact manifold, then the algebra C∞(M,C) is a continuous inverse algebra
(cf. Section II for the topology on this algebra).

(e) Let B be a Banach algebra and α:G × B → B a strongly continuous action of the
finite-dimensional Lie group G on B by isometric automorphisms. Then the space A := B∞

of smooth vectors for this action is a dense subalgebra and a Fréchet CIA (cf. [Bos90, Prop.
A.2.9]).

We shall see below that the unit group of a CIA is a Lie group, when endowed with its
natural manifold structures as an open subset. This property clearly shows that in the context of
infinite-dimensional Lie theory over locally convex spaces, CIAs form the natural class of algebras
to be considered.

In view of Remark I.1.1(c), GLn(A) is a Lie group for each CIA A . We think of “Lie
subgroups” of these groups as linear Lie groups, but we shall only see later in Section III how
and in how many ways the notion of a Lie subgroup can be made more precise. Note that most
classical Lie groups are defined as centralizers of certain matrices or as the set of fixed points for
a group of automorphisms. All these constructions have natural generalizations to matrices with
entries in CIAs.

I.2. Groups of continuous and smooth maps

In the context of Banach–Lie groups, one constructs Lie groups of mappings as follows.
For a compact space X and a Banach–Lie group K , the group C(X,K) of continuous maps is
a Banach–Lie group with Lie algebra C(X, k), where k := L(K) is the Lie algebra of K .

In the larger context of locally convex Lie groups, one also obtains for each Lie group K
and a compact smooth manifold M a Lie group structure on the group C∞(M,K) of smooth
maps from M to K . This is a Fréchet–Lie group if K is a Fréchet–Lie group and its Lie algebra
is C∞(M, k).

The passage from continuous maps to smooth maps is motivated by the behavior of central
extensions of these groups. The groups C∞(M,K) have much more central extensions than the
groups C(M,K), hence exhibit a richer geometric structure. Closely related is the fact that
algebras of smooth functions have much more derivations than algebras of continuous functions
(cf. also the discussion in Section I.3).
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A larger class of groups of smooth maps is obtained as gauge groups of principal bundles.
If q:P → B is a smooth principal bundle with structure group K and σ:P ×K → P, (p, k) 7→
σk(p) = p.k denotes the right action of K on P , then

Gau(P ) := {ϕ ∈ Diff(P ): q ◦ ϕ = q, (∀k ∈ k) ϕ ◦ σk = σk ◦ ϕ}

is called the gauge group of the bundle and its elements are called gauge transformations. In view
of q ◦ ϕ = q , each gauge transformation ϕ can be written as ϕ(p) = p.f(p) for some smooth
function f :P → K , and from ϕ ◦ σk = σk ◦ ϕ we derive that kf(p.k) = f(p)k , i.e.,

(1.1.1) f(p.k) = k−1f(p)k, p ∈ P, k ∈ K.

Conversely, every smooth function f :P → K satisfying (1.1.1) defines a gauge transformation
by ϕf (p) := p.f(p). Moreover,

ϕf1(ϕf2(p)) = ϕf2(p).f1
(
ϕf2(p)

)
= p.(f2(p)f1(p.f2(p))) = p.(f1(p)f2(p)) = ϕf1f2(p)

implies that we obtain an isomorphism of groups

C∞(P,K)K := {f ∈ C∞(P,K): (∀p ∈ P )(∀k ∈ K) f(p.k) = k−1f(p)k} → Gau(P ), f 7→ ϕf .

We may therefore view Gau(P ) as a subgroup of the group C∞(P,K), endowed with
the pointwise product, and we shall see below under which requirements on the bundle and the
structure group K one can show that Gau(P ) is a Lie group.

If the bundle P is trivial, then there exists a smooth global section σ:B → P , and the
map

C∞(P,K)K → C∞(M,K), f 7→ f ◦ σ

is an isomorphism of groups.

I.3. Groups of homeomorphisms and diffeomorphisms

Interesting groups arise naturally from geometric or other structures on spaces as their
automorphism groups. In the spirit of Felix Klein’s Erlangen Program, geometric structures are
even defined in terms of their automorphism groups. In this section, we take a closer look at the
homeomorphism group Homeo(X) of a topological space X , the diffeomorphism group Diff(M)
of a smooth manifold M and relate them to the automorphism groups of the corresponding
algebras of continuous and smooth functions.
I.3.1. If X is a topological space, then the group Homeo(X) acts naturally by automorphisms
on the algebra C(X,R) of continuous real-valued functions on X by algebra automorphisms via

(ϕ.f)(x) := f(ϕ−1(x)).

If, in addition, X is compact, then C(X,R) has a natural Banach algebra structure given
by the sup-norm, and with Gelfand duality the space X can be recovered from this algebra as

X ∼= Homalg(C(X,R),R) \ {0}

in the sense that every non-zero algebra homomorphism C(X,R) → R (which is automatically
continuous) is given by a point evaluation δp(f) = f(p). The topology on X can be recovered
from C(X,R) by endowing Homalg(C(X,R),R) with the topology of pointwise convergence on
C(X,R).

For any Banach algebra A , the group Aut(A) carries a natural Lie group structure (as
a Lie subgroup of GL(A)), so that Homeo(X) ∼= Aut(C(X,R)) inherits a natural Lie group
structure when endowed with the topology inherited from the Banach algebra L(C(X,R)). We
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claim that this topology turns Homeo(X) into a discrete group. In fact, if ϕ is a non-trivial
homeomorphism of X and p ∈ X is moved by ϕ , then there exists a continuous function
f ∈ C(X,R) with ‖f‖ = 1, f(p) = 0 and f(ϕ−1(p)) = 1. Then ‖ϕ.f − f‖ ≥ 1 implies that
‖ϕ − 1‖ ≥ 1. Therefore the group Homeo(X) is discrete. Since exponentials of continuous
derivations yield one-parameter groups of automorphisms, it follows that der(C(X,R)) = {0} .

Nevertheless, one considers continuous actions of connected Lie groups G on X , where
the continuity of the action means that the action map α:G ×X → X is continuous. But this
does not mean that the corresponding homomorphism G → Homeo(X) is continuous. We will
see that this phenomenon, i.e., that certain automorphism groups are endowed with Lie group
structures which are too fine for many purposes, occurs at several levels of the theory (cf. also
Exercise I.5).

I.3.2. Now let M be a compact smooth manifold and consider the Fréchet algebra A :=
C∞(M,R) of smooth functions on M (cf. Example II.1.4). In this context, we also have

M ∼= Hom(C∞(M,R),R) \ {0}

in the sense that every non-zero algebra homomorphism C∞(M,R) → R is given by a point
evaluation δp(f) := f(p) for some p ∈ M (see Theorem A.1). The smooth structure on M is
completely determined by the requirement that the maps M → R, p 7→ δp(f) are smooth. This
implies that the group Aut(C∞(M,R)) of automorphisms of C∞(M,R) can be identified with
the group Diff(M) of all diffeomorphisms of M .

In sharp contrast to the topological context, the group Diff(M) has a non-trivial structure
as a Lie group modeled on the space V(M) of (smooth) vector fields on M , which then is the
Lie algebra of (the opposite of) this group. Moreover, for a finite-dimensional Lie group G ,
smooth left actions α:G ×M → M correspond to Lie group homomorphisms G → Diff(M).
For G = R , we obtain in particular the correspondence between smooth flows on M , smooth
vector fields on M , and one-parameter subgroups of Diff(M). If X ∈ V(M) is a vector field
and FlX : R → Diff(M) the corresponding flow, then

exp:V(M) → Diff(M), X 7→ FlX(1)

is the exponential function of the Fréchet–Lie group Diff(M).
Other important groups of diffeomorphisms arise as subgroups of Diff(M). Of particular

importance is the stabilizer subgroup Diff(M,µ) of a volume form µ on M (if M is orientable),
and the stabilizer Sp(M,ω) of a symplectic form ω if (M,ω) is symplectic (cf. [KM97]).

I.3.3. If M is a paracompact finite-dimensional smooth manifold, then we still have

M ∼= Hom(C∞(M,R),R) \ {0} and Diff(M) ∼= Aut(C∞(M,R))

(Theorem A.1), but then there is no natural Lie group structure on Diff(M) such that smooth
actions of Lie groups G on M correspond to Lie group homomorphisms G→ Diff(M).

It is possible to turn Diff(M) into a Lie group with Lie algebra Vc(M), the Lie algebra of
all smooth vector fields with compact support. If M is compact, this yields the aforementioned
Lie group structure on Diff(M), but if M is not compact, then the corresponding topology on
Diff(M) is so fine that the global flow generated by a vector field whose support is not compact
does not lead to a continuous homomorphism R → Diff(M). For this Lie group structure, the
normal subgroup Diffc(M) of all diffeomorphisms which coincide with idM outside a compact
set is an open subgroup.

I.3.4. The situation for non-compact manifolds is similar to the situation we encounter in the
theory of unitary group representations. Let H be a Hilbert space and U(H) its unitary group.
This group has two natural topologies. The uniform topology on U(H) inherited from the
Banach algebra L(H) turns it into a Banach–Lie group, but this topology is rather fine. The
strong operator topology (the topology of pointwise convergence) turns U(H) into a topological
group such that continuous unitary representations of a topological group G correspond to
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continuous group homomorphisms G → U(H). If G is a finite-dimensional Lie group, then a
continuous unitary representation is continuous with respect to the uniform topology on U(H)
if and only if all operators of the derived representation are bounded, but this implies already
that the representation factors through a Lie group with compact Lie algebra (cf. [Si52], [Gu80],
Exercise I.6). In some sense, the condition that the operators of the derived representation
are bounded is analogous to the requirement that the vector fields corresponding to a smooth
action on a manifold have compact support. In this sense, the uniform topology on U(H) shows
similarities to the Lie group structure from (I.3.3) on Diff(M) if M is non-compact. The case
of a compact manifold M corresponds to the case of a finite-dimensional Hilbert space H , for
which the two topologies on U(H) coincide.
I.3.5. Clearly, the situation becomes worse if M is an infinite-dimensional manifold. Then
Diff(M) has no natural group topology, but we can still make sense of smooth maps f :N →
Diff(M), where N is a smooth manifold, by requiring that the corresponding map

N ×M →M2, (n,m) 7→ (f(n)(m), f(n)−1(m))

is smooth. In this sense, a smooth action of a Lie group G on M is a smooth homomorphism
G→ Diff(M).

Similar statements hold for the group GL(V ), where V is a general locally convex space.

Exercises for Section I

Exercise I.1. For an associative algebra A , we write A+ for the algebra A × K with the
multiplication

(a, s)(b, t) := (ab+ sb+ ta, st).

(1) Verify that A+ is a unital algebra with unit 1 = (0, 1).
(2) Show that GL1(A) := A×+ ∩ (A× {1}) is a group.
(3) If e ∈ A is an identity element, then A+ is isomorphic to the direct product algebra A×K

with the product (a, s)(b, t) = (ab, st).

Exercise I.2. A topological ring is a ring R endowed with a topology for which addition and
multiplication are continuous. Let R be a unital topological ring. Show that:
(1) For x ∈ R× , the left and right multiplications λx(y) := xy and ρx(y) := yx are homeomor-

phisms of R .
(2) The unit group R× is open if and only if it is a neighborhood of 1 .
(3) The inversion R× → R is continuous, i.e., (R×, ·) is a topological group, if it is continuous

in 1 .

Exercise I.3. Let R be a unital ring, n ∈ N and Mn(R) the ring of all (n×n)-matrices with
entries in R . In the following, we write elements x ∈Mn(R) as

x =
(
a b
c d

)
∈Mn(R) =

(
Mn−1(R) Mn−1,1(R)
M1,n−1(R) R

)
=

(
Mn−1(R) Rn−1

(Rn−1)> R

)
.

(1) Show that a matrix x is of the form(
1 β
0 1

) (
α 0
0 δ

) (
1 0
γ 1

)
with α ∈ GLn−1(R), β, γ> ∈ Rn−1, δ ∈ R×

if and only if d ∈ R×, a− bd−1c ∈ GLn−1(R), and that in this case

δ = d, β = bd−1, γ = d−1c, α = a− bd−1c.

(2) Assume, in addition, that R is a topological ring with open unit group and continuous
inversion. Show by induction on n that
(a) GLn(R) is open in Mn(R).
(b) Inversion in GLn(R) is continuous, i.e., GLn(R) is a topological group.
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Exercise I.4. Let R be a unital ring and consider the right R -module Rn , where the module
structure is given by (x1, . . . , xn).r := (x1r, . . . , xnr). Let M be a right R -module, σ: r 7→ rσ

an involution on R , i.e., an involutive anti-automorphism and ε ∈ {±1} . A biadditive map
β:M ×M → R is called σ -sesquilinear if

β(x.r, y.s) = rσβ(x, y)s for x, y ∈M, r, s ∈ R.

It is called σ -ε-hermitian if, in addition,

σ(x, y)σ = εσ(y, x) for x, y ∈M.

For ε = 1, we call the form σ -hermitian and σ -antihermitian for ε = −1. For a σ -ε -hermitian
form β on M ,

U(M,β) := {ϕ ∈ AutR(M): (∀x, y ∈M) β(ϕ(x), ϕ(y)) = β(x, y)}

is called the corresponding unitary group. Show that:
(1) EndR(Rn) ∼= Mn(R), where Mn(R) operates by left multiplication on column vectors

on Rn .
(2) AutR(Rn) ∼= GLn(R).
(3) β(x, y) :=

∑n
i=1 x

σ
i yi is a σ -hermitian form on Rn . Describe the corresponding unitary

group in terms of matrices.
(4) β(x, y) :=

∑n
i=1 x

σ
i yn+i − xσ

n+iyi is a σ -antihermitian form on R2n . Describe the corre-
sponding unitary group in terms of matrices.

Exercise I.5. Let X be a topological space and endow the set C(X,X) of continuous self-
maps of X with the compact open topology, i.e., the topology generated by the sets W (K,O) :=
{f ∈ C(X,X): f(K) ⊆ O} , where K ⊆ X is compact and O ⊆ X is open (cf. Appendix B). We
endow the group Homeo(X) with the initial topology with respect to the map

Homeo(X) → C(X,X)2, ϕ 7→ (ϕ,ϕ−1).

Show that if X is locally compact, then this topology turns Homeo(X) into a topological
group. Hint: If f ◦ g ∈ W (K,O) choose a compact subset K ′ and an open subset O′ with
g(K) ⊆ O′ ⊆ K ′ ⊆ f−1(O).

Exercise I.6. Let G be a finite-dimensional connected Lie group and π:G → GL(X) be a
faithful representation which is continuous when GL(X) carries the uniform topology inherited
from the Banach algebra L(X) and for which π(G) is bounded. Show that g := L(G) is a
compact Lie algebra by using the following steps:
(1) π is a smooth homomorphism of Lie groups. In particular, we have a representation of the

Lie algebra L(π): g → L(X).
(2) ‖x‖ := ‖L(π)(x)‖ defines a norm on g , and Ad(G) is bounded with respect to this norm.
(3) Ad(G) has compact closure, so that g is a compact Lie algebra.

If, in addition, X is a Hilbert space, then one can even show that there exists a scalar
product compatible with the topology which is invariant under G , so that π becomes a unitary
representation with respect to this scalar product. This can be achieved by showing that the
set of all compatible scalar products is a Bruhat–Tits space and then applying the Bruhat–Tits
Fixed Point Theorem.
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II. Infinite-dimensional manifolds

In this section, we turn to some more details on infinite-dimensional manifolds. First we briefly
discuss the concept of a locally convex space, then the basics and the peculiarities of calculus on
these spaces, and finally manifolds modeled on locally convex spaces.

In this section, V always denotes a K-vector space and K is R or C .

II.1. Locally convex spaces

Definition II.1.1. (a) If p is a seminorm on a K-vector space V , then Np := p−1(0) is a
subspace of V , and Vp := V/Np is a normed space with ‖v + Np‖ := p(v). Let αp:V → Vp

denote the corresponding quotient map.
(b) We call a set P of seminorms on V separating if p(v) = 0 for all p ∈ P implies v = 0.

This is equivalent to the linear map

α:V →
∏
p∈P

Vp, v 7→ (αp(v))p∈P

being injective.
(c) If X is a set and fj :X → Xj , j ∈ J , are mappings into topological spaces, then the

coarsest topology on X for which all these maps are continuous is called the initial topology on
X with respect to the family (fj)j∈J . This topology is generated by the inverse images of open
subsets of the spaces Xj under the maps fj . Combining the functions fj to a single function

f :X →
∏
j∈J

Xj , x 7→ (fj(x))j∈J ,

the initial topology on X is nothing but the inverse image of the product topology under f .
(d) To each separating family P of seminorms on V we associate the initial topology τP

on V defined by the maps αp:V → Vp to the normed spaces Vp . We call it the locally convex
topology on V defined by P .

Since the family P is separating, V is a Hausdorff space. Further it is easy to show that
V is a topological vector space in the sense that addition and scalar multiplication on V are
continuous maps.

A locally convex space is a vector space endowed with a topology defined by a separating
family of seminorms. The preceding argument shows that each locally convex space is in
particular a topological vector space which can be embedded into a product

∏
p∈P Vp of normed

spaces.
(e) A locally convex space V is called a Fréchet space if its topology can be defined by

a countable family P = {pn:n ∈ N} of seminorms and if V is complete with respect to the
compatible metric

d(x, y) :=
∑
n∈N

2−n pn(x− y)
1 + pn(x− y)

.

Remark II.1.2. (a) A sequence (xn)n∈N in a locally convex space V is said to be a Cauchy
sequence if each sequence αp(xn), p ∈ P , is a Cauchy sequence in Vp . We say that V is
sequentially complete if every Cauchy sequence in V converges.

(b) One has a natural notion of completeness for locally convex spaces (every Cauchy filter
converges). Complete locally convex spaces can be characterized as those isomorphic to closed
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subspaces of products of Banach spaces. In fact, let V p denote the completion of the normed
space Vp . We then have an embedding

α:V →
∏
p∈P

V p, v 7→ (αp(v))p∈P ,

and the completeness of V is equivalent to the closedness of α(V ) in the product of the Banach
spaces V p , which is a complete space (Exercise II.8).

Examples II.1.3. (a) Let X be a topological space. For each compact subset K ⊆ X , we
obtain a seminorm pK on C(X,R) by

pK(f) := sup{|f(x)|:x ∈ K}.

The family P of these seminorms defines on C(X,R) the locally convex topology of uniform
convergence on compact subsets of X .

If X is compact, then we may take K = X and obtain a norm on C(X,R) which defines
the topology; all other seminorms pK are redundant (cf. Exercise II.1). In this case, C(X,R) is
a Banach space.

(b) The preceding example can be generalized to the space C(X,V ), where X is a
topological space and V is a locally convex space. Then we define for each compact subset
K ⊆ X and each continuous seminorm q on V a seminorm

pK,q(f) := sup{q(f(x)):x ∈ K}.

The family of these seminorms defines a locally convex topology on C(X,V ), the topology of
uniform convergence on compact subsets of X (cf. Appendix B).

(c) If X is locally compact and countable at infinity, then there exists a sequence (Kn)n∈N
of compact subsets of X with

⋃
nKn and Kn ⊆ K0

n+1 . We call such a sequence (Kn)n∈N an
exhaustion of X . Then each compact subset K ⊆ X lies in some Kn , so that each seminorm pK

is dominated by some pKn . This implies that C(X,R) is metrizable, and since it is also complete,
it is a Fréchet space. It even is a Fréchet algebra in the sense that the algebra multiplication is
continuous (cf. Exercise II.4).

(d) For any set X , the space RX of all real-valued function X → R is a locally convex space
with respect to the product topology. The topology is defined by the seminorms px defined by
px(f) := |f(x)| , x ∈ X . This space is complete, and it is metrizable if and only if X is countable.

Example II.1.4. (a) Let U ⊆ Rn be an open subset and consider the algebra C∞(U,R). For
each multiindex m = (m1, . . . ,mn) ∈ N0 with |m| := m1 + . . .+mn , we consider the differential
operator

Dm := Dm1
1 · · ·Dmn

n :=
∂|m|

∂m1
1 · · · ∂mn

n
.

We now obtain for each m and each compact subset K ⊆ U a seminorm on C∞(U,R) by

pK,m(f) := sup{|Dmf(x)|:x ∈ K}.

The family of all these seminorms defines a locally convex topology on C∞(U,R).
To obtain an exhaustion of U , we choose a norm ‖ · ‖ on Rn and consider the compact

subsets
Kn :=

{
x ∈ U : ‖x‖ ≤ n,dist(x,U c) ≥ 1

n

}
,

where U c := Rn \ U denotes the complement of U and dist(x,U c) := inf{‖x− y‖: y ∈ U c} is a
continuous function (Exercise II.5). It is easy to see that (Kn)n∈N is an exhaustion of U , so that
the topology on C∞(U,R) can be defined by a countable set of seminorms. Moreover, C∞(U,R)
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is complete with respect to the corresponding metric, and the multiplication on this algebra is
continuous, so that it is a Fréchet algebra (Exercise II.6).

(b) Let M be a smooth n -dimensional manifold and consider the algebra C∞(M,R). If
(ϕ,U) is a chart of M , then ϕ(U) is an open subset of some Rn , so that, in view of (a), we have
already a Fréchet algebra structure on C∞(ϕ(U),R). We now consider the map

Φ:C∞(M,R) ↪→
∏

(ϕ,U)

C∞(ϕ(U),R), f 7→ (f |U ◦ ϕ−1)(ϕ,U)

and endow the right hand side with the product topology, turning it into a locally convex algebra
(Exercise II.8). Therefore the inverse image of this topology turns C∞(M,R) into a locally
convex algebra.

This description is convenient, but not very explicit. To see how it can be defined by
seminorms, note that for each compact subset K ⊆M for which there exists a chart ϕ:U → Rn

with K ⊆ U and for each multiindex m ∈ Nn
0 we have a seminorm

pK,m(f) := sup{|Dm(f ◦ ϕ−1)(x)|:x ∈ ϕ(K)}.

It is easy to see that these seminorms define the topology on C∞(M,R) and that we thus obtain
the structure of a Fréchet algebra on C∞(M,R). The topology is called the topology of local
uniform convergence of all partial derivatives.

(c) If M is a finite-dimensional paracompact complex manifold, then we consider the
algebra Hol(M,C) of holomorphic functions on M as a subalgebra of C(M,C), endowed with the
topology of uniform convergence on compact subsets of M (Example II.1.3). This topology turns
Hol(M,C) into a Fréchet algebra. Moreover, one can show that the injective map Hol(M,C) ↪→
C∞(M,C)is also a topological embedding (Exercise II.9).

Definition II.1.5. Let V be a vector space and αj :Vj → V linear maps, defined on locally
convex spaces Vj . We consider the system P of all those seminorms p on V for which all
compositions p ◦ αj are continuous seminorms on the spaces Vj . By means of P , we obtain
on V a locally convex topology called the final locally convex topology defined by the mappings
(αj)j∈J .

This locally convex topology has the universal property that a linear map ϕ:V →W into
a locally convex space W is continuous if and only if all the maps ϕ ◦αj , j ∈ J , are continuous
(Exercise).

Example II.1.6. (a) Let X be a locally compact space and Cc(X,R) the space of compactly
supported continuous functions. For each compact subset K ⊆ X , we then have a natural
inclusion

αK :CK(X,R) := {f ∈ Cc(X,R): supp(f) ⊆ K} ↪→ Cc(X,R).

Each space CK(X,R) is a Banach space with respect to the norm

‖f‖∞ := sup{|f(x)|:x ∈ X} = sup{|f(x)|:x ∈ K}.

We endow Cc(X,R) with the final locally convex topology defined by the maps αK (Defini-
tion II.1.5).

(b) Let M be a smooth manifold and consider the space C∞c (M,R) of smooth functions
with compact support. For each compact subset K ⊆M , we then have a natural inclusion

αK :C∞K (M,R) := {f ∈ C∞c (M,R): supp(f) ⊆ K} ↪→ C∞c (M,R).

We endow each space C∞K (M,R) with the subspace topology inherited from C∞(M,R), which
turns it into a Fréchet space. We endow C∞c (M,R) with the final locally convex topology defined
by the maps αK .



Monastir Summer School: Infinite-Dimensional Lie Groups 11

II.2. Calculus on locally convex spaces

In this section, we briefly explain the cornerstones of calculus in locally convex spaces.
The main point is that one uses an appropriate notion of differentiability, resp., smoothness
which for the special case of Banach spaces differs from Fréchet differentiability but which is
more convenient in the setup of locally convex spaces. Our basic references are [Ha82] and
[Gl02a], and in particular the forthcoming book [GN05], where one finds detailed proofs. One
readily observes that once one has the Fundamental Theorem of Calculus, then the proofs of the
finite-dimensional case carry over.

A different approach to differentiability in infinite-dimensional spaces is provided by the
so-called convenient setting, which can be found in [FK88] and [KM97]. A central feature of
this approach is that smooth maps are no longer required to be continuous, but for calculus over
Fréchet spaces one finds the same class of smooth maps. The concept of a diffeological space
due to J.-M. Souriau ([So85]) goes much further. It is primarily designed to study spaces with
pathologies like quotients of R by non-discrete subgroups in a differential geometric context.

Definition II.2.1. Let X and Y be topological vector spaces, U ⊆ X open and f :U → Y
a map. Then the derivative of f at x in the direction of h is defined as

df(x)(h) := lim
t→0

1
t

(
f(x+ th)− f(x)

)
whenever the limit exists. The function f is called differentiable at x if df(x)(h) exists for all
h ∈ X . It is called continuously differentiable if it is differentiable at all points of U and

df :U ×X → Y, (x, h) 7→ df(x)(h)

is a continuous map. It is called a C1 -map if it is continuous and continuously differentiable; for
n ≥ 2, a Cn -map if df is a Cn−1 -map, and C∞ (or smooth) if it is Cn for each n ∈ N . This is
the notion of differentiability used in [Mil83], [Ha82], [Gl02a] and [Ne01].

(b) If X and Y are complex vector spaces, then the map f is called holomorphic if it is
C1 and for all x ∈ U the map df(x):X → Y is complex linear (cf. [Mil83, p. 1027]). We will see
below that the maps df(x) are always real linear (Lemma II.2.3).

(c) Higher derivatives are defined for Cn -maps by

dnf(x)(h1, . . . , hn) := lim
t→0

1
t

(
dn−1f(x+ thn)(h1, . . ., hn−1)− dn−1f(x)(h1, . . ., hn−1)

)
.

Remark II.2.2. (a) If X and Y are Banach spaces, then the notion of continuous differen-
tiability is weaker than the usual notion of continuous Fréchet-differentiability in Banach spaces,
which requires that the map x 7→ df(x) is continuous with respect to the operator norm. Nev-
ertheless, one can show that a C2 -map in the sense defined above is C1 in the sense of Fréchet
differentiability, so that the two concepts lead to the same class of C∞ -functions (cf. [Ne01, I.6
and I.7]).

(b) We also note that the existence of linear maps which are not continuous shows that the
continuity of f does not follow from the differentiability of f because each linear map f :X → Y
is differentiable at each x ∈ X in the sense of Definition II.2.1(a).

Now we recall the precise statements of the most fundamental facts on calculus on locally
convex spaces needed in the following.

Lemma II.2.3. Let X and Y be locally convex spaces, U ⊆ X an open subset, and f :U → Y
a continuously differentiable function.
(i) For any x ∈ U , the map df(x):X → Y is real linear and continuous.
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(ii) (Fundamental Theorem of Calculus) If x+ [0, 1]h ⊆ U , then

f(x+ h) = f(x) +
∫ 1

0

df(x+ th)(h) dt.

In particular, f is locally constant if and only if df = 0 .
(iii) f is continuous.
(iv) If f is Cn , n ≥ 2 , then the functions (h1, . . . , hn) 7→ dnf(x)(h1, . . . , hn) , x ∈ U , are

symmetric n-linear maps.
(v) If x+ [0, 1]h ⊆ U , then we have the Taylor Formula

f(x+ h) = f(x) + df(x)(h) + . . .+
1

(n− 1)!
dn−1f(x)(h, . . . , h)

+
1

(n− 1)!

∫ 1

0

(1− t)n−1dnf(x+ th)(h, . . . , h) dt.

Proof. (i) For each linear functional λ ∈ Y ′ and h1, h2 ∈ X , the map

F (t1, t2) := λ(f(x+ t1h1 + t2h2))

is defined on an open 0-neighborhood in R2 and has continuous partial derivatives

∂F

∂t1
(t1, t2) = df(x+ t1h1 + t2h2)(h1),

∂F

∂t2
(t1, t2) = df(x+ t1h1 + t2h2)(h2).

From finite-dimensional calculus we know that F is a C1 -map and dF (0, 0): R2 → R is linear.
This implies that λ ◦ df(x) is linear on span{h1, h2} . Since E′ separates the points of Y and
h1, h2 are arbitrary, the map df(x) is real linear. Its continuity follows from the continuity of df .

(ii) We consider for λ ∈ Y ′ the C1 -map

F : I → R, F (t) := λ(f(x+ th))

and obtain from the Fundamental Theorem in one variable calculus

λ(f(x+ h)− f(x)) = F (1)− F (0) =
∫ 1

0

F ′(t) dt =
∫ 1

0

λ(df(x+ th)(h)) dt.

Since Y ′ separates the points of Y , this implies that the weak integral
∫ 1

0
df(x+ th)(h) dt, which

a priori exists only in the completion of Y , actually defines an element of Y which coincides
with f(x+ h)− f(x).

(iii) Let p be a continuous seminorm on Y and ε > 0. Then there exists a balanced
0-neighborhood U1 ⊆ X with x+ U1 ⊆ U and p

(
df(x+ th)(h)

)
< ε for t ∈ [0, 1] and h ∈ U1 .

Hence

p
(
f(x+ h)− f(x)

)
≤

∫ 1

0

p
(
df(x+ th)(h)

)
dt ≤ ε

(Exercise II.12), and thus f is continuous.
(iv) Arguing as in (i), we may w.l.o.g. assume that Y = R . That the maps dnf(x) are

symmetric and n -linear follows by considering maps of the form

(t1, . . . , tn) → f(x+ t1h1 + . . .+ tnhn)

on open 0-neighborhood in Rn and then applying the corresponding finite-dimensional result.
(v) We consider the Cn -map

F : I = [0, 1] → R, F (t) := f(x+ th) with F (n)(t) = dnf(x+ th)(h, . . . , h)

and apply the Taylor Formula for Cn -functions I → R .

The following characterization of C1 -functions is particularly convenient for the proof of
the Chain Rule.
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Proposition II.2.4. Let X and Y be locally convex spaces, U ⊆ X an open subset and
f :U → Y a map. Then

U [1] := {(x, h, t) ∈ U ×X ×K:x+ th ∈ U}

is an open subset of U ×X × K and f is C1 if and only if there exists a continuous function
f [1]:U [1] → Y with

f [1](x, h, t) :=
1
t
(f(x+ th)− f(x)) for t 6= 0.

If this is the case, then
df(x)(h) = f [1](x, h, 0).

Proof. The openness of U [1] follows from the continuity of the map U×X×K → X, (x, h, t) 7→
x+ th , because U [1] is the inverse image of U under this map.

If a continuous function f [1] exists with the required properties, then clearly df(x)(h) =
f [1](x, h, 0), which implies that f is a C1 -function.

Suppose, conversely, that f is C1 . Since U is open, there exists for each x ∈ U a convex
balanced 0-neighborhood V ⊆ X with x+V ⊆ U . For y, th ∈ 1

2V , we then have y+[0, 1]th ⊆ U ,
so that Lemma II.2.3(ii) implies that

1
t
(f(y + th)− f(y)) =

∫ 1

0

df(y + sth)(h) ds.

Since the right hand side defines a continuous function on the neighborhood

{(y, h, t) ∈ U [1]: y + [0, 1]th ⊆ U}

of U ×X × {0} , we see that

f [1](x, h, t) :=
{ ∫ 1

0
df(y + sth)(h) ds if x+ [0, 1]th ⊆ U

1
t (f(x+ th)− f(x)) otherwise

is a continuous function on U [1] satisfying all requirements.

Proposition II.2.5. (Chain Rule) If X , Y and Z are locally convex spaces, U ⊆ X and
V ⊆ Y are open, and f1:U → V , f2:V → Z are C1 , then f2 ◦ f1:U → Z is C1 with

d(f2 ◦ f1)(x) = df2
(
f1(x)

)
◦ df1(x) for x ∈ U.

Proof. We use the characterization of C1 -function from Proposition II.2.4. For (x, h, t) ∈
U [1] , we have

1
t

(
(f2 ◦ f1)(x+ th)− (f2 ◦ f1)(x)

)
=

1
t

(
f2(f1(x) + tf

[1]
1 (x, h, t))− f2(f1(x))

)
= f

[1]
2 (f1(x), f

[1]
1 (x, h, t), t).

Since this is a continuous function on U [1] , Proposition II.2.4 implies that f2 ◦ f1 is C1 . For
t = 0, we obtain in particular

d(f2 ◦ f1)(x)(h) = f
[1]
2 (f1(x), f

[1]
1 (x, h, 0), 0) = df2(f1(x))(df1(x)(h)).

Proposition II.2.6. If X1 , X2 and Y are locally convex spaces, X = X1 ×X2 , U ⊆ X is
open, and f :U → Y is continuous, then the partial derivatives

d1f(x1, x2)(h) := lim
t→0

1
t

(
f(x1 + th, x2)− f(x1, x2)

)
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and
d2f(x1, x2)(h) := lim

t→0

1
t

(
f(x1, x2 + th)− f(x1, x2)

)
exist and are continuous if and only if f is C1 . In this case, we have

df(x1, x2)(h1, h2) = d1f(x1, x2)(h1) + d2f(x1, x2)(h2).

Proof. If f is C1 , then the existence and continuity of the partial derivatives d1f and d2f
follows by restricting df .

Suppose, conversely, that the partial derivatives df1 and df2 exist and that they are
continuous, so that they are also linear in the last argument (Lemma III.2.3). For

(x1, x2) + ([0, 1]h1, [0, 1]h2) ⊆ U,

we then have

f(x1 + th1, x2 + th2)− f(x1, x2)
= f(x1 + th1, x2 + th2)− f(x1 + th1, x2) + f(x1 + th1, x2)− f(x1, x2)

=
∫ 1

0

df2(x1 + th1, x2 + sth2)(th2) ds+
∫ 1

0

d1f(x1 + sth1, x2)(th1) ds

= t
( ∫ 1

0

df2(x1 + th1, x2 + sth2)(h2) ds+
∫ 1

0

d1f(x1 + sth1, x2)(h1) ds
)
.

Using the continuous dependence of integrals on parameters (Exercise II.12(c)), we conclude that
all directional derivatives of f exist and equal

df(x1, x2)(h1, h2) =
∫ 1

0

df2(x1, x2)(h2) ds+
∫ 1

0

d1f(x1, x2)(h1) ds

= d2f(x1, x2)(h2) + d1f(x1, x2)(h1).

Remark II.2.7. (a) If f :X → Y is a continuous linear map, then f is smooth with

df(x)(h) = f(h)

for all x, h ∈ X , and dnf = 0 for n ≥ 2.
(b) From (a) and Proposition II.2.6 it follows that a continuous k -linear map

m:X1 × . . .×Xk → Y

is continuously differentiable with

dm(x)(h1, . . . , hk) = m(h1, x2, . . . , xk) + · · ·+m(x1, . . . , xk−1, hk).

Inductively one obtains that m is smooth with dk+1m = 0 (cf. Exercise II.21).
(c) The addition map a:X ×X → X of a topological vector space is smooth. In fact, we

have
da(x, y)(v, w) = v + w = a(v, w),

so that a is a C1 -map. Inductively it follows that a is smooth.
(d) If f :U → Y is Cn+1 , then Lemma II.2.3(iv) and Proposition II.2.6 imply that

d(dnf)(x, h1, . . . , hn)(y, k1, . . . , kn) = dn+1f(x)(h1, . . . , hn, y)
+ dnf(x)(k1, h2, . . . , hn) + . . .+ dnf(x)(h1, . . . , hn−1, kn).

It follows in particular that, whenever f is Cn , then f is Cn+1 if and only if dnf is C1 .
(e) If f :U → Y is holomorphic, then the finite-dimensional theory shows that for each

h ∈ X , the function U → Y, x 7→ df(x)(h) is holomorphic. Hence d2f(x) is complex bilinear
and therefore d(df) is complex linear. Thus df :U ×X → Y is also holomorphic.
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Example II.2.8. In the definition of C1 -maps, we have not required the underlying topological
vector spaces to be locally convex and one may wonder whether this assumption is made for
convenience or if there are some serious underlying reasons. The following example shows that
local convexity is crucial for the validity of the Fundamental Theorem.

Let V denote the space of measurable functions f : [0, 1] → R for which

|f | :=
∫ 1

0

|f(x)| 12 dx

is finite and identify functions which coincide on a set whose complement has measure zero.
Then d(f, g) := |f − g| defines a metric on this space (Exercise II.3). We thus obtain a metric
topological vector space (V, d).

For a subset E ⊆ [0, 1], let χE denote its characteristic function. Consider the curve

γ: [0, 1] → V, γ(t) := χ[0,t].

Then
|h−1

(
γ(t+ h)− γ(t)

)
| = |h|− 1

2 |h| → 0

for each t ∈ [0, 1] as h → 0. Hence γ is C1 with dγ = 0. Since γ is not constant, the
Fundamental Theorem of Calculus does not hold in V .

The defect in this example is caused by the non-local convexity of V . In fact, one can even
show that all continuous linear functionals on V vanish.

Remark II.2.9. (a) In the context of Banach spaces, one has an Inverse Function Theorem
and also an Implicit Function Theorem ([La99]). Such results cannot be expected in general for
Fréchet spaces (cf. the exponential function of Diff(S1)). Nevertheless, Glöckner’s recent paper
[Gl03] contains implicit function theorems for maps of the type f :E → F , where F is a Banach
space and E is locally convex.

(b) Another remarkable pathology occurring already for Banach spaces is that a closed
subspace F of a Banach space E need not have a closed complement. A simple example is the
subspace F := c0(N,R) in E := `∞(N,R) ([Wer95, Satz IV.6.5]) (cf. Exercise II.13).

This has the consequence that the quotient map q:E → E/F has no smooth sections
because the existence of a smooth local section σ:U → E around 0 ∈ E/F implies the existence
of a closed complement im(dσ(0)) ∼= E/F to F in E . Nevertheless, the map q:E → E/F defines
the structure of a topological F -principal bundle over E/F which has a continuous global section
by Michael’s Selection Theorem ([Mi59]).

Remark II.2.10. (Pathologies of linear ODEs in Fréchet spaces) (a) First we give an example
of a linear ODE for which solutions to initial value problems exist, but are not unique. We
consider the Fréchet space V := C∞([0, 1],R) and the continuous linear operator Lf := f ′ on
this space. We are asking for solutions of the initial value problem

(2.2.1) γ′(t) = Lγ(t), γ(0) = γ0.

As a consequence of E. Borel’s Theorem that each power series is the Taylor series of a smooth
function, each γ0 has a smooth extension to a function on R . Let h be such a function and
consider

γ: R → V, γ(t)(x) := h(t+ x).

Then γ(0) = h |[0,1] = γ0 and γ′(t)(x) = h′(t + x) = (Lγ(t))(x). It is clear that these solutions
of (2.2.1) depend on the choice of the extension h of γ0 . Different choices lead to different
extensions.

(b) Now we consider the space V := C∞(S1,C) which we identify with the space of 2π -
periodic smooth functions on the real line. We consider the linear operator Lf := −f ′′ and the
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equation (2.2.1), which in this case is the heat equation with reversed time. It is easy to analyze
this equation in terms of the Fourier expansion of γ . So let

γ(t)(x) =
∑
n∈Z

an(t)einx

be the Fourier expansion of γ(t). Then (2.2.1) implies a′n(t) = n2an(t) for each n ∈ Z , so that
an(t) = an(0)etn2

holds for any solution γ of (2.2.1). If the Fourier coefficients an(0) of γ0 do
not satisfy ∑

n

|an(0)|eεn2
<∞

for some ε > 0 (which need not be the case for a smooth function γ0 ), then (2.2.1) does not
have a solution on [0, ε] .

As a consequence, the operator exp(tL) is never defined for t 6= 0. Nevertheless, we may
use the Fourier series expansion to see that β(t) := (1+ it2)1+ tL defines a curve β: R → GL(V )
which is smooth in the sense that

R× V → V × V, (t, v) 7→ (β(t)(v), β(t)−1(v))

is smooth. We further have β′(0) = L , so that L arises as the tangent vector of a smooth curve
in GL(V ), but not for a one-parameter group.

Definition II.2.11. A locally convex space E is said to be Mackey complete if for each smooth
curve ξ: [0, 1] → E there exists a smooth curve η: [0, 1] → E with η′ = ξ .

For a more detailed discussion of Mackey completeness and equivalent conditions we refer
to [KM97, Th. 2.14].

Remark II.2.12. If E is a sequentially complete locally convex space, then it is Mackey com-
plete because the sequential completeness implies the existence of Riemann integrals of continuous
E -valued functions on compact intervals, hence that for each continuous curve ξ: [0, 1] → E there
exists a smooth curve η: [0, 1] → E with η′ = ξ .

Remark II.2.13. (a) We briefly recall the basic definitions underlying the convenient calculus
in [KM97]. Let E be a locally convex space. The c∞ -topology on E is the final topology with
respect to the set C∞(R, E). Let U ⊆ E be an open subset and f :U → F a function, where F
is a locally convex space. Then we call f conveniently smooth if

f ◦ C∞(R, U) ⊆ C∞(R, F ).

This implies nice cartesian closedness properties of the class of smooth maps (cf. [KM97, p.30]).
(b) If E is a Fréchet space, then the c∞ -topology coincides with the original topology

([KM97, Th. 4.11]), so that each conveniently smooth map is continuous.
We claim that for an open subset U of a Fréchet space, a map f :U → F is conveniently

smooth if and only if it is smooth in the sense of Definition II.2.1. This can be shown as follows.
Since C∞(R, E) is the same space for both notions of differentiability, the Chain Rule shows that
smoothness in the sense of Definition II.2.1 implies smoothness in the sense of convenient calculus.
Now we assume that f :U → F is conveniently smooth. Then the derivative df :U × E → F
exists and defines a conveniently smooth map df :U → L(E,F ) ⊆ C∞(E,F ) ([KM97, Th. 3.18]).
Hence df :U × E → F is also conveniently smooth, and thus continuous with respect to the
c∞ -topology. As E × E is a Fréchet space, it follows that df is continuous. Therefore f is C1

in the sense of Definition II.2.1, and now one can iterate the argument.
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II.3. Differentiable manifolds

Since we have a chain rule for C1 -maps between locally convex spaces, hence also for
smooth maps, we can define smooth manifolds as in the finite-dimensional case (cf. [Ha82],
[Mil83], [Gl02a], [GN05]):

Definition II.3.1. Let M be a Hausdorff topological space and E a locally convex space.
An E -chart of an open subset U ⊆ M is a homeomorphism ϕ:U → ϕ(U) ⊆ E onto an open
subset ϕ(U) of E . We denote such a chart as a pair (ϕ,U). Two charts (ϕ,U) and (ψ, V ) are
said to be smoothly compatible if the map

ψ ◦ ϕ−1 |ϕ(U∩V ):ϕ(U ∩ V ) → ψ(U ∩ V )

is smooth. From the chain rule it follows that compatibility of charts is an equivalence relation
on the set of all E -charts of M . An E -atlas of M is a family A := (ϕi, Ui)i∈I of pairwise
compatible E -charts of M for which

⋃
i Ui = M . A smooth E -structure on M is a maximal

E -atlas and a smooth E -manifold is a pair (M,A), where A is a maximal E -atlas on M .
We call a manifold modeled on a locally convex, resp., Fréchet space, resp., Banach space

a locally convex, resp., Fréchet, resp., Banach manifold.

Remark II.3.2. (a) Locally convex spaces are regular in the sense that each point has a
neighborhood base consisting of closed sets, and this property is inherited by manifolds modeled
on these spaces (cf. [Mil83]).

(b) If M1, . . . ,Mn are smooth manifolds modeled on the spaces Ei , i = 1, . . . , n , then
the product set M := M1 × . . . ×Mn carries a natural manifold structure with model space
E =

∏n
i=1Ei .

Definition II.3.3. (a) One defines the tangent bundle πTM :TM → M as follows. Let
A := (ϕi, Ui)i∈I be an E -atlas of M . On the disjoint union of the set ϕ(Ui)× E , we define an
equivalence relation by

(x, v) ∼
(
(ϕj ◦ ϕ−1

i )(x), d(ϕj ◦ ϕ−1
i )(x)(v)

)
for x ∈ ϕi(Ui ∩ Uj) and v ∈ E and write [x, v] for the equivalence class of (x, v). Let p ∈ Ui .
Then the equivalence classes of the form [ϕi(p), v] are called tangent vectors in p . Since all the
differentials d(ϕj ◦ϕ−1

i )(x) are invertible linear maps, it easily follows that the set Tp(M) of all
tangent vectors in p forms a vector space isomorphic to E under the map E → Tp(M), v 7→ [x, v] .
Now we turn the tangent bundle

TM :=
⋃

p∈M

Tp(M)

into a manifold by the charts

ψi:TUi :=
⋃

p∈Ui

Tp(M) → ϕ(Ui)× E, [ϕi(x), v] 7→ (ϕi(x), v).

It is easy to see that for each open subset U of a locally convex space E , we have TU ∼= U ×E
(as smooth manifolds) and in particular TUj

∼= Uj × E in the setting from above.
(b) Let M and N be smooth manifolds modeled on locally convex spaces and f :M → N

a smooth map. We write Tf :TM → TN for the corresponding map induced on the level of
tangent vectors. Locally this map is given by

Tf(x, h) =
(
f(x), df(x)(h)

)
,
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where df(p) := Tp(f):Tp(M) → Tf(p)(N) denotes the differential of f at p . In view of Remark
II.2.7(d), the tangent map Tf is smooth if f is smooth. In the following, we will always identify
M with the zero section in TM . In this sense, we have Tf |NM = f . If V is a locally convex
space, then TV ∼= V × V and the map Tf can accordingly be written as Tf = (f, df), where
we think of df as a map TM → V .

From the relations

T (idM ) = idTM and T (f1 ◦ f2) = Tf1 ◦ Tf2

for smooth maps f2:M1 → M2 and f2:M2 → M3 it follows that T is an endofunctor on the
category of smooth manifolds. Moreover, it preserves finite products in the sense that for smooth
manifolds M1, . . . ,Mn , there is a natural isomorphism

T (M1 × · · · ×Mn) ∼= TM1 × · · · × TMn.

(c) A (smooth) vector field X on M is a smooth section of the tangent bundle qTM :TM →
M , i.e. a smooth map X:M → TM with πTM ◦X = idM . We write V(M) for the space of all
vector fields on M . If f ∈ C∞(M,V ) is a smooth function on M with values in some locally
convex space V and X ∈ V(M), then we obtain a smooth function on M via

X.f := df ◦X:M → TM → V.

Remark II.3.4. If M = U is an open subset of the locally convex space E , then TU = U ×E
with the bundle projection πTU :U ×E → U, (x, v) 7→ x . Then each smooth vector field is of the
form X(x) = (x, X̃(x)) for some smooth function X̃:U → E , and we may thus identify V(U)
with the space C∞(U,E).

Remark II.3.5. (a) One can also define for each E -manifold M a cotangent bundle T ∗(M) =⋃
m∈M Tm(M)′ and endow it with a vector bundle structure over M , but to endow it with a

smooth manifold structure we need a locally convex topology on the dual space E′ such that for
each local diffeomorphism f :U → E , U open in E , the map U × E′ → E′, (x, λ) 7→ λ ◦ df(x)
is smooth. If E is a Banach space, then the norm topology on E′ has this property, and the
author of these notes is not aware of any other example where this is the case.

In Section II.4, we shall introduce differential forms directly, without reference to any
cotangent bundle.

(b) The following modification might be useful to construct a replacement for a cotangent
bundle. Instead of the, mostly badly behaved, duality E × E′ → K , one may also start
with another locally convex space F for which we have a non-degenerate continuous pairing
E × F → K, (e, f) 7→ 〈e, f〉 , so that we may think of F as a subspace of E′ . Then we may
consider E -manifolds with an atlas for which all coordinate changes

f := ψ ◦ ϕ−1:ϕ(U ∩ V ) → ψ(U ∩ V ) ⊆ E

have the property that for each x , the continuous linear map df(x):E → E has an adjoint map
df(x)> on F , satisfying

〈df(x)v, w〉 = 〈v, df(x)>w〉 for v ∈ E,w ∈ F,

and for which the map

ϕ(U ∩ V )× F → ψ(U ∩ V )× F, (x,w) 7→ (f(x), (df(x)>)−1w)

is smooth. Then one can use these maps as glueing maps to obtain an F -vector bundle over M
which is a subbundle of T ∗(M) with a natural differentiable structure.
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Lemma II.3.6. If X,Y ∈ V(M) , then there exists a vector field [X,Y ] ∈ V(M) which is
uniquely determined by the property that on each open subset U ⊆M we have

(2.3.1) [X,Y ].f = X.(Y.f)− Y.(X.f)

for all f ∈ C∞(U,R) .

Proof. Locally the vector fields X and Y are given as X(p) =
(
p, X̃(p)

)
and Y (p) =(

p, Ỹ (p)
)
. We define a vector field by

(2.3.2) [X,Y ] (̃p) := dỸ (p)
(
X̃(p)

)
− dX̃(p)

(
Ỹ (p)

)
.

Then the smoothness of the right hand side follows from the chain rule. The requirement that
(2.3.1) holds on continuous linear functionals f determines [X,Y ]̃ uniquely. Clearly, (2.3.2)
defines a smooth vector field on M . Now the assertion follows because locally (2.3.1) is a
consequence of the Chain Rule (Proposition II.2.5).

Proposition II.3.7. (V(M), [·, ·]) is a Lie algebra.

Proof. The crucial part is to check the Jacobi identity. This follows from the observation that
if U is an open subset of a locally convex space, then the mapping

Φ:V(U) → der
(
C∞(U,R)

)
, Φ(X)(f) = X.f

is injective and satisfies Φ([X,Y ]) = [Φ(X),Φ(Y )] (Exercise II.17). Therefore the Jacobi identity
in V(U) follows from the Jacobi identity in the associative algebra End

(
C∞(U,R)

)
.

For the applications to Lie groups we will need the following lemma.

Lemma II.3.8. Let M and N be smooth manifolds and ϕ:M → N a smooth map. Suppose
that XN , YN ∈ V(N) and XM , YM ∈ V(M) are ϕ-related in the sense that XN ◦ ϕ = Tϕ ◦XM

and YN ◦ ϕ = Tϕ ◦ YM . Then [XN , YN ] ◦ ϕ = Tϕ ◦ [XM , YM ].

Proof. It suffices to perform a local calculation. Therefore we may w.l.o.g. assume that
M ⊆ F is open, where F is a locally convex space and that N is a locally convex space. Then

[XN , YN ]̃
(
ϕ(p)

)
= dỸN

(
ϕ(p)

)
.X̃N

(
ϕ(p)

)
− dX̃N

(
ϕ(p)

)
.ỸN

(
ϕ(p)

)
.

Next we note that our assumption implies that ỸN ◦ϕ = dϕ ◦ (idF ×ỸM ). Using the Chain Rule
we obtain

dỸN

(
ϕ(p)

)
dϕ(p) = d(dϕ)

(
p, ỸM (p)

)
◦

(
idF , dỸM (p)

)
which, in view of Remark II.2.7(d), leads to

dỸN

(
ϕ(p)

)
.X̃N

(
ϕ(p)

)
= dỸN

(
ϕ(p)

)
dϕ(p).X̃M (p)

= d(dϕ)
(
p, ỸM (p)

)
◦

(
idF , dỸM (p)

)
.X̃M (p)

= d2ϕ(p)
(
ỸM (p), X̃M (p)

)
+ dϕ(p)

(
dỸM (p).X̃M (p)

)
.

Now the symmetry of the second derivative (Lemma II.2.3(iv)) implies that

[XN , YN ]̃
(
ϕ(p)

)
=dϕ(p)

(
dỸM (p).X̃M (p)− dX̃M (p).ỸM (p)

)
=dϕ(p)

(
[XM , YM ]̃ (p)

)
.
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II.4. Differential forms

Differential forms play a significant role throughout infinite-dimensional Lie theory; either
as differential forms on Lie groups or as differential forms on manifolds on which certain Lie
groups act. In the present section, we describe a natural approach to differential forms on
manifolds modeled on locally convex spaces. The main difference to the finite-dimensional case
is that in local charts there is no natural coordinate description of differential forms and that for
general locally convex manifolds (not even for all Banach manifolds), smooth partitions of unity
are available, so that one has to be careful with localization arguments.

We have already seen that for each smooth manifold M , the space V(M) of smooth vector
fields on M carries a natural Lie algebra structure. We shall see below that each smooth p -form
ω ∈ Ωp(M,V ) with values in a locally convex space V defines an alternating p -linear map

V(M)p → C∞(M,V ), (X1, . . . , Xp) 7→ ω(X1, . . . , Xp).

If M has the property that each tangent vector extends to a smooth vector field, which is always
the case locally, then this leads to an inclusion of Ωp(M,V ) into the space of Lie algebra cochains
for V(M) with values in the V(M)-module C∞(M,V ). We shall define the exterior derivative on
differential forms in such a way that with respect to this identification, it corresponds to the Lie
algebra differential (Appendix C). This point of view will prove very useful, and in this section
we use it to derive geometric structures such as the Lie derivative and the exterior differential
from the abstract setting of Lie algebra cochains.

Definition II.4.1. (a) If M is a differentiable manifold and V a locally convex space,
then a V -valued p-form ω on M is a function ω which associates to each x ∈ M a k -
linear alternating map ωx = ω(x):Tx(M)p → V such that in local coordinates the map
(x, v1, . . . , vp) 7→ ωx(v1, . . . , vp) is smooth. We write Ωp(M,V ) for the space of smooth V -
valued p -forms on M with values in V and identify Ω0(M,V ) with the space C∞(M,V ) of
smooth V -valued functions on M .

(b) Let V1, V2, V3 be locally convex spaces and β:V1 × V2 → V3 be a continuous bilinear
map. Then the wedge product

Ωp(M,V1)× Ωq(M,V2) → Ωp+q(M,V3), (ω, η) 7→ ω ∧ η

is defined by (ω ∧ η)x := ωx ∧ ηx , where

(ωx ∧ ηx)(v1, . . . , vp+q) :=
1
p!q!

∑
σ∈Sp+q

sgn(σ)β
(
ωx(vσ(1), . . . , vσ(p)), ηx(vσ(p+1), . . . , vσ(p+q))

)
.

For p = q = 1, we have in particular

(ω ∧ η)x(v1, v2) = β(ωx(v1), ηx(v2))− β(ωx(v2), ηx(v1)).

Important special cases where such wedge products are used are:
(1) β: R× V → V is the scalar multiplication of V .
(2) β:A×A→ A is the multiplication of an associative algebra.
(3) β: g× g → g is the Lie bracket of a Lie algebra. In this case, we also write [ω, η] := ω ∧ η .

(c) The pull-back ϕ∗ω of ω ∈ Ωp(M,V ) with respect to a smooth map ϕ:N → M is the
smooth p -form in Ωp(N,V ) defined by

(ϕ∗ω)x(v1, . . . , vp) := ωϕ(x)(dϕ(x)v1, . . . , dϕ(x)vp) = ωϕ(x)(Tx(ϕ)v1, . . . , Tx(ϕ)vp).

Note that the chain rule implies that

(2.4.1) id∗M ω = ω and ϕ∗1(ϕ
∗
2ω) = (ϕ2 ◦ ϕ1)∗ω

holds for compositions of smooth maps. Moreover,

(2.4.2) ϕ∗(ω ∧ η) = ϕ∗ω ∧ ϕ∗η

follows directly from the definitions. For f = ω ∈ Ω0(M,V ), we simply have ϕ∗f = f ◦ ϕ .
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The definition of the exterior differential

d: Ωp(M,V ) → Ωp+1(M,V )

is a bit more subtle than in finite dimensions where one usually uses local coordinates to define
it in charts.

Proposition II.4.2. For ω ∈ Ωp(M,V ) , x ∈ M and v0, . . . , vp ∈ Tx(M) , we choose smooth
vector fields Xi defined on a neighborhood of x satisfying Xi(x) = vi . Then

(dω)x(v0, . . . , vp) :=
p∑

i=0

(−1)i
(
Xi.ω(X0, . . . , X̂i, . . . , Xp)

)
(x)(2.4.3)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp)(x)

does not depend on the choice of the vector fields Xi and defines a smooth (p + 1)-form dω ∈
Ωp+1(M,V ) .

The definition of the differential is designed in such a way that for X0, . . . , Xp ∈ V(M) we
have in C∞(M,V ) the identity

(dω)(X0, . . . , Xp) :=
p∑

i=0

(−1)iXi.ω(X0, . . . , X̂i, . . . , Xp)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xp).(2.4.4)

Proof. We have to verify that the right hand side of (2.4.3) does not depend on the choice
of the vector fields Xk and that it is alternating in the vk . First we show that dω does not
depend on the choice of the vector fields Xk , which amounts to showing that if one vector field
Xk vanishes in x , then the right hand side of (2.4.3) vanishes.

Suppose that Xk(x) = 0. Then the only terms not obviously vanishing in x are

(2.4.5)
p∑

i 6=k

(−1)i
(
Xi.ω(X0, . . . , X̂i, . . . , Xp)

)
(x),

(2.4.6)
∑
i<k

(−1)i+kω([Xi, Xk], X0, . . . , X̂i, . . . , X̂k, . . . , Xp)(x),

and

(2.4.7)
∑
k<i

(−1)i+kω([Xk, Xi], X0, . . . , X̂k, . . . , X̂i, . . . , Xp)(x).

In local coordinates, we have(
Xi.ω(X0, . . . , X̂i, . . . , Xp)

)
(x)

= (d1ω)(x,Xi(x))(X1(x), . . . , X̂i(x), . . . , Xp(x))

+
∑
j<i

ωx(X0(x), . . . , dXj(x)Xi(x), . . . , X̂i(x), . . . , Xp(x))

+
∑
j>i

ωx(X0(x), . . . , X̂i(x), . . . , dXj(x)Xi(x), . . . , Xp(x)).
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For a fixed i > k , the assumption Xk(x) = 0 implies that only the term

ωx(X0(x), . . . , dXk(x)Xi(x), . . . , X̂i(x), . . . , Xp(x))

contributes. In view of Xk(x) = 0, we have

dXk(x)Xi(x) = dXk(x)Xi(x)− dXi(x)Xk(x) = [Xi, Xk](x).

This leads to
(−1)kω([Xk, Xi], X0, . . . , X̂k, . . . , X̂i, . . . , Xp)(x)

= −ωx(X0(x), . . . , dXk(x)Xi(x), . . . , X̂i(x), . . . , Xp(x)),

so that corresponding terms in (2.4.5) and (2.4.7) cancel, and the same happens for i < k for
terms in (2.4.5) and (2.4.6). This proves that dω is independent of the choice of the vector fields
Xi .

To see that we obtain a smooth (p + 1)-form, we use local coordinates and choose the
vector fields Xi as constant vector fields. Then

(2.4.8) (dω)x(v0, . . . , vp) =
p∑

i=0

(−1)i(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp)

is a smooth function of (x, v0, . . . , vp).
It remains to show that dω is alternating. If vi = vj for some i < j , then the argument

above shows that we may assume that Xi = Xj . Since ω is alternating, it suffices to observe
that

(dω)x(v0, v1, . . . , vp)

= (−1)i(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp) + (−1)j(d1ω)(x, vj)(v0, . . . , v̂j , . . . , vp)

= (−1)i(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp) + (−1)i+1(d1ω)(x, vi)(v0, . . . , v̂i, . . . , vp) = 0.

Proposition II.4.3. For each ω ∈ Ωp(M,V ) , we have d2ω = 0 .

Proof. It clearly suffices to verify this for the case where M is an open subset of a locally
convex space E .

Each p -form ω ∈ Ωp(M,V ) defines a p -linear map ωg:V(M)p → C∞(M,V ). In this
sense, we may consider ωg as a p -cochain for the Lie algebra g := V(M) with values in the
V(M)-module C∞(M,V ), where the module structure is the natural one given by (X.f)(x) :=
df(x)X(x). The map ω 7→ ωg is injective, as we see by evaluating p -forms on constant vector
fields. Moreover, the definition of d implies that dgωg = (dω)g . Now (d2ω)g = d2

gωg = 0 implies
that d2ω = 0 (Appendix C).

Remark II.4.4. Another way to verify that d2ω = 0 is to calculate directly in local coordinates
using formula (2.4.8). Then d2ω = 0 easily follows from the symmetry of second derivatives of
ω (Lemma II.2.3(iv)) (Exercise II.10).

Definition II.4.5. Extending d to a linear map on the space Ω(M,V ) :=
⊕

p∈N0
Ωp(M,V )

of all V -valued differential forms on M , the relation d2 = 0 implies that the space

Zp
dR(M,V ) := ker(d |Ωp(M,V ))

of closed forms contains the space Bp
dR(M,V ) := d(Ωp−1(M,V )) of exact forms, so that the

V -valued de Rham cohomology space

Hp
dR(M,V ) := Zp

dR(M,V )/Bp
dR(M,V )

is well-defined.
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Remark II.4.6. We consider smooth functions f :M → V as differential forms of degree 0.
Then df is the 1-form with df(x)(v) = Tx(f)v , where df is the differential of f , as defined
above. Since M is locally convex, the vanishing of df means that the function f is locally
constant (Lemma II.2.3(ii)). Thus H0

dR(M,V ) = Z0
dR(M,V ) is the space of locally constant

functions on M . If M has d connected components, then H0
dR(M,V ) ∼= V d .

Lemma II.4.7. If ϕ:N →M is a smooth map and ω ∈ Ωp(M,V ) , then d(ϕ∗ω) = ϕ∗dω.

Proof. First we assume that ϕ is a diffeomorphism. Let X0, . . . , Xp ∈ V(N) and define
Y0, . . . , Yp ∈ V(M) by Yi(ϕ(x)) := dϕ(x)(Xi(x)), so that Yi ◦ ϕ = Tϕ ◦ Xi . In view of
Lemma II.3.6, this implies that [Yi, Yj ] ◦ϕ = Tϕ ◦ [Xi, Xj ] for i, j = 0, . . . , p . Moreover, we have

ϕ∗(ω(Y0, . . . , Ŷi, . . . , Yp)) = (ϕ∗ω)(X0, . . . , X̂i, . . . , Xp).

We further have for each smooth function f on M the relation

ϕ∗(Yi.f)(x) = df(ϕ(x))Yi(ϕ(x)) = df(ϕ(x))dϕ(x)Xi(x) = (Xi.(ϕ∗f))(x),

so that we obtain with (2.4.3)

ϕ∗(dω)(X0, . . . , Xp) = d(ϕ∗ω)(X0, . . . , Xp).

Since this relation also holds on each open subset of M , resp., N , we conclude that d(ϕ∗ω) =
ϕ∗(dω). The preceding argument applies in particular to local diffeomorphisms defined by charts.

To complete the proof of the general case, we may now assume w.l.o.g. that M and N are
open subsets of locally convex spaces. Using constant vector fields, we then have

(dω)x(v0, . . . , vp) =
p∑

i=0

(−1)i(d1ω(x, vi))(v0, . . . , v̂i, . . . , vp)

and therefore

(ϕ∗(dω))x(v0, . . . , vp) =
p∑

i=0

(−1)i(d1ω(ϕ(x), dϕ(x)vi))(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , dϕ(x)vp).

On the other hand, the Chain Rule leads to

d(ϕ∗ω)x(v0, . . . , vp)

=
p∑

i=0

(−1)i(d1ω(ϕ(x), dϕ(x)vi))(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , dϕ(x)vp)

+
p∑

i=0

(−1)i
∑
j<i

ωϕ(x)(dϕ(x)v0, . . . , d2ϕ(x)(vi, vj), . . . , dϕ(x)v̂i, . . . , dϕ(x)vp)

+
p∑

i=0

(−1)i
∑
j>i

ωϕ(x)(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , d
2ϕ(x)(vi, vj), . . . , dϕ(x)vp)

=
p∑

i=0

(−1)i(d1ω(ϕ(x), dϕ(x)vi))(dϕ(x)v0, . . . , dϕ(x)v̂i, . . . , dϕ(x)vp),

where the terms in the last two lines cancel because of the symmetry of the bilinear maps d2ϕ(x)
(Lemma II.2.3(iv)). This proves the assertion.

For finite-dimensional manifolds, one usually defines the Lie derivative of a differential form
in the direction of a vector field X by using its local flow t 7→ FltX :

LXω :=
d

dt t=0
(Fl−t

X )∗ω.

Since vector fields on infinite-dimensional manifold need not have a local flow (cf. Remark II.2.10),
we introduce the Lie derivative more directly, resembling its algebraic counterpart (cf. Ap-
pendix C).
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Definition II.4.8. (a) For any smooth manifold M and each locally convex space, we have
a natural representation of the Lie algebra V(M) on the space Ωp(M,V ) of V -valued p -forms
on M , given by the Lie derivative. For Y ∈ V(M), the Lie derivative LY ω is defined on
v1, . . . , vp ∈ Tx(M) by

(LY .ω)x(v1, . . . , vp)

= (Y.ω(X1, . . . , Xp))(x)−
p∑

j=1

ω(X1, . . . , [Y,Xj ], . . . , Xp)(x)

= (Y.ω(X1, . . . , Xp))(x) +
p∑

j=1

(−1)jω([Y,Xj ], X1, . . . , X̂j , . . . , Xp)(x),

where X1, . . . , Xp are vector fields on a neighborhood of x satisfying Xi(x) = vi . To see that
the right hand side does not depend on the choice of the vector fields Xi , suppose that Xi(x) = 0
for some i . Then evaluation of the right hand side in x yields in local coordinates

(Y.ω(X1, . . . , Xp))(x)− ω(X1, . . . , [Y,Xi], . . . , Xp)(x)
= ωx(X1(x), . . . , dXi(x)Y (x), . . . , Xp(x))
− ωx(X1(x), . . . , dXi(x)Y (x)− dY (x)Xi(x), . . . , Xp(x)) = 0.

Therefore LY ω is well-defined. In local coordinates, we have

(LY ω)x(v1, . . . , vp) = (Y.ω(v1, . . . , vp))(x) +
p∑

j=1

ω(v1, . . . , dY (x)vi, . . . , vp)

= (d1ω)(x, Y (x))(v1, . . . , vp) +
p∑

j=1

ω(v1, . . . , dY (x)vi, . . . , vp),

which immediately implies that LY ω defines a smooth V -valued p -form on M .
(b) We further obtain for each X ∈ V(M) and p ≥ 1 a linear map

iX : Ωp(M,V ) → Ωp−1(M,V ) with (iXω)x = iX(x)ωx,

where
(ivωx)(v1, . . . , vp−1) := ωx(v, v1, . . . , vp−1).

For ω ∈ Ω0(M,V ) = C∞(M,V ), we put iXω := 0.

Proposition II.4.9. For X,Y ∈ V(M) , we have on Ω(M,V ) :
(1) [LX ,LY ] = L[X,Y ] , i.e., the Lie derivative defines a representation of the Lie algebra V(M)

on Ωp(M,V ) .
(2) [LX , iY ] = i[X,Y ] .
(3) LX = d ◦ iX + iX ◦ d (Cartan formula).
(4) LX ◦ d = d ◦ LX .
(5) LX(Zp

dR(M,V )) ⊆ Bp
dR(M,V ) .

Proof. (1)-(3) It suffices to verify these formulas locally in charts, so that we may assume
that M is an open subset of a locally convex space. Then (1)-(3) follow from the corresponding
formulas in Appendix C, applied to the Lie algebra g = V(M) and the module C∞(M,V ).

(4) follows from (3) and d2 = 0.
(5) follows from (3).
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Remark II.4.10. Clearly integration of differential forms ω ∈ Ωp(M,V ) only makes sense if
M is a finite-dimensional oriented manifold (possibly with boundary) of dimension p and V
is Mackey complete. We need the Mackey completeness to insure that each smooth function
f :Q→ V on a cube Q :=

∏p
i=1[ai, bi] ⊆ Rp has an iterated integral∫

Q

fdx :=
∫ b1

a1

· · ·
∫ bp

ap

f(x1, . . . , xp) dx1 · · · dxp.

If ϕ:U → Rp is a chart of M compatible with the orientation and supp(ω) is a compact subset
of U , then we define ∫

M

ω :=
∫

ϕ(U)

(ϕ−1)∗ω =
∫

ϕ(U)

f dx,

where f ∈ C∞(ϕ(U), V ) is the compactly supported function determined by

((ϕ−1)∗ω)(x) = f(x) dx1 ∧ . . . ∧ dxp.

If, more generally, ω has compact support and (χi)i∈I is a smooth partition of unity with
the property that supp(χi) is contained in a chart domain, then we define∫

M

ω :=
∑
i∈I

∫
M

χiω

and observe that the right hand side is a finite sum, where each summand is defined since
supp(χiω) is contained in a chart domain. Using the transformation formula for p -dimensional
integrals, it is easy to see that the definition of the integral

∫
M
ω does not depend on the choice

of the charts and the partitions of unity.
We also note that Stokes’ Theorem∫

M

dη =
∫

∂M

η

holds for V -valued (p − 1)-forms, where it is understood that the boundary ∂M carries the
induced orientation.

The assumption that V is Mackey complete is crucial in the following lemma to ensure the
existence of the Riemann integral defining ϕ . For a conceptual proof we refer to [GN05, Ch. III].

Lemma II.4.11. (Poincaré Lemma) Let E be locally convex, V a Mackey complete locally
convex space and U ⊆ E an open subset which is star-shaped with respect to 0 . Let ω ∈
Ωk+1(U, V ) be a V -valued closed (k+ 1)-form. Then ω = dϕ for some ϕ ∈ Ωk(U, V ) satisfying
ϕ(0) = 0 which is given by

ϕ(x)(v1, . . . , vk) =
∫ 1

0

tkω(tx)(x, v1, . . . , vk) dt.

Remark II.4.12. (a) The Poincaré Lemma is the first step to de Rham’s Theorem. To obtain
de Rham’s Theorem for finite-dimensional manifolds, one makes heavy use of smooth partitions
of unity which do not always exist for infinite-dimensional manifolds, not even for all Banach
manifolds.

(b) We call a smooth manifold M smoothly paracompact if every open cover has a subor-
dinated smooth partition of unity. De Rham’s Theorem holds for every smoothly paracompact
Fréchet manifold ([KM97,Thm. 34.7]). Smoothly Hausdorff second countable manifolds modeled
on a smoothly regular space are smoothly paracompact ([KM97, 27.4]). Typical examples of
smoothly regular spaces are nuclear Fréchet spaces ([KM97, Th. 16.10]).

(c) Examples of Banach spaces which are not smoothly paracompact are C([0, 1],R) and
`1(N,R). On these spaces, there exists no non-zero smooth function supported in the unit ball
([KM97, 14.11]).
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Exercises for Section II

Exercise II.1. Let (V, τP) be a locally convex space.
(1) Show that a seminorm q on V is continuous if and only if there exists a λ > 0 and

p1, . . . , pn ∈ P such that q ≤ λmax(p1, . . . , pn). Hint: A seminorm is continuous if and only
if it is bounded on some 0-neighborhood.

(2) Two sets P1 and P2 of seminorms on V define the same locally convex topology if and only
if all seminorms in P2 are continuous w.r.t. τP1 and vice versa.

Exercise II.2. Show that the set of all seminorms on a vector space V is separating. The
corresponding locally convex topology is called the finest locally convex topology. Hint: Every
vector space has a basis (provided one believes in the Axiom of Choice, resp., Zorn’s Lemma).

Exercise II.3. Fix p ∈]0, 1[ and let V denote the space of measurable functions f : [0, 1] → R
(we identify functions which coincide on a set whose complement has measure zero), for which

|f | :=
∫ 1

0

|f(x)|p dx

is finite. Show that d(f, g) := |f − g| defines a metric on this space. Hint: The function
[0,∞[→ R, x 7→ xp is sub-additive. This is turn follows from its concavity.

Exercise II.4. Let X be a locally compact space which is countable at infinity, i.e., there
exists a sequence (Kn)n∈N of compact subsets of X with X =

⋃
nKn and Kn ⊆ K0

n+1 . We call
such a sequence (Kn)n∈N an exhaustion of X . Show that:
(1) Each compact subset K ⊆ X lies in some Kn .
(2) The topology of uniform convergence on compact subsets of X on the space C(X,R) is

given by the sequence of seminorms (pKn
)n∈N (Hint: Exercise II.1).

(3) C(X,R) is metrizable.
(4) C(X,R) is complete.
(5) The multiplication on C(X,R) is continuous.
(6) C(X,R) is a Fréchet algebra.

Exercise II.5. Let (M,d) be a metric space and Ø 6= S ⊆M a subset. Show that the function

f :M → R, x 7→ dist(x, S) := inf{d(x, s): s ∈ S}

is a contraction, hence in particular continuous.

Exercise II.6. Let U ⊆ Rn be an open subset and Kn := {x ∈ U : ‖x‖ ≤ n,dist(x,U c) ≥ 1
n}.

(1) Each compact subset K ⊆ U lies in some Kn .
(2) The topology on the space C∞(U,R) is given by the countable family of seminorms

(pKn,m)n,m∈N (cf. Example II.1.4).
(3) C∞(U,R) is metrizable.
(4) C∞(U,R) is complete.
(5) The multiplication on C∞(U,R) is continuous. Hint: Leibniz Rule.
(6) C∞(U,R) is a Fréchet algebra.

Exercise II.7. Let X be a locally compact space. The unit group C(X,R)× = C(X,R×) is
open in C(X,R) if and only if X is compact. Hint: If X is not compact, then there exists for
each compact subset K ⊆ X a continuous function fK ∈ C(X,R) with fK |K = 1. Show that
the net (fK) converges to 1.
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Exercise II.8. Let (Xi)i∈I be a family of locally convex spaces. Show that:
(1) The product topology on X :=

∏
i∈I Xi defines on X the structure of a locally convex

space.
(2) This space is complete if and only if all the spaces Xi are complete.
(3) If, in addition, each Xi is a locally convex unital algebra, then X is a locally convex unital

algebra.

Exercise II.9. Let M be a paracompact finite-dimensional complex manifold and endow the
space Hol(M,C) with the topology of uniform convergence on compact subsets. Show that:
(1) Hol(M,C) is a Fréchet algebra.
(2) The mapping Hol(M,C) → C∞(M,C) is a topological embedding. Hint: Cauchy estimates

in several variables.

Exercise II.10. Verify that d2ω = 0 for the exterior differential on Ωp(M,V ) (M a smooth
manifold modeled on X , V a locally convex space) directly in local coordinates, using formula
(2.4.8). Hint: For each x ∈M , the map

X2 → Altp(X,V ), (v, w) 7→ d2
1ω(x)(v, w)

(second derivative with respect to the first argument of ω ) is symmetric (Lemma II.1.3).

Exercise II.11. Let X be a locally convex space and p a continuous seminorm on X . Show
that

p = sup{λ ∈ X ′:λ ≤ p}.

Hint: Consider the closed convex subset B := {x ∈ X: p(x) ≤ 1} . Then λ |B ≤ 1 is equivalent
to λ ≤ p and if p(x) > 1, then there exists a continuous linear functional λ ∈ Y ′ with λ |B ≤ 1
and λ(x) > 1 (Hahn–Banach Separation Theorem).

Exercise II.12. Let Y be a locally convex space and γ: [a, b] → Y a continuous curve. Assume
that the integral I(γ) :=

∫ b

a
γ(t) dt exists in the sense that there exists an element I ∈ Y such

that λ(I(γ)) =
∫ b

a
λ(γ(t)) dt holds for each continuous linear functional λ ∈ Y ′ . Show that:

(a) For each continuous seminorm p on Y , we have

p
( ∫ b

a

γ(t) dt
)
≤

∫ b

a

p(γ(t)) dt.

Hint: Use Exercise II.11.
(b) The map I:C([a, b], Y ) → Y is continuous, when C([a, b], Y ) is endowed with the topology

of uniform convergence (which coincides with the compact open topology; cf. Appendix B).
(c) If X is a topological space and γ:X × [a, b] → Y a continuous map, then the map

X → Y, x 7→
∫ b

a

γ(x, t) dt

is continuous.

Exercise II.13. Let X be a complete metric topological vector space (f.i. a Fréchet space) and
Y ⊆ X a closed subspace. Show that the following are equivalent:
(1) There exists a closed subspace Z ⊆ X for which the map S:Y ⊕ Z → X, (y, z) 7→ y + z is

bijective.
(2) There exists a closed subspace Z ⊆ X for which the map S:Y ⊕ Z → X is a topological

isomorphism.
(3) There exists a continuous projection p:X → X with p(X) = Y .
Hint: Open Mapping Theorem.
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Exercise II.14. Let V be a K-vector space and g a K-Lie algebra, where K is a field of
characteristic zero. We write Altp(V, g) for the linear space of p -linear alternating maps V p → g
and put Alt0(V, g) := g and Alt1(V, g) := Lin(V, g). On the space Alt(V, g) :=

⊕
p∈N0

Altp(V, g),
we then define a bilinear product by

[α, β](v1, . . . , vp+q) :=
1
p!q!

∑
σ∈Sp+q

sgn(σ)[α(vσ(1), . . . , vσ(p)), β(vσ(p+1), . . . , vσ(p+q))]

for α ∈ Altp(V, g) and β ∈ Altq(V, g). Show that this multiplication has the following properties
for α ∈ Altp(V, g), β ∈ Altq(V, g) and γ ∈ Altr(V, g):
(1) [α, β] = (−1)pq+1[β, α] .
(2) (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)qr[[γ, α], β] = 0 (graded Jacobi identity).
(3) Alt(V, g) is a Lie superalgebra with respect to the 2-grading defined by

Alt(V, g) := Alteven(V, g)⊕Altodd(V, g).

Exercise II.15. Let M be a smooth manifold and g a locally convex Lie algebra. Then the
product on the space Ω(M, g) :=

⊕
p∈N0

Ωp(M, g), defined in Proposition II.4.1(3) satisfies for
α ∈ Ωp(M, g), β ∈ Ωq(M, g) and γ ∈ Ωr(M, g):
(1) [α, β] = (−1)pq+1[β, α] .
(2) (−1)pr[[α, β], γ] + (−1)qp[[β, γ], α] + (−1)qr[[γ, α], β] = 0 (super Jacobi identity).
(3) Ω(M, g) is a Lie super-algebra with respect to the 2-grading defined by

Ω(M, g) := Ωeven(M, g)⊕ Ωodd(M, g).

Hint: If M is an open subset of a locally convex space, then we have the canonical embedding
Ωp(M, g) ↪→ Altp(V(M), C∞(M, g)) which is compatible with the product, and Exercise II.14
applies.

Exercise II.16. Let f :M → N be a smooth map between manifolds, πTM :TM → M the
tangent bundle projection and σM :M → TM the zero section. Show that

πTN ◦ Tf = f ◦ πTM and σN ◦ f = Tf ◦ σM .

Exercise II.17. Let M be a smooth manifold. Show that:
(a) For each vector field, the map C∞(M,K) → C∞(M,K), f 7→ LXf := X.f is a derivation.
(b) The map V(M) → der(C∞(M,K)), X 7→ LX from (a) is a homomorphism of Lie algebras.
(c) If M is an open subset of some locally convex space, then the map under (b) is injective.

Exercise II.18. Let M and N be smooth manifolds. The Ck -topology on the set Ck(M,N)
of smooth maps M → N is the topology obtained from the embedding

Ck(M,N) ↪→ C(T kM,T kN), f 7→ T kf,

where the space C(T kM,T kN) is endowed with the compact open topology. Show that:
(1) If M = U is open in a locally convex space E and N = F is a locally convex space, then the

Ck -topology on the space Ck(U,F ) coincides with the topology defined by the embedding

Ck(U,F ) ↪→
k∏

j=0

C(U × Ej , F ), f 7→ (f, df, . . . , dkf),

where each factor on the right hand side carries the compact open topology.
(2) If M = U is open in E := Kn and N = F is a locally convex space, then the Ck -topology

on the space Ck(U,F ) coincides with the topology defined by the seminorms

qK,j(f) := sup{(q ◦Djf)(x):x ∈ K},

for j ≤ m , K ⊆ U compact and q a continuous seminorm on F (cf. Example II.1.4). Hint:
Use that T jU ∼= U × E2j−1 and T jF ∼= F 2j

and describe the 2j -components of the map
T jf in terms of higher derivatives of f .
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Exercise II.19. If E and F are Banach spaces and L(E,F ) is endowed with the operator
norm, then the subset Iso(E,F ) ⊆ L(E,F ) of all topological isomorphisms E → F is an open
subset.

Exercise II.20. Let M be a smooth compact manifold. We endow the set C1(M,M) with
the C1 -topology (cf. Exercise II.18). Show that:
(1) The set Diff1

loc(M) of all maps f ∈ C1(M,M) for which each map df(x):Tx(M) → Tf(x)(N)
is a linear isomorphism (the set of local diffeomorphisms) is open. Hint: GLn(K) is open in
Mn(K).

(2) If f :M →M is a local diffeomorphism, then it is a covering map. It is a diffeomorphism if
and only if it is one-to-one.

(3)∗ For a local diffeomorphism f , the number n(f) := |f−1(x)| does not depend on x and it
defines a continuous function Diff1

loc(M) → N . Hint: Let q: M̂ →M denote the orientation
cover of M . Then f lifts to a map f̂ : M̂ → M̂ and n(f) = |deg(f̂)| holds for the mapping
degree deg(f̂) of f̂ which can be defined by f̂∗µ = deg(f̂)µ for a volume form µ on M̂ .

(4)∗ Show that the set of all local diffeomorphisms f with n(f) ≥ 2 is closed in the C1 -topology.
Hint: Use a Riemannian metric on M to see that for each c ∈]0, 1[, the set of all f with
‖df(x)v‖ ≥ c‖v‖ for all x ∈ M , v ∈ Tx(M), is closed and a neighborhood of each g
with ‖dg(x)v‖ > c

2‖v‖ for all x ∈ M , 0 6= v ∈ Tx(M). For any sequence fn → f with
fn(xn) = fn(yn) and fn → f , we may assume that xn → x , yn → y . Show that if xn 6= yn

for all n , then x 6= y and f(x) = f(y).
(5) Show that the group Diff1(M) of C1 -diffeomorphisms is an open subset of C1(M,M). Hint:

Use (3) or (4).

Exercise II.21. Let X1, . . . , Xk and Y be locally convex spaces. Show that for a k -linear
map m:X1 × . . .×Xk → Y , the following are equivalent:
(1) m is continuous.
(2) m is continuous in (0, 0, . . . , 0).
(3) m is continuous in some k -tuple (x1, . . . , xk).

III. Infinite-dimensional Lie groups

In this section, we give the definition of an infinite-dimensional (locally convex) Lie group
and explain how its Lie algebra can be defined in such a way that it defines a functor from the
category of Lie groups to the category of locally convex Lie algebras.

In our treatment of Lie groups, we basically follow [Mil83], but we do not assume that the
model space of a Lie group is complete (cf. also [GN05]).

Notation: Let G be a group and g ∈ G . We write
λg:G→ G, x 7→ gx for the left multiplication by g ,
ρg:G→ G, x 7→ xg for the right multiplication by g ,
mG:G×G→ G, (x, y) 7→ xy for the multiplication map, and
ηG:G→ G, x 7→ x−1 for the inversion.

In the following, K denotes either R or C .

III.1. Infinite-dimensional Lie groups and their Lie algebras

Definition III.1.1. A locally convex Lie group G is a locally convex manifold endowed with
a group structure such that the multiplication map and the inversion map are smooth. We shall
often write g := T1(G) for the tangent space in 1 .
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A morphism of Lie groups is a smooth group homomorphism. In the following, we shall
call locally convex Lie groups simply Lie groups. We write LieGrp for the so obtained category
of Lie groups.

Example III.1.2. (Vector groups) Each locally convex space V is an abelian Lie group with
respect to addition. In fact, we endow V with the obvious manifold structure and observe that
addition and inversion are smooth maps.

Example III.1.3. (Unit groups of CIAs) Let A be a continuous inverse algebra over K and
A× its unit group. As an open subset of A , the group A× carries a natural manifold structure.
The multiplication on A is bilinear and continuous, hence a smooth map (Remark II.2.7(b)).
Therefore the multiplication of A× is smooth.

It remains to see that the inversion η:A× → A× is smooth. Its continuity follows from the
assumption that A is a CIA. For a, b ∈ A× , we have b−1 − a−1 = a−1(a− b)b−1, which implies
that for t ∈ K sufficiently close to 0, we get

η(a+ th)− η(a) = (a+ th)−1 − a−1 = a−1(−th)(a+ th)−1 = −ta−1h(a+ th)−1.

Therefore the continuity of η implies that η is everywhere differentiable with

dη(a)(h) = lim
t→0

1
t
(η(a+ th)− η(a)) = lim

t→0
−a−1h(a+ th)−1 = −a−1ha−1.

Now the continuity of η implies that dη:A××A→ A is continuous, hence that η is a C1 -map.
With the Chain Rule and the smoothness of the multiplication, this in turn implies that dη is a
C1 -map, hence that η is C2 . Iterating this argument, we conclude that η is smooth.

Lemma III.1.4. Let G be a Lie group.
(a) The tangent map

TmG:T (G×G) ∼= TG× TG→ TG, (v, w) 7→ v · w := TmG(v, w)

defines a Lie group structure on TG with identity element 0 ∈ T1(G) = g and inversion TηG .
The canonical projection πTG:TG→ G is a morphism of Lie groups with kernel (g,+) and the
zero section σ:G→ TG, g 7→ 0g ∈ Tg(G) is a homomorphism of Lie groups with πTG ◦ σ = idG .

(b) Identifying g ∈ G with σ(g) ∈ TG , we write

(3.1.1) g.v := 0g · v, v.g := v · 0g for g ∈ G, v ∈ TG.

Then the map
Φ:G× g → TG, (g, x) 7→ g.x

is a diffeomorphism.

Proof. (a) Since the multiplication map mG:G × G → G is smooth, the same holds for its
tangent map

TmG:T (G×G) ∼= TG× TG→ TG.

Let {1} denote the trivial group, εG:G → {1} the constant homomorphism and uG: {1} → G
the group homomorphism representing the identity element. Then the group axioms for G are
encoded in the relations
(1) mG ◦ (mG × id) = mG ◦ (id×mG) (associativity),
(2) mG ◦ (ηG × id) = mG ◦ (id×ηG) = εG (inversion), and
(3) mG ◦ (uG × id) = mG ◦ (id×uG) = id (unit element).
Using the functoriality of T , we see that these properties carry over to the corresponding maps
on TG and show that TG is a Lie group with multiplication TmG , inversion TηG , and unit
element 0 = TuG(0) ∈ T1(G) = g .
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For the zero section σ:G → TG , we have TmG ◦ (σ × σ) = σ ◦mG, which means that it
is a morphism of Lie groups. That πTG is a morphism of Lie groups follows likewise from

πTG ◦ TmG = mG ◦ (πTG × πTG)

(cf. Exercise II.16).
We have for v, v′ ∈ g :

TmG(g.v, g′.v′) = TmG(g.v, g′.0) + TmG(g.0, g′.v′) = (g.v).g′ + gg′.v′

and in particular TmG(v, v′) = v + v′ , showing that kerπTG
∼= (g,+).

That the smooth map Φ is a diffeomorphism follows from Φ−1(v) = (πTG(v), πTG(v)−1.v).

Definition III.1.5. A vector field X ∈ V(G) is called left invariant if

X ◦ λg = T (λg) ◦X
holds for each g ∈ G if we consider X as a section X : G→ TG of the tangent bundle TG . We
write V(G)l for the set of left invariant vector fields in V(G). The left invariance of a vector field
X implies in particular that for each g ∈ G , we have X(g) = g.X(1) in the sense of (3.1.1) in
Lemma III.1.4. For each x ∈ g , we have a unique left invariant vector field xl ∈ V(G)l defined
by xl(g) := g.x , and the map

V(G)l → T1(G) = g, X 7→ X(1)

is a linear bijection. If X,Y are left invariant, then they are λg -related to themselves, and
Lemma II.3.8 implies that their Lie bracket [X,Y ] inherits this property, hence that [X,Y ] ∈
V(G)l . We thus obtain a unique Lie bracket [·, ·] on g satisfying

(3.1.2) [x, y]l = [xl, yl] for all x, y ∈ g.

Lemma III.1.6. For each g-chart (ϕ,U) of G with 1 ∈ U and ϕ(1) = 0 , the second order
Taylor polynomial in (0, 0) of the multiplication x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) is of the form

x+ y + b(x, y),

where b: g× g → g is a continuous bilinear map satisfying

(3.1.3) [x, y] = b(x, y)− b(y, x).

In particular, the Lie bracket on g = T1(G) is continuous.
Proof. We consider a chart ϕ:V → g of G , where V ⊆ G is an open 1-neighborhood and
ϕ(1) = 0. Let W ⊆ V be an open symmetric 1 -neighborhood with WW ⊆ V . Then we have
on the open set ϕ(W ) ⊆ g the smooth multiplication

x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)), x, y ∈ ϕ(W ).

From Tm(v, w) = v + w for v, w ∈ T1(G) we immediately see that the second order Taylor
polynomial of ∗ has the form x+ y+ b(x, y), where b: g× g → g is quadratic map, hence can be
written as

b(x, y) = β((x, y), (x, y))

for some continuous symmetric bilinear map β: (g × g)2 → g (Lemma II.2.3(iv)). Comparing
Taylor expansions of x ∗ 0 = 0 ∗ x = x up to second order implies that b(x, 0) = b(0, x) = 0, so
that

b(x, y) = β((x, 0), (0, y)) + β((0, y), (x, 0)).

It follows in particular that b is bilinear.
For x ∈ W , let λx:ϕ(W ) → g, y 7→ x ∗ y . Then the left invariant vector field vl

corresponding to v ∈ g is given on ϕ(W ) by vl(x) = dλx(0).v, and in 0 its first order Taylor
polynomial in 0 is v + b(x, v). Therefore, the Lie bracket on g satisfies

[v, w] = [vl, wl](0) = dwl(0).vl(0)− dvl(0).wl(0) = dwl(0).v − dvl(0).w = b(v, w)− b(w, v).

Definition III.1.7. The locally convex Lie algebra L(G) := (g, [·, ·]) is called the Lie algebra
of G .
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Proposition III.1.8. (Functoriality of the Lie algebra) If ϕ:G → H is a homomorphism of
Lie groups, then the tangent map

L(ϕ) := T1(ϕ):L(G) → L(H)

is a homomorphism of Lie algebras.

Proof. Let x, y ∈ g and xl, yl be the corresponding left invariant vector fields. Then
ϕ ◦ λg = λϕ(g) ◦ ϕ for each g ∈ G implies that

Tϕ ◦ xl = L(ϕ)(x)l ◦ ϕ and Tϕ ◦ yl = L(ϕ)(y)l ◦ ϕ,

and therefore
Tϕ ◦ [xl, yl] = [L(ϕ)(x)l,L(ϕ)(y)l] ◦ ϕ

(Lemma II.3.8). Evaluating at 1 , we obtain L(ϕ).[x, y] = [L(ϕ)(x),L(ϕ)(y)].

Remark III.1.9. We obviously have L(idG) = idL(G) , and for two morphisms ϕ1:G1 → G2

and ϕ2:G2 → G3 of Lie groups, we have

L(ϕ2 ◦ ϕ1) = L(ϕ2) ◦ L(ϕ1),

as a consequence of the Chain Rule.
The preceding lemma implies that the assignments G 7→ L(G) and ϕ 7→ L(ϕ) define a

functor
L:LieGrp→ lcLieAlg

from the category LieGrp of (locally convex) Lie groups to the category lcLieAlg of locally
convex Lie algebras.

Since each functor maps isomorphisms to isomorphisms, for each isomorphism of Lie groups
ϕ:G→ H , the map L(ϕ) is an isomorphism of locally convex Lie algebras.

Definition III.1.10. A locally convex Lie algebra g is said to be integrable if there exists a
Lie group G with L(G) ∼= g .

Although every finite-dimensional Lie algebra is integrable, integrability of infinite-dimen-
sional Lie algebras turns out to be a very subtle property. We shall discuss some interesting
examples in Section VI below.

We now have a look at the Lie algebras of the Lie groups from Examples II.1.2/3.

Examples III.1.11. (a) If G is an abelian Lie group, then the map b: g × g → g in
Lemma III.1.6 is symmetric, which implies that L(G) is abelian. This applies in particular
to the additive Lie group (V,+) of a locally convex space.

(b) Let A be a CIA. Then the map

ϕ:A× → A, x 7→ x− 1

is a chart of A× satisfying ϕ(1) = 0. In this chart, the group multiplication is given by

x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)) = (x+ 1)(y + 1)− 1 = x+ y + xy.

In the terminology of Lemma III.1.6, we then have b(x, y) = xy and therefore

[x, y] = xy − yx

is the commutator bracket in the associative algebra A .

Using the Lie group structures on tangent bundles, we can now also deal with groups of
smooth maps and diffeomorphism groups.
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Example III.1.12. (Groups of smooth maps) Let M be a manifold (possibly infinite-dimen-
sional) and K a Lie group with Lie algebra k . Then we obtain a natural topology on the group
G := C∞(M,K) as follows.

The tangent bundle TK of K is a Lie group (Lemma III.1.4). Iterating this procedure,
we obtain a Lie group structure on all higher tangent bundles TnK .

For each n ∈ N0 , we thus obtain topological groups C(TnM,TnK) by using the topology
of uniform convergence on compact subsets of TnM (Lemma B.3), which coincides with the
compact open topology (Proposition B.4). We also observe that for two smooth maps f1, f2:M →
K , the functoriality of T yields

T (f1 · f2) = T (mG ◦ (f1 × f2)) = T (mG) ◦ (Tf1 × Tf2) = Tf1 · Tf2.

Therefore the canonical inclusion map

C∞(M,K) ↪→
∏

n∈N0

C(TnM,TnK), f 7→ (Tnf)n∈N0

is a group homomorphism, so that the inverse image of the product topology on the right hand
side is a group topology on C∞(M,K). Therefore C∞(M,K) always carries a natural structure
of a topological group, even if M and K are infinite-dimensional.

Now we assume that M is compact. Then these topological groups can even be turned into
Lie groups modeled on the space g := C∞(M, k). The charts of G are obtained from those of
K as follows. If ϕK :UK → k is a chart of K , i.e., a diffeomorphism of an open subset UK ⊆ K
onto an open subset ϕ(UK) of k , then the set UG := {f ∈ G: f(M) ⊆ UK} is an open subset of
G (cf. Appendix B). Assume, in addition, that 1 ∈ UK and ϕK(1) = 0. Then we use the map

ϕG:UG → g, f 7→ ϕK ◦ f

as a chart of a 1 -neighborhood of G , and by combining it with left translates, we obtain an atlas
of G defining a Lie group structure (cf. Theorem II.2.1 below). For details we refer to [Gl01b],
resp., [GN05].

To calculate the Lie algebra of this group, we observe that for m ∈ M , we have for the
multiplication in local coordinates

(f ∗G g)(m) = ϕG

(
ϕ−1

G (f)ϕ−1
G (g)

)
(m) = ϕK

(
ϕ−1

K (f(m))ϕ−1
K (g(m))

)
= f(m) ∗K g(m) = f(m) + g(m) + bk(f(m), g(m)) + · · · .

In view of Lemma III.1.5, this implies that
(
bg(f, g)

)
(m) = bk(f(m), g(m)), and hence that

[f, g](m) = bg(f, g)(m)− bg(g, f)(m) = bk(f(m), g(m))− bk(g(m), f(m)) = [f(m), g(m)].

Therefore L(C∞(M,K)) = C∞(M, k), endowed with the pointwise defined Lie bracket.

Remark III.1.13. If M is a non-compact finite-dimensional manifold, then one cannot expect
the topological groups C∞(M,K) to be Lie groups. A typical example arises for M = N (a
0-dimensional manifold) and K = T := R/Z . Then C∞(M,K) ∼= TN is a topological group for
which no 1-neighborhood is contractible, so that it carries no smooth manifold structure.

Remark III.1.14. (The Lie algebra of a local Lie group) There is also a natural notion of a
local Lie group. The corresponding algebraic concept is that of a local group: Let G be a set
and D ⊆ G×G a subset on which we are given a map

mG:D → G, (x, y) 7→ xy.

We say that the product xy of two elements x, y ∈ G is defined if (x, y) ∈ D . The quadruple
(G,D,mG,1), where 1 is a distinguished element of G , is called a local group if the following
conditions are satisfied:
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(1) Suppose that xy and yz are defined. If (xy)z or x(yz) is defined, then the other product
is also defined and both are equal.

(2) For each x ∈ G , the products x1 and 1x are defined and equal to x .
(3) For each x ∈ G , there exists a unique element x−1 ∈ G such that xx−1 and x−1x are

defined and xx−1 = x−1x = 1 .
(4) If xy is defined, then y−1x−1 is defined.

If (G,D,mG,1) is a local group and, in addition, G has a smooth manifold structure, D
is open, and the maps

mG:D → G, ηG:G→ G, x 7→ x−1

are smooth, then G , resp., (G,D,mG,1) is called a local Lie group.
Let G be a local Lie group and g := T1(G). For each x ∈ g = T1(G), we then obtain a

left invariant vector field xl(g) := g.x := 0g · x . One can show that the Lie bracket of two left
invariant vector fields is again left invariant and that we thus obtain a Lie algebra structure on g
(Exercise III.1). Describing the multiplication in a local chart ϕ:V → g with ϕ(1) = 0, we can
argue as in the proof of Lemma III.1.6 that its second order Taylor polynomial is of the form
x+ y + b(x, y) with a continuous bilinear map b: g× g → g satisfying

[x, y] = b(x, y)− b(y, x).

We conclude that L(G) := L(G,D,mG,1) := (g, [·, ·]) is a locally convex Lie algebra. For more
details on local Lie groups we refer to [GN05].

The adjoint representation

The adjoint action is a crucial structure element of a Lie group G . It is the representation
of G on L(G) obtained by taking derivatives in 1 for the conjugation action of G on itself. In
this sense, it is a linearized picture of the non-commutativity of G .

Definition III.1.15. Let G be a Lie group. Then for each g ∈ G the map

cg:G→ G, x 7→ gxg−1,

is a smooth automorphism, hence induces a continuous linear automorphism

Ad(g) := L(cg): g → g.

We thus obtain an action G× g → g, (g, x) 7→ Ad(g).x called the adjoint action of G on g .
If g′ := L(g,K) denotes the topological dual of g , then we also obtain a representation on

g′ by Ad∗(g).f := f ◦ Ad(g)−1 , called the coadjoint action. Since we do not endow g′ with a
topology, we will not specify any smoothness or continuity properties of this action.

Proposition III.1.16. The adjoint action Ad:G × g → g, (g, x) 7→ Ad(g).x is smooth. The
operators

adx: g → g, adx(y) := T Ad(x, 0y) satisfy adx(y) = [x, y].
Proof. The smoothness of the adjoint action of G on g follows directly from the smoothness
of the multiplication of the Lie group TG because Ad(g).x = (g.x).g−1 (Lemma III.1.4).

To calculate the linear maps adx: g → g , we consider a local chart ϕ:V → g of G , where
V ⊆ G is an open 1 -neighborhood and ϕ(1) = 0.

For x ∈ ϕ(W ), we write α1(x) + α2(x) for the second order Taylor polynomial of the
inversion map x 7→ x−1 , where α1 is linear and α2 is quadratic. Comparing Taylor expansions
in 0 of

0 = x ∗ x−1 = x+ α1(x) + α2(x) + b(x, α1(x)) + . . .

(Lemma III.1.6), we get α1(x) = −x and α2(x) = −b(x,−x) = b(x, x). Therefore

(x ∗ y) ∗ x−1 =
(
x+ y + b(x, y)

)
+

(
− x+ b(x, x)

)
+ b(x+ y,−x) + · · ·

= y + b(x, y)− b(y, x) + · · ·
by the Chain Rule for Taylor polynomials, and by taking the derivative w.r.t. x in 0 in the
direction z , we eventually get ad z(y) = b(z, y)− b(y, z) = [z, y].
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The diffeomorphism group

Proposition III.1.17. Let G be a Lie group and σ:M × G → M, (m, g) 7→ m.g a smooth
right action of G on the smooth manifold M . Then the map Tσ:TM × TG→ TM is a smooth
right action of TG on TM . The assignment

σ̇: g → V(M), with σ̇(x)(m) := dσ(m,1)(0, x) = Tσ(0m, x)

is a homomorphism of Lie algebras.

Proof. That Tσ defines an action of TG on TM follows in the same way as in Lemma III.1.4
above by applying T to the commutative diagrams defining a right action of a group.

To see that σ̇ is a homomorphism of Lie algebras, we pick m ∈ M and write ϕm:G →
M, g 7→ m.g for the smooth orbit map of m . Then the equivariance of ϕm means that
ϕm ◦ λg = ϕm.g . From this we derive

dϕm(g)xl(g) = dϕm(g)dλg(1)x = dϕm.g(1)x = σ̇(x)(m.g),

i.e., the left invariant vector field xl is ϕm -related to σ̇(x). Therefore Lemma II.3.8 implies that

σ̇([x, y])(m) = dϕm(1)[x, y]l(1) = dϕm(1)[xl, yl](1) = [σ̇(x), σ̇(x)](m).

Corollary III.1.18. If σ:G×M →M is a smooth left aftion of G on M , then

σ̇: g → V(M), with σ̇(x)(m) := −Tσ(x, 0m)

is a homomorphism of Lie algebras.

Proof. If σ is a smooth left action, then σ̃(m, g) := σ(m, g−1) is a smooth right action and
T σ̃(0m, x) = −Tσ(x, 0m) follows from the Chain Rule and dηG(1)x = −x .

Example III.1.19. Let M be a compact manifold and g = V(M), the Lie algebra of smooth
vector fields on M . We now explain how the group Diff(M) can be turned into a Lie group,
modeled on g .

We shall see in Section IV below that, although Diff(M) has a smooth exponential function,
it is not a local diffeomorphism of a 0-neighborhood in g onto an identity neighborhood in G .
Therefore we cannot use it to define charts for G . But there is an easy way around this problem.

Let g be a Riemannian metric on M and Exp:TM → M be its exponential function,
which assigns to v ∈ Tm(M) the point γ(1), where γ: [0, 1] → M is the geodesic segment with
γ(0) = m and γ′(0) = v . We then obtain a smooth map

Φ:TM →M ×M, v 7→ (m,Exp v), v ∈ Tm(M).

There exists an open neighborhood U ⊆ TM of the zero section such that Φ maps U diffeo-
morphically onto an open neighborhood of the diagonal in M ×M . Now

Ug := {X ∈ V(M):X(M) ⊆ U}

is an open subset of the Fréchet space V(M), and we define a map

ϕ:Ug → C∞(M,M), ϕ(X)(m) := Exp(X(m)).

It is clear that ϕ(0) = idM . One can show that after shrinking Ug to a sufficiently small 0-
neighborhood in the C1 -topology on V(M), we may achieve that ϕ(Ug) ⊆ Diff(M). To see that
Diff(M) carries a Lie group structure for which ϕ is a chart, one has to verify that the group
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operations are smooth in a 0-neighborhood when transfered to Ug via ϕ , so that Theorem III.2.1
below applies. We thus obtain a Lie group structure on Diff(M) (cf. [GN05]).

From the smoothness of the map Ug × M → M, (X,m) 7→ ϕ(X)(m) = Exp(X(m)) it
follows that the canonical left action σ: Diff(M) ×M → M, (ϕ,m) 7→ ϕ(m) is smooth in an
identity neighborhood of Diff(M), and hence smooth, because it is an action by smooth maps.
The corresponding homomorphism of Lie algebras σ̇:L(Diff(M)) → V(M) is given by

σ̇(X)(m) = −Tσ(X, 0m) = −(dExp)0m
(X(m)) = −X(m),

i.e., σ̇ = − idV(M) . This leads to

L(Diff(M)) = (V(M), [·, ·])op.

This “wrong” sign is caused by the fact that we consider Diff(M) as a group acting on M
from the left. If we consider it as a group acting on the right, we obtain the opposite multiplication

ϕ ∗ ψ := ψ ◦ ϕ,

and
L(Diff(M)op) ∼= (V(M), [·, ·])

follows from Proposition III.1.17.
The tangent bundle of Diff(M) can be identified with the set

T (Diff(M)) := {X ∈ C∞(M,TM):πTM ◦X ∈ Diff(M)},

where the map
π:T (Diff(M)) → Diff(M), X 7→ πTM ◦X

is the bundle projection. Then

Tϕ(Diff(M)) := π−1(ϕ) = {X ∈ C∞(M,TM):πTM ◦X = ϕ}

is the tangent space in the diffeomorphism ϕ . The multiplication in the group T (Diff(M)) is
given by the formula

X · Y := πT 2M ◦ TX ◦ Y,

where πT 2M :T 2M → TM is the natural projection. Note that

πTM ◦ (X · Y ) = πTM ◦ πT 2M ◦ TX ◦ Y = πTM ◦X ◦ πTM ◦ Y

shows that π is a group homomorphism. Identifying ϕ ∈ Diff(M) with the origin in Tϕ(Diff(M)),
we get

X · ϕ = πT 2M ◦ TX ◦ ϕ = X ◦ ϕ and ϕ ·X = πT 2M ◦ Tϕ ◦X = Tϕ ◦X.

In particular, this leads to the formula

Ad(ϕ).X = Tϕ ◦X ◦ ϕ−1

for the adjoint action of Diff(M) on T0(Diff(M)) = V(M).
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III.2. From local data to global Lie groups

The following theorem is helpful to obtain Lie group structures on groups.

Theorem III.2.1. Let G be a group and U = U−1 a symmetric subset. We further assume
that U is a smooth manifold such that
(L1) there exists an open 1-neighborhood V ⊆ U with V 2 = V · V ⊆ U such that the group

multiplication mV :V × V → U is smooth,
(L2) the inversion map ηU :U → U, u 7→ u−1 is smooth, and
(L3) for each g ∈ G there exists an open 1-neighborhood Ug ⊆ U with cg(Ug) ⊆ U and such that

the conjugation map cg:Ug → U, x 7→ gxg−1 is smooth.
Then there exists a unique Lie group structure on G for which there exists an open 1-

neighborhood U0 ⊆ U such that the inclusion map U0 → G induces a diffeomorphism onto an
open subset of G .

Proof. (cf. [Ch46, §14, Prop. 2] or [Ti83, p.14] for the finite-dimensional case) First we consider
the filter basis F consisting of all 1 -neighborhoods in U . In the terminology of Lemma B.2,
(L1) implies (U1), (L2) implies (U2), and (L3) implies (U3). Moreover, the assumption that U
is Hausdorff implies that

⋂
F = {1} . Therefore Lemma B.2 implies that G carries a unique

structure of a (Hausdorff) topological group for which F is a basis of 1 -neighborhoods.
After shrinking V and U , we may assume that there exists a diffeomorphism ϕ:U →

ϕ(U) ⊆ E , where E is a topological K-vector space, ϕ(U) an open subset, that V satisfies
V = V −1 , V 4 ⊆ U , and that mV :V 2 × V 2 → U is smooth. For g ∈ G , we consider the maps

ϕg: gV → E, ϕg(x) = ϕ(g−1x)

which are homeomorphisms of gV onto ϕ(V ). We claim that (ϕg, gV )g∈G is an E -atlas of G .
Let g1, g2 ∈ G and put W := g1V ∩ g2V . If W 6= Ø, then g−1

2 g1 ∈ V V −1 = V 2 . The
smoothness of the map

ψ := ϕg2 ◦ ϕ−1
g1
|ϕg1 (W ):ϕg1(W ) → ϕg2(W )

given by
ψ(x) = ϕg2(ϕ

−1
g1

(x)) = ϕg2(g1ϕ
−1(x)) = ϕ(g−1

2 g1ϕ
−1(x))

follows from the smoothness of the multiplication V 2 × V 2 → U . This proves that (ϕg, gU)g∈G

is an atlas of G . Moreover, the construction implies that all left translations of G are smooth
maps.

The construction also shows that for each g ∈ G , the conjugation cg:G → G is smooth
in a neighborhood of 1 . Since all left translations are smooth, and cg ◦ λx = λcg(x) ◦ cg, the
smoothness of cg in a neighborhood of x ∈ G follows. Therefore all conjugations and hence also
all right multiplications are smooth. The smoothness of the inversion follows from its smoothness
on V and the fact that left and right multiplications are smooth. Finally the smoothness of the
multiplication follows from the smoothness in 1× 1 because

mG(g1x, g2y) = g1xg2y = g1g2cg−1
2

(x)y = g1g2mG(cg−1
2

(x), y).

The uniqueness of the Lie group structure is clear, because each locally diffeomorphic bijective
homomorphism between Lie groups is a diffeomorphism.

Remark III.2.2. Suppose that the group G in Theorem III.2.1 is generated by each 1-
neighborhood V in U . Then condition (L3) can be omitted. Indeed, the construction of the
Lie group structure shows that for each g ∈ V , the conjugation cg:G → G is smooth in a
neighborhood of 1 . Since the set of all these g is a submonoid of G containing V , it contains
V n for each n ∈ N , hence all of G because G is generated by V . Therefore all conjugations are
smooth, and one can proceed as in the proof of Theorem III.2.1.



38 monas.tex January 9, 2006

Corollary III.2.3. Let G be a group and N E G a normal subgroup that carries a Lie group
structure. Then there exists a Lie group structure on G for which N is an open subgroup if and
only if for each g ∈ G the restriction cg |N is a smooth automorphism of N .

Proof. If N is an open normal subgroup of the Lie group G , then clearly all inner automor-
phisms of G restrict to smooth automorphisms of N .

Suppose, conversely, that N is a normal subgroup of the group G which is a Lie group and
that all inner automorphisms of G restrict to smooth automorphisms of N . Then we can apply
Theorem III.2.1 with U = N and obtain a Lie group structure on G for which the inclusion
N → G is a local diffeomorphism, hence a diffeomorphism onto an open subgroup of G .

For the following corollary we recall that a surjective morphism ϕ:G → H of topological
groups is called a covering if it is an open map with discrete kernel.

Corollary III.2.4. Let ϕ:G → H be a covering of topological groups. If G or H is a Lie
group, then the other group has a unique Lie group structure for which ϕ is a morphism of Lie
groups which is a local diffeomorphism.

Proof. Since ϕ is a covering, it is a local homeomorphism, so that there exists an open
symmetric 1 -neighborhood W ⊆ G such that ϕW := ϕ |W :W → ϕ(W ) is a homeomorphism.
We only have to choose W so small that we have WW−1 ∩ kerϕ = {1} to ensure that ϕW is
injective.

Suppose first that G is a Lie group. Then we apply Theorem III.2.1 with U := ϕ(W ).
To verify (L1), we choose W1 ⊆ W open with W1W1 ⊆ W and put V := ϕ(W1), and for (L3)
we note that the surjectivity of ϕ implies that for each h ∈ H , there is an element g ∈ G
with ϕ(g) = h . Now we choose an open 1 -neighborhood Wg ⊆ W with cg(Wg) ⊆ W and put
Uh := ϕ(Wg).

If, conversely, H is a Lie group, then we put U := W , as V we choose any open 1-
neighborhood with V V ⊆ U , and as Ug we may also choose any open 1 -neighborhood with
cg(Ug) ⊆ U .

Corollary III.2.5. Let G be a Lie group.
(1) If N E G is a discrete subgroup, then the quotient G/N carries a unique Lie group structure

for which the quotient map q:G→ G/N is a local diffeomorphism.
(2) If G is connected and qG: G̃→ G the universal covering group, then G̃ carries a unique Lie

group structure for which qG is a local diffeomorphism.

Proof. (1) follows directly from Corollary III.2.4, because the quotient map G → G/N is a
covering.

(2) We first have to construct a topological group structure on the universal covering
space G̃ . Pick an element 1̃ ∈ q−1

G (1). Then the multiplication map mG:G × G → G lifts
uniquely to a continuous map m̃G: G̃×G̃→ G̃ with m̃G(1̃, 1̃) = 1̃ . To see that the multiplication
map m̃G is associative, we observe that

qG ◦ m̃G ◦ (id
G̃
×m̃G) = mG ◦ (qG × qG) ◦ (id

G̃
×m̃G) = mG ◦ (idG×mG) ◦ (qG × qG × qG)

= mG ◦ (mG × idG) ◦ (qG × qG × qG) = qG ◦ m̃G ◦ (m̃G × id
G̃

),

so that the two continuous maps

m̃G ◦ (id
G̃
×m̃G), m̃G ◦ (m̃G × id

G̃
): G̃3 → G,

are lifts of the same map G3 → G and both map (1̃, 1̃, 1̃) to 1̃ . Hence the uniqueness of
lifts implies that m̃G is associative. We likewise obtain that the unique lift η̃G: G̃ → G̃ of the
inversion map ηG:G→ G with η̃G(1̃) = 1̃ satisfies

m̃G ◦ (ηG × id
G̃

) = 1̃ = m̃G ◦ (id
G̃
×ηG).

Therefore m̃G defines on G̃ a topological group structure such that qG: G̃ → G is a covering
morphism of topological groups. Now Corollary III.2.4 applies.
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Remark III.2.6. If qG: G̃ → G is the universal covering morphism of a connected Lie group
G , then ker qG is a discrete normal subgroup of the connected group G̃ , hence central (Exer-
cise III.3). Left multiplications by elements of this group lead to deck transformations of the
covering G̃→ G , and this shows that π1(G) ∼= ker qG as groups.

Clearly, G ∼= G̃/ ker qG . If, conversely, Γ ⊆ G̃ is a discrete central subgroup, then G̃/Γ
is a Lie group with the same universal covering group as G . Two such groups G̃/Γ1 and
G̃/Γ2 are isomorphic if and only if there exists a Lie group automorphism ϕ ∈ Aut(G̃) with
ϕ(Γ1) = Γ2 . Therefore the isomorphism classes of Lie groups with the same universal covering
group G are parametrized by the orbits of the group Aut(G̃) in the set S of discrete central
subgroups of G̃ . Since the normal subgroup Inn(G̃) := {cg: g ∈ G̃} of inner automorphisms
acts trivially on this set, the action of Aut(G̃) on S factors through an action of the group
Out(G̃) := Aut(G̃)/ Inn(G̃).

Since each automorphism ϕ ∈ Aut(G) lifts to a unique automorphism ϕ̃ ∈ Aut(G̃) (Exer-
cise!), we have a natural embedding Aut(G) ↪→ Aut(G̃), and the image of this homomorphism
consists of the stabilizer of the subgroup ker qG ⊆ Z(G̃).

Exercises for Section III

Exercise III.1. Let (G,D,mG,1) be a local Lie group. Show that:
(1) For g, h, u ∈ G with (g, h), (h, u), (gh, u) ∈ D , we have

dλg(h) ◦ dλh(u) = dλgh(u).

Hint: Show that λg ◦ λh = λgh on a neighborhood of u .
(2) For the open set Dg := {h ∈ G: (g, h) ∈ D} and the smooth map

λg:Dg → G, h 7→ gh

the vector field defined by xl(u) := dλu(1).x satisfies the left invariance condition

xl ◦ λg = T (λg) ◦ xl |Dg
.

(3) Show that the set V(G)l of left invariant vector fields on G is a Lie subalgebra of the Lie
algebra V(G) and show that this leads to a Lie bracket on g = T1(G).

(4) The tangent bundle TG of G carries a local Lie group structure (TG, TD, TmG, 01).
(5) If ϕ:G→ H is a morphism of local Lie groups, then L(ϕ) := dϕ(1) is a homomorphism of

Lie algebras.
(6) For x ∈ G and (x, y), (y, x−1), (xy, x−1) ∈ D , we put cx(y) := (xy)x−1 and note that this

map is defined on some neighborhood of 1 . If (x, y) ∈ D , then cx ◦ cy = cxy holds on a
neighborhood of 1 .

(7) Ad:G→ Aut(g), g 7→ L(cg) is a homomorphism of the local group G to the group Aut(g).

Exercise III.2. Let G be an abelian group and N ≤ G a subgroup carrying a Lie group
structure. Then there exists a unique Lie group structure on G for which N is an open subgroup.
Hint: Corollary III.2.3.

Exercise III.3. Let G be a connected topological group and Γ E G a discrete normal
subgroup. Then Γ is central.

Exercise III.4. Let A be a CIA and M a compact smooth manifold. Show that C∞(M,A) is
a CIA with respect to the natural topology on this algebra which is obtained from the embedding

C∞(M,A) ↪→
∏

p∈N0

C(T pM,T pA),

where the right hand side carries the product topology and on each factor the topology of compact
convergence (which, in view of Appendix B, coincides with the compact open topology).
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Exercise III.5. Let G be a Lie group and TnG , n ∈ N , its iterated tangent bundles. Show
that:
(1) TG ∼= (g,+) oAd G .
(2) The adjoint action of G on g induces an action T Ad of TG ∼= g oG on Tg ∼= g× g , given

by
(T Ad)(x, g)(v, w) = (Ad(g).v + [x,Ad(g).w],Ad(g).w).

(3) T 2G ∼= (g× g) oT Ad (g oG). The multiplication in this group satisfies

(x2, x1, x0,1)(x′2, x
′
1, x
′
0,1) = (x2 + x′2 + [x0, x

′
1], x1 + x′1, x0 + x′0).

(4) Generalize (3) to T 3G .
(5) TnG ∼= N oG , where N is a nilpotent Lie group diffeomorphic to g2n−1 .

Exercise III.6. (a) Let m:G×G→ G be a smooth associative multiplication on the manifold
G with identity element 1 . Show that the differential in (1,1) is given by

dm(1,1):T1(G)× T1(G) → T1(G), (v, w) 7→ v + w.

(b) Show that the smoothness of the inversion in the definition of a Banach–Lie group is redundant
because the Inverse Function Theorem can be applied to the map

G×G→ G×G, (x, y) 7→ (x, xy)

whose differential in (1,1) is given by the map (v, w) 7→ (v, v + w).

Exercise III.7. Let G be a Lie group with Lie algebra g and ϕ:UG → g a local chart with
ϕ(1) = 0. Show that:
(1) For the local multiplication x ∗ y := ϕ(ϕ−1(x)ϕ−1(y)), the second order Taylor polynomial

of x ∗ y ∗ x−1 ∗ y−1 in (0, 0) is the Lie bracket [x, y] .
(2) Use (1) to show that for each morphism of Lie groups ϕ:G → H , the map dϕ(1) is a

homomorphism of Lie algebras. Hint: Compare the second order Taylor polynomials of
ϕ(x) ∗ ϕ(y) ∗ ϕ(x)−1 ∗ ϕ(y)−1 and ϕ(x ∗ y ∗ x−1 ∗ y−1) by using the Chain Rule for Taylor
polynomials.

Exercise III.8. Let G be a Lie group, V a locally convex space and σ:G× V → V a smooth
linear action of G on V . Then all vector fields σ̇(x), x ∈ g , are linear, and we thus obtain a
representation of Lie algebras L(σ): g → gl(V ) with L(σ)(x)v = −σ̇(x)(v).

Exercise III.9. Let G and N be Lie groups and ϕ:G → Aut(N) be a homomorphism such
that the map G × N → N, (g, n) 7→ ϕ(g)(n) is smooth. Then the semi-direct product group
N oG with the multiplication

(n, g)(n′, g′) := (nϕ(g)(n′), gg′)

is a Lie group with Lie algebra n oL(ϕ) g , where L(ϕ): g → der(n) is the derived representations
(cf. Exercise III.8).

IV. The Fundamental Theorem for Lie group-valued functions

In this section, we undertake a systematic study of Lie group-valued functions. In the
same way as a smooth function f :M → V on a connected manifold M with values in a locally
convex space V is determined by a value in one-point and the differential form df ∈ Ω1(M,V ),
we can associate to a smooth function f :M → G with values in a Lie group a smooth 1-form



Monastir Summer School: Infinite-Dimensional Lie Groups 41

δ(f) ∈ Ω1(M, g). We shall see that if M is connected, then δ(f) determines f up to left
multiplication by a constant. Conversely, we can ask which g-valued 1-forms α are integrable in
the sense that α = δ(f) for some smooth function f :M → G . For the special case M = [0, 1],
this leads to the concept of a regular Lie group and finally the Fundamental Theorem for Lie
group-valued functions gives necessary and sufficient conditions for α ∈ Ω1(M, g) to be integrable
in the sense that it is of the form δ(f).

The main point of this setup is that g-valued 1-forms are much simpler objects than
Lie group-valued functions. In particular, each Lie algebra homomorphism ϕ:L(G) → L(H)
defines an L(H)-valued 1-form on G which is integrable if and only if there exists a Lie group
homomorphism ψ:G → H with L(ψ) = ϕ . If G is 1-connected and H is regular, such a
homomorphism always exists.

IV.1. Logarithmic derivatives and their applications

Equivariant differential forms and Lie algebra cohomology

Definition IV.1.1. Let G be a Lie group and V a smooth locally convex G-module, i.e., V
is a locally convex space and the action map ρV :G × V → V, (g, v) 7→ g.v is smooth. We write
ρV (g)(v) := g.v for the corresponding continuous linear automorphisms of V .

We call a p -form α ∈ Ωp(G,V ) equivariant if we have for each g ∈ G the relation

λ∗gα = ρV (g) ◦ α.

We write Ωp(G,V )G for the subspace of equivariant p -forms in Ωp(G,V ) and note that this is
the space of G -fixed elements with respect to the action given by g.α := ρV (g) ◦ (λg−1)∗α . *

If V is a trivial module, then an equivariant form is a left invariant V -valued form on G .
An equivariant p -form α is uniquely determined by the corresponding element α1 ∈ Cp

c (g, V ) =
Altp(g, V ) (cf. Appendix C):

(4.1.1) αg(g.x1, . . . , g.xp) = ρV (g) ◦ α1(x1, . . . , xp)

for g ∈ G, xi ∈ g .
Conversely, (4.1.1) provides for each ω ∈ Cp

c (g, V ) a unique equivariant p -form ωeq on G
with ωeq

1 = ω .

The following proposition shows that the complex of equivariant differential forms is the
same as the Lie algebra complex associated to the g-module V .

Proposition IV.1.2. For each ω ∈ Cp
c (g, V ) , we have d(ωeq) = (dgω)eq . In particular, the

evaluation map
ev1: Ωp(G,V )G → Cp

c (g, V ), ω 7→ ω1

defines an isomorphism from the chain complex (Ω•(G,V )G, d) of equivariant V -valued differ-
ential forms on G to the continuous V -valued Lie algebra complex (C•c (g, V ), dg) .

Proof. (cf. [ChE48, Th. 10.1]) For g ∈ G , we have

λ∗gdω
eq = dλ∗gω

eq = d(ρV (g) ◦ ωeq) = ρV (g) ◦ (dωeq),

showing that dωeq is equivariant.

* The complex (Ω•(G,V )G, d) of equivariant differential forms has been introduced in the
finite-dimensional setting by Chevalley and Eilenberg in [ChE48].



42 monas.tex January 9, 2006

For x ∈ g , we write xl(g) := g.x for the corresponding left invariant vector field on G . In
view of (4.1.1), it suffices to calculate the value of dωeq on (p+ 1)-tuples of left invariant vector
fields in the identity element. From

ωeq(x1,l, . . . , xp,l)(g) = ρV (g).ω(x1, . . . , xp),

we obtain (
x0,l.ω

eq(x1,l, . . . , xp,l)
)
(1) = x0.ω(x1, . . . , xp),

and therefore(
dωeq(x0,l, . . . , xp,l

))
(1)

=
p∑

i=0

(−1)ixi,l.ω
eq(x0,l, . . . , x̂i,l, . . . , xp,l)(1)

+
∑
i<j

(−1)i+jωeq([xi,l, xj,l], x0,l, . . . , x̂i,l, . . . , x̂j,l, . . . , xp,l)(1)

=
p∑

i=0

(−1)ixi.ω(x0, . . . , x̂i, . . . , xp) +
∑
i<j

(−1)i+jω([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp)

= (dgω)(x0, . . . , xp).

This proves our assertion.

Maurer–Cartan forms and logarithmic derivatives

For the following definition, we recall from Lemma III.1.4 that for each Lie group G ,
the tangent bundle TG has a natural Lie group structure containing G as the zero section.
Restricting the multiplication of TG to G× TG , we obtain in particular a smooth left action of
G on TG which we simply write (g, v) 7→ g.v .

Definition IV.1.3. (a) For v ∈ Tg(G), we define κG(v) := g−1.v ∈ g = T1(G) and note that
this defines a smooth 1-form κG ∈ Ω1(G, g) because the multiplication in the Lie group TG is
smooth. This form is called the (left) Maurer–Cartan form of G . It is a left invariant g-valued
1-form on G .

(b) Let M be a smooth manifold and G a Lie group with Lie algebra L(G) = g . For an
element f ∈ C∞(M,G), we define the (left) logarithmic derivative as the g-valued 1-form

δ(f) := f∗κG ∈ Ω1(M, g).

For v ∈ Tm(M), this means that δ(f)m(v) = f(m)−1.(df)m(v) = f(m)−1Tf(v).
We call α ∈ Ω1(M, g) G-integrable if there exists a smooth function f :M → G with

δ(f) = α .
(c) If M = I is an interval, then we identify Ω1(I, g) with C∞(I, g) by identifying the

smooth function ξ: I → g with the 1-form ξ · dt . In this sense, we can interprete for a smooth
curve γ: I → G the logarithmic derivative δ(γ) = γ∗κG as a smooth curve in g . Explicitly, we
have

δ(γ)(t) = γ(t)−1.γ′(t).

We recall from Definition II.4.1 that on the space Ω•(M, g) of g-valued differential forms
on M we have a natural bracket

Ωp(M, g)× Ωq(M, g) → Ωp+q(M, g), (α, β) 7→ [α, β]

which for α, β ∈ Ω1(M, g) satisfies for v, w ∈ Tm(M)

[α, β]m(v, w) = [αm(v), βm(w)]− [αm(w), βm(v)] = 2[αm(v), βm(w)]

(Exercise II.15).
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Lemma IV.1.4. (Product and Quotient Rule) For smooth functions f, g:M → G , we have

(4.1.2) δ(fg) = δ(g) + Ad(g)−1.δ(f),

where (Ad(g)−1.δ(f))m := Ad(g(m))−1 ◦ δ(f)m . In particular, we have

(4.1.3) δ(f−1) = −Ad(f).δ(f).

Proof. Clearly the pointwise product is a smooth function fg:M → G . With the Chain Rule
we obtain

d(fg)m = f(m).(dg)m + (df)m.g(m),

and this leads to

δ(fg)m = (fg)(m)−1.d(fg)m = g(m)−1.(dg)m + g(m)−1f(m)−1.(df)m.g(m)

= δ(g)m + Ad(g(m))−1 ◦ δ(f)m,

which is (4.1.2). Putting g = f−1 , we obtain (4.1.3).

The following lemma provides a uniqueness result for the equation δ(f) = α .

Lemma IV.1.5. (Uniqueness Lemma) If two smooth functions f1, f2:M → G have the same
left logarithmic derivative and M is connected, then there exists g ∈ G with f1 = λg ◦ f2 .

Proof. We have to show that the function x 7→ f1(x)f2(x)−1 is locally constant, hence
constant, because M is connected. First we obtain with Lemma IV.1.4

δ(f1f−1
2 ) = δ(f−1

2 ) + Ad(f2)δ(f1) = δ(f−1
2 ) + Ad(f2)δ(f2) = δ(f2f−1

2 ) = 0.

This implies that d(f1f−1
2 ) vanishes, and hence that f1f−1

2 is locally constant.

For the existence of a solution of the equation δ(f) = α , the following lemma provides a
necessary condition.

Lemma IV.1.6. If α = δ(f) for some f ∈ C∞(M,G) , then α satisfies the Maurer–Cartan
equation

(MC) dα+
1
2
[α, α] = 0.

Proof. We first show that κG satisfies the MC equation. For that, we observe that the
isomorphism of chain complexes

ev1: Ωp(G, g)G → Cp
c (g, g), ω 7→ ω1,

corresponding to the trivial action of G on g is compatible with the bracket defined on both
sides (cf. Exercise II.15). Since κG = (idg)eq and

(dg idg)(x, y) = − idg([x, y]) = −[x, y] = −1
2
[idg, idg](x, y),

we derive
dg idg +

1
2
[idg, idg]

in C2
c (g, g), and with Proposition IV.1.2 this leads to

dκG +
1
2
[κG, κG] = 0.

Therefore α = f∗κG satisfies

dα = f∗dκG = −1
2
f∗([κG, κG]) = −1

2
[f∗κG, f

∗κG] = −1
2
[α, α],

which is the Maurer–Cartan equation for α .
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Remark IV.1.7. If M is one-dimensional, then each g-valued 2-form on M vanishes, so that
[α, β] = 0 = dα for α, β ∈ Ω1(M, g). Therefore all 1-forms trivially satisfy the Maurer–Cartan
equation.

Proposition IV.1.8. Let G and H be Lie groups.
(1) If ϕ:G→ H is a morphism of Lie groups, then δ(ϕ) = L(ϕ) ◦κG. For any smooth function

f :M → G , we have δ(ϕ ◦ f) = L(ϕ) ◦ δ(f) .
(2) If G is connected and ϕ1, ϕ2 : G → H are morphisms of Lie groups with L(ϕ1) = L(ϕ2) ,

then ϕ1 = ϕ2 .
(3) Suppose that we are given a smooth action of the connected Lie group G on H by auto-

morphisms, so that we also obtain a smooth action of G on h = L(H) . Then for a smooth
function f :G→ H with f(1) = 1 the following are equivalent:
(a) δ(f) is an equivariant h-valued 1-form on G .
(b) f(gx) = f(g) · g.f(x) for g, x ∈ G , i.e., f is a crossed homomorphism.

Proof. (1) For g ∈ G , we have ϕ ◦ λg = λϕ(g) ◦ ϕ , so that

δ(ϕ)g = d(λ−1
ϕ(g) ◦ ϕ)g = d(ϕ ◦ λ−1

g )g = (dϕ)(1) ◦ dλ−1
g (g) = L(ϕ) ◦ (κG)g.

For any smooth function f :M → G , we now get

δ(ϕ ◦ f) = f∗ϕ∗κH = f∗(L(ϕ) ◦ κG) = L(ϕ) ◦ f∗κG = L(ϕ) ◦ δ(f).

(2) In view of (1), δ(ϕ1) = δ(ϕ2), so that the assertion follows from ϕ1(1) = ϕ2(1) and
Lemma IV.1.3.

(3) We write g.x = ρh(g).x for the action of G on h and g.h = ρH(g).h for the action of
G on H and note that L(ρH(g)) = ρh(g) holds for each g ∈ G .

Let g ∈ G . Then the logarithmic derivative of λ−1
f(g) ◦ f ◦ λg is λ∗gδ(f), and, in view of (1),

the logarithmic derivative of ρH(g) ◦ f is ρh(g) ◦ δ(f). Since both functions map 1 to 1 , they
coincide if and only if their logarithmic derivatives coincide (Lemma IV.1.5). This implies (3).

Corollary IV.1.9. If G is a connected Lie group, then ker Ad = Z(G) .

Proof. Let cg(x) = gxg−1 . In view of Proposition IV.1.8(2), for g ∈ G the conditions
cg = idG and L(cg) = Ad(g) = idg are equivalent. This implies the assertion.

Proposition IV.1.10. A connected Lie group G is abelian if and only if its Lie algebra is
abelian.

Proof. That the Lie algebra of an abelian Lie group is abelian is a direct consequence of
Lemma III.1.6, which implies that in any chart the second order Taylor polynomial of the
multiplication has the form x + y + b(x, y) with [x, y] = b(x, y) − b(y, x). If G is abelian,
then b is symmetric, and therefore L(G) is abelian.

In view of the preceding corollary, we have to show that for each g ∈ G we have Ad(g) = 1 .
Let x ∈ g and consider a smooth curve γ: [0, 1] → G with γ(0) = 1 and γ(1) = g . For
η(t) := Ad(γ(t)).x , we then have by Proposition III.1.16

η′(t) = T Ad(γ(t).δ(γ)(t), 0) = Ad(γ(t)).[δ(γ)(t), x] = 0

for each t , so that η is constant. This implies that Ad(g).x = η(1) = η(0) = x .

Problem IV.1. Show that a connected Lie group G is nilpotent/solvable if and only if its
Lie algebra g is nilpotent/solvable. A promising strategy should be to show that certain com-
mutators vanishing for nilpotent/solvable Lie algebras can be expressed as derivatives of certain
commutator expressions in the group. Such an argument would imply thay nilpotence/solvability
of G entails the corresponding property of g .

If, conversely, g is nilpotent/solvable, then the adjoint representation has certain properties
which have to be “integrated” to the group.
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IV.2. Regular Lie groups and the Fundamental Theorem

If M = I = [0, 1], then the Maurer–Cartan equation is satisfied by each ξ ∈ Ω1(I, g) ∼=
C∞(I, g), because each 2-form on I vanishes. The requirement that for each smooth curve
ξ ∈ C∞(I, g), the ordinary differential equation

γ′(t) = γ(t).ξ(t) for t ∈ I,

has a solution depending smoothly on ξ leads to the concept of a regular Lie group.

Definition IV.2.1. A Lie group G is called regular if for each ξ ∈ C∞(I, g) the initial value
problem (IVP)

(4.2.1) γ(0) = 1, δ(γ) = ξ,

has a solution γξ ∈ C∞(I,G) and the evolution map

evolG:C∞(I, g) → G, ξ 7→ γξ(1)

is smooth.
For a regular Lie group G , we define the exponential function

exp:L(G) = g → G by exp(x) := γx(1) = evolG(x),

where x ∈ g is considered as a constant function I → g . As a restriction of the smooth function
evolG , the exponential function is smooth.

For a general Lie group G , we call a smooth function expG: g → G an exponential function
for G if for each x ∈ g the curve γx(t) := exp(tx) is a solution of the IVP (4.2.1). According to
Lemma IV.1.5, such a solution is unique whenever it exists. Therefore a Lie group has at most
one exponential function.

Remark IV.2.2. (a) As a direct consequence of the existence of solutions to ordinary differen-
tial equations on open domains of Banach spaces and their smooth dependence on parameters,
every Banach–Lie group is regular.

(b) Let A be a unital Banach algebra and A× its unit group. Since A is a CIA, A× is a
Lie group. For x ∈ A , the corresponding left invariant vector field is given on A× by xl(a) = ax ,
and the unique solutions of the IVP (4.2.1) are given by γ(t) = exp(tx), where

expA:A→ A×, x 7→
∞∑

k=0

1
k!
xk

is the exponential function of A . This implies that expA is a smooth exponential function of the
Lie group A .

This remains true for each Mackey complete CIA A : For each x ∈ A , the exponential
series converges and expA defines a smooth exponential function of A× (cf. [Gl02b]).

(c) Although it might be hard to verify it in concrete situations, all “known” Lie groups
modeled on Mackey complete spaces are regular. For example we do not know if all unit groups of
Mackey complete CIAs are regular, but we have just seen in (b) that they always have a smooth
exponential function.

If the model space is no longer assumed to be Mackey complete, one obtains non-regular
Lie groups as follows (cf. [Gl02b, Sect. 7]): Let A ⊆ C([0, 1],R) denote the subalgebra of all
rational functions, i.e., of all quotients p(x)/q(x), where q(x) is a polynomial without zero in
[0, 1]. We endow A with the induced norm ‖f‖ := sup0≤t≤1 |f(t)| . If an element f ∈ A is
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invertible in C([0, 1],R), then it has no zero in [0, 1], which implies that it is also invertible in
A , i.e.,

A× = C([0, 1],R)× ∩A.
This shows that A× is open in A , and since the Banach algebra C([0, 1],R) is a CIA, the
smoothness of the inversion is inherited by A , so that A is a CIA. Hence A× is a Lie group
(Example III.1.3).

If A× is regular, then it also has a smooth exponential function, and from Lemma IV.1.3
we derive that it is the restriction of the exponential function of C([0, 1],R)× to A , which leads
to

expA(f) = ef , t 7→ ef(t).

This contradicts the observation that for the function f(t) = t , the function ef is not rational.
Therefore the Lie group A× does not have an exponential function, hence is not regular.

(d) If V is a locally convex space, then (V,+) is a regular Lie group if and only if it is
Mackey complete because this means that for each smooth curve ξ: I → V , there is a smooth
curve γξ: I → V with γ′ξ = ξ . Regularity is inherited by all abelian Lie groups of the form
Z = V/Γ, where Γ is a discrete subgroup of V (Exercise III.4) (cf. Corollary I.1.17 for the Lie
group structure on V/Γ).

(e) If K is a Lie group with a smooth exponential function expK : k → K and M is a
compact smooth manifold, then we obtain an exponential function of the group C∞(M,K) by

expG: g = C∞(M, k) → G = C∞(M,K), ξ 7→ expK ◦ξ.

The following theorem is an important tool to verify that given Lie groups are regular.

Theorem IV.2.3. Let Ĝ be a Lie group extension of the Lie groups G and N , i.e., there
exists a surjective morphism q: Ĝ→ G with ker q ∼= N , where Ĝ carries the structure of an N -
principal bundle. Then the group Ĝ is regular if and only if the groups G and N are regular.

The Fundamental Theorem

Lemma IV.2.4. (Omori) If G is a regular Lie group, x ∈ g and ξ ∈ C∞(I, g) , then the initial
value problem

(E1) η′(t) = [η(t), ξ(t)], η(0) = x

has a unique solution given by

(E2) η(t) = Ad(γξ(t))−1.x.

Proof. For γ(t) := γξ(t), we get with Lemma IV.1.4

δ(γ−1) = −Ad(γ).δ(γ) = −Ad(γ).ξ.

We define η by (E2). Then η is a smooth curve with

η′(t) = Ad(γ(t))−1[−Ad(γ(t)).ξ(t), x] = [Ad(γ(t))−1.x, ξ(t)] = [η(t), ξ(t)]

(Proposition III.1.16).
Now let β be another solution of (E1) and consider the curve

β̃(t) := Ad(γ(t)).β(t).

Then β̃(0) = β(0) = x , and Proposition III.1.16 leads to

β̃′(t) = Ad(γ(t)).[δ(γ)(t), β(t)] + Ad(γ(t)).β′(t) = Ad(γ(t)).
(
[ξ(t), β(t)] + β′(t)

)
= 0.

Therefore β̃ is constant equal to x , and we obtain β(t) = Ad(γ(t))−1.β̃(t) = Ad(γ(t))−1.x =
η(t).



Monastir Summer School: Infinite-Dimensional Lie Groups 47

Remark IV.2.5. Let G be regular. Then the map

S: I × C∞(I, g) → C∞(I, g), S(s, ξ)(t) = sξ(st)

is smooth. For ξ ∈ C∞(I, g) and γξ,s(t) := γξ(st), 0 ≤ s ≤ 1, we have δ(γξ,s)(t) = sξ(st) =
S(s, ξ)(t). Therefore

γξ(s) = evolG
(
S(s, ξ)

)
,

so that the map
evolG ◦S: I × C∞(I, g) → G, (s, ξ) 7→ γξ(s)

is smooth.

Remark IV.2.6. Now we consider smooth functions I2 → G , where I = [0, 1] is the unit
interval and G is a regular Lie group. A smooth g-valued 1-form α ∈ Ω1(I2, g) can be written
as

α = v · dx+ w · dy with v, w ∈ C∞(I2, g).

To evaluate the Maurer–Cartan equation for α , we first observe that

1
2
[α, α]

( ∂
∂x
,
∂

∂y

)
=

[
α
( ∂

∂x

)
, α

( ∂

∂y

)]
= [v, w] ∈ C∞(I2, g),

and obtain

dα+
1
2
[α, α] =

∂v

∂y
dy ∧ dx+

∂w

∂x
dx ∧ dy + [v, w]dx ∧ dy =

(∂w
∂x

− ∂v

∂y
+ [v, w]

)
dx ∧ dy.

Therefore the MC equation for α is equivalent to the partial differential equation

(4.1.5)
∂v

∂y
− ∂w

∂x
= [v, w].

Suppose that the two smooth functions v, w: I2 → g satisfy (4.1.5). Then we define a
smooth function f : I2 → G by

f(x, 0) := γv(·,0)(x) and f(x, y) := f(x, 0) · γw(x,·)(y).

Since the map I → C∞(I, g), x 7→ w(x, ·) is smooth (Exercise!), f is a smooth function. We
have

δ(f) = v̂ · dx+ w · dy with v̂(x, 0) = v(x, 0), x ∈ I.

The Maurer–Cartan equation for δ(f) reads ∂v̂
∂y−

∂w
∂x = [v̂, w], so that subtraction of this equation

from (4.1.5) leads to
∂(v − v̂)
∂y

= [v − v̂, w].

As (v − v̂)(x, 0) = 0, the uniqueness assertion of Lemma IV.2.3, applied with ξ(t) := w(x, t),
implies that (v − v̂)(x, y) = 0 for all x, y ∈ I . We conclude that v = v̂ , which means that
δ(f) = v · dx+ w · dy .

Lemma IV.2.7. Let U be an open convex subset of the locally convex space V , G a regular
Lie group and and α ∈ Ω1(U, g) satisfy the Maurer–Cartan equation. Then there exists a smooth
function f :U → G satisfying δ(f) = α .

Proof. We may w.l.o.g. assume that x0 = 0 ∈ U . For x ∈ U , we then consider the smooth
curve

ξx: I → g, t 7→ α(tx)(x).
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Then the map U → C∞(I, g) is smooth (Exercise), so that the function

f :U → G, x 7→ evolG(ξx)

is smooth.
First we show that f(sx) = γξx

(s) holds for each s ∈ I . From Remark IV.2.4 we derive
that

S(s, ξx)(t) = sξx(st) = α(stx)(sx) = ξsx(t),

hence S(s, ξx) = ξsx, which leads to f(sx) = γξx
(s).

For x, x+ h ∈ U , we consider the smooth map

ϕ: I × I → U, (s, t) 7→ t(x+ sh)

and the smooth function F := f◦ϕ . Then the preceding considerations imply F (s, 0) = f(0) = 1 ,

∂F

∂t
(s, t) =

d

dt
f(t(x+ sh)) =

d

dt
γξx+sh

(t) = F (s, t).ξx+sh(t)

= F (s, t).α(t(x+ sh))(x+ sh) = F (s, t).(ϕ∗α)(s,t)

( ∂
∂t

)
.

As we have seen in Remark IV.2.5, these relations imply already that δ(F ) = ϕ∗α holds on the
square I2 . We therefore obtain

∂

∂s
f(x+ sh) =

∂

∂s
F (s, 1) = F (s, 1).αx+sh(h) = f(x+ sh).αx+sh(h),

and for s = 0, this leads to (df)x(h) = f(x).αx(h), which means that δ(f) = α .

The following theorem is a version of the Fundamental Theorem of calculus for functions
with values in regular Lie groups.

Theorem IV.2.8. (Fundamental Theorem for Lie group valued functions) Let M be a simply
connected manifold and G a regular Lie group. Then α ∈ Ω1(M, g) is integrable if and only if

(MC) dα+
1
2
[α, α] = 0.

Proof. We have already seen in Lemma IV.1.6 that the MC equation is necessary for the
existence of a smooth function f :M → G with δ(f) = α .

We consider the product set P := M × G with the two projection maps F :P → G
and q:P → M . We define a topology on P as follows. For each pair (U, f), consisting of
an open subset U ⊆ M and a smooth function f :U → G with δ(f) = α | U , the graph
Γ(f, U) := {(x, f(x)):x ∈ U} is a subset of P . These sets form a basis for a topology τ on P .

With respect to this topology, the mapping q:P → M is a covering map. To see this, let
x ∈ M . Since M is a manifold, there exists a neighborhood U of x which is diffeomorphic
to a convex subset of a locally convex space. In view of Lemmas IV.1.10 and IV.1.5, for each
g ∈ G and each x ∈ U , the equation δ(f) = α |U has a unique solution fg with fg(x) = g .
Now q−1(U) = U × G =

⋃
g∈G Γ(fg, U) is a disjoint union of open subsets of P (here we use

the connectedness of U ), and therefore q is a covering. We conclude that P carries a natural
manifold structure, for which q is a local diffeomorphism. For this manifold structure, the
function F :P → G is smooth with δ(F ) = q∗α .

Now we fix a point x0 ∈M and an element g ∈ G . Then the connected component M̂ of
(x, g) in P is a connected covering manifold of M , hence diffeomorphic to M , so that we may
put f := F ◦ (q |

M̂
)−1 .
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Remark IV.2.9. (a) If M is a complex manifold, G is a complex regular Lie group and
α ∈ Ω1(M, g) is a holomorphic 1-form, then for any smooth function f :M → G with δ(f) = α ,
the differential of f is complex linear in each point, so that f is holomorphic. Conversely, the
left logarithmic derivative of any holomorphic function f is a holomorphic 1-form.

If, in addition, M is a complex curve, i.e., a one-dimensional complex manifold, then for
each holomorphic 1-form α ∈ Ω1(M, g) the 2-forms dα and [α, α] are holomorphic, which im-
plies that they vanish, because M is a one-dimensional. Therefore the Maurer–Cartan equation
is automatically satisfied by all holomorphic 1-forms.

One of the main points of the notion of regularity is provided by the following theorem.

Theorem IV.2.10. If H is a regular Lie group, G is a simply connected Lie group, and
ϕ:L(G) → L(H) is a continuous homomorphism of Lie algebras, then there exists a unique Lie
group homomorphism f :G→ H with L(f) = ϕ .

Proof. This is Theorem 8.1 in [Mil83] (see also [KM97, Th. 40.3]). The uniqueness assertion
follows from Proposition IV.1.5 and does not require the regularity of H .

On G , we consider the smooth h -valued 1-form given by α := ϕ ◦ κG . That it satisfies
the Maurer–Cartan equation follows from

dα = ϕ ◦ dκG = −1
2
ϕ ◦ [κG, κG] = −1

2
[ϕ ◦ κG, ϕ ◦ κG] = −1

2
[α, α].

Therefore the Fundamental Theorem implies the existence of a unique smooth function f :G→ H
with δ(f) = α and f(1G) = 1H . In view of Proposition IV.1.8(3), the function f is a morphism
of Lie groups, and we clearly have L(f) = α1 = ϕ .

Corollary IV.2.11. If G1 and G2 are regular simply connected Lie groups with isomorphic
Lie algebras, then G1 and G2 are isomorphic.

The non-simply connected case

For a locally convex Lie algebra g , we write

Z1
dR(M, g) := {α ∈ Ω1(M, g): dα+

1
2
[α, α] = 0}

for the set of solutions of the MC equation. Note that if g is abelian, then Z1
dR(M, g) is the

space of closed g-valued 1-forms, but that for non-abelian Lie algebras g , the set Z1
dR(M, g)

does not have any natural vector space structure.
We are now looking for a sufficient condition on α ∈ Z1

dR(M, g) to be G -integrable. In the
remainder of this section, we shall assume that G is regular and that M is connected, but not
that M is simply connected. We fix a base point m0 ∈M .

Let α ∈ Z1
dR(M, g). If γ: I = [0, 1] →M is a piecewise smooth loop, then γ∗α ∈ Ω1(I, g) ∼=

C∞(I, g), so that evolG(γ∗α) ∈ G is defined, because G is regular.

Lemma IV.2.12. If α satisfies the MC equation, then evolG(γ∗α) does not change under
homotopies with fixed endpoints and

perm0
α :π1(M,m0) → G, [γ] 7→ evolG(γ∗α)

is a group homomorphism.

Proof. Let qM : M̃ → M denote a universal covering manifold of M and choose a base
point m̃0 ∈ M̃ with qM (m̃0) = m0 . Then the g-valued 1-form q∗Mα on M̃ also satisfies
the Maurer–Cartan equation, so that the Fundamental Theorem for simply connected manifolds
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(Theorem IV.2.7) implies the existence of a unique smooth function f̃ : M̃ → G with δ(f̃) = q∗Mα

and f̃(m̃0) = 1 .
We write

σ:π1(M,m0)× M̃ → M̃, (d,m) 7→ d.m = σd(m)

for the left action of the fundamental group π1(M,m0) on M̃ . Then σ∗dq
∗
Mα = q∗Mα for each

d ∈ π1(M,m0) implies the existence of a function

ϕ:π1(M,m0) → G with f̃ ◦ σd = ϕ(d) · f̃ , d ∈ π1(M,m0),
because

δ(f̃ ◦ σd) = σ∗dq
∗
Mα = q∗Mα = δ(f̃).

For d1, d2 ∈ π1(M,m0), we then have

f̃ ◦ σd1d2 = f̃ ◦ σd1 ◦ σd2 = (ϕ(d1) · f̃) ◦ σd2 = ϕ(d1) · (f̃ ◦ σd2) = ϕ(d1)ϕ(d2) · f̃ ,
so that ϕ is a group homomorphism.

We now pick a continuous lift γ̃: I → M̃ with qM ◦ γ̃ = γ and observe that
δ(f̃ ◦ γ̃) = γ̃∗q∗Mα = γ∗α,

which entails that
ϕ([γ]) = f̃([γ].m̃0) = f̃(γ̃(1)) = evol(γ∗α).

This completes the proof.

Definition IV.2.13. For α ∈ Z1
dR(M, g), the homomorphism

perm0
α :π1(M,m0) → G with perm0

α ([γ]) = evol(γ∗α)
for each piecewise smooth loop γ: I → M in m0 is called the period homomorphism of α with
respect to m0 .

Clearly, the function f̃ in the proof of Lemma IV.2.12 factors through a smooth function
on M if and only if the period homomorphism is trivial. This leads to the following version of
the fundamental theorem for manifolds which are not simply connected.

Theorem IV.2.14. (Fundamental Theorem; non-simply connected case) Let M be a con-
nected manifold, m0 ∈ M , G a regular Lie group and α ∈ Ω1(M, g) . There exists a smooth
function f :M → G with α = δ(f) if and only if α satisfies

dα+
1
2
[α, α] = 0 and perm0

α = 1.

Exercises for Section IV

Exercise IV.1. Let V be a Mackey complete space and Γ ⊆ V a discrete subgroup. Show
that the quotient Lie group V/Γ is regular.

Exercise IV.2. Let M be a smooth manifold, H a regular Lie group and α ∈ Z1
dR(M, h).

Show that:
(1) For any diffeomorphism ϕ ∈ Diff(M), we have

perm0
α (ϕ∗α) = perϕ(m0)

α (α) ◦ π1(ϕ,m0):π1(M,m0) → H.

(2) Let G be a Lie group, acting smoothly on M from the left by g.m = σg(m) and also on
H , resp., h , by automorphisms ρH(g), resp., ρh(g). We call α an equivariant form if

σ∗gα = ρh(g) ◦ α
holds for each g ∈ G . Show that if α is equivariant, then

ρH(g) ◦ perm0
α (α) = perg.m0

α (α) ◦ π1(σg,m0):π1(M,m0) → G.

If, in addition, m0 is fixed by G and G is connected, then
im(perm0

α ) ⊆ HG.
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V. Locally exponential Lie groups and Lie subgroups

In this section, we turn to Lie groups with an exponential function exp:L(G) → G which
is well-behaved in the sense that it maps a 0-neighborhood in L(G) diffeomorphically onto a
1 -neighborhood in G . We call such Lie groups locally exponential.

The assumption of local exponentiality has important structural consequences, the most
important ones of which are that it permits us to develop a good theory of Lie subgroups and that
there even is a characterization of those subgroup for which we may form Lie group quotients.

Unfortunately, not all regular Lie groups are locally exponential. As an important example
we discuss the group Diff(S1) in some detail.

V.1. Locally exponential Lie groups

Definition V.1.1. We call a Lie group G locally exponential if it has a smooth exponential
function exp: g = L(G) → G and there exists an open 0-neighborhood U ⊆ g such that
exp |U :U → exp(U) is a diffeomorphism onto an open 1 -neighborhood of G . A Lie group
is called exponential if it has an exponential function which is a diffeomorphism g → G .

Lemma V.1.2. If G is a Lie group with exponential function exp: g → G , then

d exp(0) = idg .

Proof. For x ∈ g , we have exp(x) = γx(1), where γx is a solution of the IVP

γ(0) = 1, δ(γ) = x.

This implies in particular that exp(tx) = γtx(1) = γx(t) (Remark IV.2.4), and hence

(d exp)(0)(x) = γ′x(0) = x.

The preceding lemma is not as useful in the infinite-dimensional context as it is in the finite-
dimensional or Banach context. For Banach–Lie groups, it follows from the Inverse Function
Theorem that exp restricts to a diffeomorphism of some open 0-neighborhood in g to an open
1 -neighborhood in G , so that we can use the exponential function to obtain charts around 1 . We
will see below that this conclusion does not work for Fréchet–Lie groups, because in this context
there is no general Inverse Function Theorem. This observation also implies that to integrate
Lie algebra homomorphisms to group homomorphisms, it is in general not enough to start with
the prescription α(expG x) := expH ϕ(x) to prove Theorem IV.2.10, because the image of expG

need not contain an identity neighborhood in G (cf. Theorem V.1.6 below).

Remark V.1.3. (a) In view of Lemma V.1.2, the Inverse Function Theorem implies that each
Banach–Lie group is locally exponential. This also covers all finite-dimensional Lie groups.

(b) Unit groups of Mackey complete CIAs are locally exponential (cf. [Gl02b]). In fact,
if A is a Mackey complete complex CIA, then the fact that A× is open implies that for each
a ∈ A , the spectrum Spec(a) is a compact subset (which also is non-empty), and it is shown
in [Gl02b] that the holomorphic calculus works as for Banach algebras. We only have to use
partially smooth countours around spectra. We thus obtain an exponential function

expA:A→ A×, x 7→ 1
2πi

∮
Γ

eζ(ζ1− x)−1 dζ,
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where Γ is a piecewise smooth contour around Spec(x). Then exp is a holomorphic function
A→ A× .

Let ρ(a) := sup{|λ|:λ ∈ Spec(a)} denote the spectral radius of a ∈ A . Then

Ω := {a ∈ A: ρ(a− 1) < 1}

is an open 1 -neighborhood in A× , and with the complex logarithm function

log: {z ∈ C: |1− z| < 1} → C

satisfying log(1) = 0, we get the holomorphic function

logA: Ω → A, x 7→ 1
2πi

∮
Γ

log(ζ)(ζ1− x)−1 dζ,

where Γ is a contour around Spec(x), lying in the open disc of radius 1 around 1. Now functional
calculus implies that (logA ◦ expA)(x) = x for ρ(x) sufficiently small, and (expA ◦ logA)(x) = x
for each x ∈ Ω. We conclude that the unit group A× is locally exponential.

If A is a real CIA, then one uses the fact that its complexification AC is a CIA to see that
logAC

(Ω ∩A×) ⊆ A , and that logA := logAC
|Ω is a smooth local inverse to expA := expAC

|A .
(c) If K is a locally exponential Lie group and M is a compact manifold, then the Lie

group G := C∞(M,K) (Example III.1.12) is locally exponential.
In fact, if expK : k → K is an exponential function of K , then

expG: g = C∞(M, k) → G = C∞(M,K), ξ 7→ expK ◦ξ

is a smooth exponential function of G . Since we may use the exponential function expK : k → K
to get a local chart of K , the construction of the local charts of G implies that G is locally
exponential.

(d) Recent results of Ch. Wockel ([Wo03]) imply that the preceding theorem generalizes
even to gauge groups: If K is locally exponential and q:P →M is a smooth principal K -bundle
over the compact manifold M , then Gau(P ) carries a natural Lie group structure, turning it
into a locally exponential Lie group. In fact, one shows that

gau(P ) := C∞(P, k)K → C∞(P,K)K ∼= Gau(P ), ξ 7→ expK ◦ξ

is a local homeomorphism, and that it can be used to define a Lie group structure on Gau(P ).
(e) If g is a nilpotent locally convex Lie algebra, then we can use the BCH series x ∗ y :=

x+ y + 1
2 [x, y] + · · · to define a polynomial Lie group structure (g, ∗) with L(g, ∗) = g .

More generally, if g = lim
←−

gj is a projective limit of a family of nilpotent Lie algebras

(gj)j∈J (a so-called pro-nilpotent Lie algebra), then the corresponding morphisms of Lie algebras
are also morphisms for the corresponding group structures, so that (g, ∗) := lim

←−
(gj , ∗) defines

on the space g a Lie group structure with L(g, ∗) = g . We thus obtain an exponential Lie group
G = (g, ∗) with expG = idg .

This construction can be used in many situations to see that certain groups can be turned
into Lie groups. An important class of examples arises as follows. Let V be a finite-dimensional
K-vector space, let Pd(V, V ) denote the space of all polynomials functions V → V of degree d .
Then for each n ≥ 2, the space gn :=

⊕n
k=2 Pk(V, V ) carries a natural Lie algebra structure

given for f ∈ Pi(V, V ) and g ∈ Pj(V, V ) by

[f, g](x) :=
{
dg(x)f(x)− df(x)g(x) for i+ j − 1 ≤ n
0 for i+ j − 1 > n.

This is a modification of the natural Lie bracket on the space C∞(V, V ) ∼= V(V ), obtained by
cutting of all terms of degree > n . From

[Pi(V, V ), Pj(V, V )] ⊆ Pi+j−1(V, V )
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it immediately follows that each gn is a nilpotent Lie algebra. For n < m , we have natural
projections

ϕnm: gm → gn,

which are actually homomorphisms of Lie algebras. The projective limit Lie algebra g := lim
←−

gn

can be identified with the space of V -valued formal power series starting in degree 2.
A natural Lie group corresponding to gn is the set of all polynomial maps f :V → V with

f − idV ∈ gn . The group structure is given by composition and then omitting all terms of order
> n :

f ∗ g = (f ◦ g)≤n.

This turns Gn into a nilpotent Lie group with Lie algebra gn . The corresponding exponential
function

expGn
: gn → Gn

is given by “integrating” a vector field X ∈ gn modulo terms of order > n . Since Gn is
diffeomorphic to a vector space, its exponential function is a diffeomorphism gn → Gn .

We can now form the projective limit group G := lim
←−

Gn whose manifold structure is
obtained from the fact that it is an affine space with translation group g . Since the exponential
functions are compatible with the limiting process, we see that G is an exponential Lie group
with a pro-nilpotent Lie algebra. The group G can be defined with the set of all formal
diffeomorphisms of V fixing 0 and with first order term given by idV . Likewise, g can be
identified with a Lie algebra of formal vector fields.

(f) We describe a Fréchet–Lie group G which is analytic, for which exp: g → G is a diffeo-
morphism and analytic, but exp−1 is not an analytic map, and the corresponding multiplication
on g is not analytic.

Let Aff(R) denote the affine group of R , which is isomorphic to R2 , endowed with the
multiplication

(x, y)(x′, y′) = (x+ eyx′, y + y′)

and the exponential map

exp: R2 → R2, exp(x, y) =
(ey − 1

y
x, y

)
,

whose inverse is given by

log: R2 → R2, log(x, y) =
( y

ey − 1
x, y

)
.

On the Lie algebra level, we have

[(x, y), (x′, y′)] = (yx′ − y′x, 0).

This means that
ad(0, y)n.(x′, y′) = (ynx′, 0),

so that
∑∞

n=1 ad(0, y)n converges if and only if |y| < 1.
We put

G := Aff(R)N ∼= (R2)N

with the multiplication

(xn, yn)n∈N(x′n, y
′
n)n∈N := (xn + eynx′n, yn + y′n)n∈N.

We endow G with the manifold structure we obtain by identifying it with the product space
(R2)N which is a Fréchet space (cf. Exercise II.8). This turns G into an analytic manifold. As
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the power series defining the multiplication converges globally, the multiplication of G is analytic,
and the same holds for the inversion map, because in Aff(R) we have

(x, y)−1 = (−e−yx,−y).

Therefore G is an analytic Lie group.
The exponential map of G is given by

exp((xn, yn))n =
(eyn − 1

yn
xn, yn

)
,

and again we see that exp is analytic because the corresponding power series converges globally.
For the inverse function, we obtain

exp−1((xn, yn))n =
( yn

eyn − 1
xn, yn

)
,

but this map is not analytic, because the power series of the real analytic function y 7→ y
ey−1

converges only on the interval from −2π to 2π , and the product of infinitely many such intervals
is not an open subset in g ∼= (R2)N .

For the multiplication on the Lie algebra aff(R) obtained from the exponential chart, we
have

(x, y) ∗ (x′, y′) = log(exp(x, y) exp(x′, y′)) = log
(ey − 1

y
x+ ey e

y′ − 1
y′

x′, y + y′
)

=
( y + y′

ey+y′ − 1

(ey − 1
y

x+ ey e
y′ − 1
y′

x′
)
, y + y′

)
and in particular

(0, y) ∗ (1, 0) = log(ey, y) =
( yey

ey − 1
, y

)
=

( y

1− e−y
, y

)
.

Therefore the argument form above also shows that the multiplication on the product Lie algebra
g is not analytic.

For the following results we refer to [GN05].

Theorem V.1.4. Each continuous homomorphism ϕ:G → H between locally exponential
groups is smooth.

Proof. (Idea) Using exponential charts, we obtain open 0-neighborhoods Ug ⊆ g = L(G) and
Uh ⊆ h = L(H) together with a continuous map ψ:Ug → Uh satisfying

ψ(x ∗ y) = ψ(x) ∗ ψ(y), x, y ∈ Ug.

Then one shows that

f(x) := lim
n→∞

nψ( 1
nx)

converges for each x ∈ g , that f coincides on a 0-neighborhood with ψ , and that f is linear.
As f is continuous in a 0-neighborhood, it is smooth, and from expH ◦f = ϕ ◦ expG on a 0-
neighborhood in Ug , we derive that ϕ is smooth.



Monastir Summer School: Infinite-Dimensional Lie Groups 55

Theorem V.1.5. Let G and H be locally exponential groups, ψ:L(G) → L(H) a continuous
homomorphism of Lie algebras, and assume that G is connected and simply connected. Then
there exists a unique morphism of Lie groups ϕ:G→ H with L(ϕ) = ψ .

Proof. (Idea) Let Ug ⊆ g = L(G) be a convex balanced 0-neighborhood mapped diffeomor-
phically by the exponential function to an open subset of G .

First one shows that the local Maurer–Cartan form on Ug is given by

(κg)x := (exp∗ κG)x =
∫ 1

0

e−t ad x dt.

This implies that ψ∗κh = ψ ◦ κg on some 0-neighborhood in g . For the map f :UG → H,x 7→
expH(ψ(x)), this leads to

f∗κH = ψ ◦ κG,

showing that the h -valued 1-form ψ ◦ κG is locally integrable. Since this form on G is left
invariant and G is simply connected, it is globally integrable (for that one can argue as in the
proof of the Fundamental Theorem IV.2.7), so that we find a smooth function ϕ:G → H with
ϕ(1) = 1 and δ(ϕ) = ψ◦κG . Now Proposition IV.1.8(3) implies that ϕ is a group homomorphism
with L(ϕ) = α1 = ψ .

Corollary V.1.6. If G1 and G2 are locally exponential simply connected Lie groups with
isomorphic Lie algebras, then G1 and G2 are isomorphic.

It is instructive to compare the preceding corollary with Corollary IV.2.10, which makes a
similar statement for regular Lie groups. Although all known Lie groups are regular, there is no
theorem saying that all locally exponential groups are regular. That the converse is false is clear
from the example G = Diff(S1), which is regular but not locally exponential.

Diff(S1 ) is not locally exponential

Below we show that the exponential function

exp:V(S1) → Diff(S1)

is not a local diffeomorphism by proving that every identity neighborhood of Diff(S1) contains
elements which do not lie on a one-parameter group, hence are not contained in the image of
exp.

Let G := Diff+(S1) denote the group of orientation preserving diffeomorphisms of S1 , i.e.,
the identity component of Diff(S1). To get a better picture of this group, we first construct its
universal covering group G̃ . Let

G̃ := {ϕ ∈ Diff(R): (∀x ∈ R) ϕ(x+ 2π) = ϕ(x), ϕ′ > 0}.

We consider the map
q: R → S1 := R/2πZ, x 7→ x+ 2πZ

as the universal covering map of S1 . Then every orientation preserving diffeomorphism ψ ∈
Diff+(S1) lifts to a diffeomorphism ψ̃ of R , commuting with the translation action of the group
2πZ ∼= π1(S1), which means that ψ̃(x + 2π) = ψ̃(x) + 2π for each x ∈ R . The diffeomorphism
ψ̃ is uniquely determined by the choice of an element in q−1(ψ(q(0))). That ψ is orientation
preserving means that ψ̃′ > 0. Hence we have a surjective homomorphism

qG: G̃→ G, qG(ϕ)(q(x)) := q(ϕ(x))

with kernel isomorphic to Z .
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The Lie group structure of G̃ is rather simple. It can be defined by a global chart. Let
C∞2π(R,R) denote the Fréchet space of 2π -periodic smooth functions on R , which is considered
as a closed subspace of the Fréchet space C∞(R,R). In this space,

U := {ϕ ∈ C∞2π(R,R):ϕ′ > −1}

is an open convex subset, and the map

Φ:U → G̃, Φ(f)(x) := x+ f(x)

is a bijection.
In fact, let f ∈ U . Then Φ(f)(x+2π) = Φ(f)(x)+2π follows directly from the requirement

that f is 2π -periodic, and Φ(f)′ > 0 follows from f ′ > −1. Therefore Φ(f) is strictly increasing,
hence a diffeomorphism of R onto the interval Φ(f)(R). As the latter interval is invariant under
translation by 2π , we see that Φ(f) is surjective and therefore Φ(f) ∈ G̃ . Conversely, it is easy
to see that Φ−1(ψ)(x) = ψ(x) − x yields an inverse of Φ. We define the manifold structure on
G̃ by declaring Φ to be a global chart. With respect to this chart, the group operations in G̃
are given by

m(f, g)(x) := f(g(x) + x)− x and η(f)(x) = (f + idR)−1(x)− x,

which can be shown directly to be smooth maps. We thus obtain on G̃ the structure of a Lie
group such that Φ:U → G̃ is a diffeomorphism. In particular, G̃ is contractible and therefore
simply connected, so that the map qG: G̃→ G turns out to be the universal covering map of G .

Theorem V.1.7. Every identity neighborhood in Diff(S1) contains elements not contained in
the image of the exponential function.

Proof. First we construct certain elements in G̃ which are close to the identity. For 0 < ε < 1
n ,

we consider the function
f : R → R, x 7→ x+

π

n
+ ε sin2(nx)

and observe that f ∈ G̃ follows from f ′(x) = 1 + 2εn sin(nx) cos(nx) = 1 + εn sin(2nx) > 0.

Step 1. For n large fixed and ε→ 0, we get elements in G̃ which are arbitrarily close to idR .

Step 2. qG(f) has a unique periodic orbit of order 2n on S1 : Under qG(f), the point q(0) ∈ S1

is mapped to π
n etc., so that we obtain the orbit

q(0) → q(π
n ) → q( 2π

n ) → . . .→ q( (2n−1)π
n ) → q(0).

For 0 < x0 <
π
n , we have for x1 := f(x0):

x0 +
π

n
< x1 <

2π
n
,

and for xn := f(xn−1), the relations

0 < x0 < x1 −
π

n
< x2 −

2π
n
< · · · < π

n
.

Therefore xk −x0 6∈ 2πZ for each k ∈ N , and hence the orbit of q(x0) under qG(f) is not finite.
This proves that qG(f) has a unique periodic orbit and that the order of this orbit is 2n .

Step 3. qG(f) 6= g2 for all g ∈ Diff(S1): We analyze the periodic orbits. Every periodic point of
g is a periodic point of g2 and vice versa. If the period of x under g is odd, then the period of x
under g and g2 is the same. If the period of x is 2m , then its orbit under g breaks up into two
orbits under g2 , each of order m . Therefore g2 can never have a single periodic orbit of even
order, and this proves that qG(f) has no square root in Diff(S1). It follows in particular that
qG(f) does not lie on any one-parameter subgroup, i.e., qG(f) 6= expX for each X ∈ V(M).
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Remark V.1.8. (a) If M is a compact manifold, then one can show that the identity com-
ponent Diff(M)0 of Diff(M) is a simple group (Epstein, Hermann and Thurston; see [Ep70]).
Being normal in Diff(M)0 , the subgroup 〈expV(M)〉 coincides with Diff(M)0 . Hence every
diffeomorphism homotopic to the identity is a finite product of exponentials.

(b) Although Diff(M)0 is a simple Lie group, its Lie algebra V(M) is far from being simple.
For each subset K ⊆ M , the set VK(M) of all vector fields supported in the set K is a Lie
algebra ideal which is proper if K is not dense.

The structure of abelian Lie groups

Proposition V.1.9. (Michor–Teichmann, 1999) Let A be a connected abelian Lie group
modeled on a Mackey complete space a . Then A has a smooth exponential function if and only
if A ∼= a/ΓA holds for a discrete subgroup ΓA of a .

Proof. For each abelian Lie group of the form A = a/ΓA , the Lie algebra is L(A) = a and
the quotient map a → A is a smooth exponential function.

Therefore it remains to see that the existence of a smooth exponential function implies that
A is of the form a/ΓA . First we claim that expA is surjective. Since the adjoint action of A is
trivial (Corollary IV.1.9), Lemma IV.1.4 implies that exp: (a,+) → A is a group homomorphism,
hence a morphism of Lie groups. Let a ∈ A and consider a smooth path γ: [0, 1] → A with
γ(0) = 1 and γ(1) = a . Then the logarithmic derivative ξ := δ(γ) is a smooth map [0, 1] → a ,
and we consider the smooth path

η(t) := expA

( ∫ t

0

ξ(s) ds
)

that also satisfies δ(η) = ξ (Proposition IV.1.8(1)). Here we have used the Mackey completeness
of a to ensure the existence of the Riemann integral of the smooth curve ξ . Now η(0) = γ(0) = 1
implies that

a = γ(1) = η(1) = exp
( ∫ 1

0

ξ(s) ds
)
∈ im(exp)

(Lemma IV.1.5).
Let qA: Ã → A denote a universal covering homomorphism with L(qA) = ida . Then the

exponential function of A lifts to a smooth exponential function exp
Ã
: a → Ã with expA =

qA ◦ exp
Ã

. Since Ã is simply connected, the Lie algebra homomorphism ida: a → a integrates to
a Lie group homomorphism L: Ã→ a with L(L) = ida (Theorem IV.2.10). We now have

L ◦ exp
Ã

= expa ◦L(L) = ida ◦ ida = ida,

and hence exp
Ã
◦L restricts to the identity on im(exp

Ã
) = a (apply the reasing above to Ã),

which also leads to
exp

Ã
◦L = id

Ã
.

Hence Ã ∼= a as Lie groups, which implies that expA is a covering morphism and therefore that
ΓA := ker(expA) ⊆ a is discrete with A ∼= a/ΓA .

V.2. Lie subgroups

It is a well known result in finite-dimensional Lie theory that for each subalgebra h of the
Lie algebra g of a finite-dimensional Lie group G , there exists a Lie group H with Lie algebra
h together with an injective morphism of Lie groups ι:H → G for which L(ι): h → g is the
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inclusion map. As a group H coincides with 〈exp h〉 , the analytic subgroup corresponding to h ,
and h can be recovered from this subgroup as the set

{x ∈ g: exp(Rx) ⊆ H}.

This nice and simple theory of analytic subgroups is no longer valid in full generality for infinite-
dimensional Lie groups, not even for locally exponential ones. As we shall see below, it has to
be refined in several respects.

Proposition V.2.1. Let G be a locally exponential Lie group. For x, y ∈ L(G) , we have the
Trotter Product Formula

exp(x+ y) = lim
n→∞

(
exp

(x
n

)
exp

( y
n

))n

and the Commutator Formula

exp([x, y]) = lim
n→∞

(
exp

(x
n

)
exp

( y
n

)
exp

(
− x

n

)
exp

(
− y

n

))n2

.

As an immediate consequence, we can assign to each closed subgroup H ≤ G a Lie
subalgebra of L(G):

Corollary V.2.2. For every closed subgroup H of the locally exponential Lie group G the
subset

L(H) := {X ∈ L(G): exp(RX) ⊆ H}

is a closed Lie subalgebra of L(G) .

Since the range of a morphism of Lie algebras need not be closed, it is quite restrictive to
consider only closed subgroups, resp., closed Lie subalgebras.

Definition V.2.3. A closed subgroup H of a locally exponential Lie group G is called a Lie
subgroup if there exists an open 0-neighborhood V ⊆ L(G) such that exp |V is a diffeomorphism
onto an open subset exp(V ) of G and

exp(V ∩ L(H)) = (expV ) ∩H.

Remark V.2.4. (a) In [La99], S. Lang calls a subgroup H of a Banach–Lie group G a Lie
subgroup if H carries a Lie group structure for which there exists an immersion η:H → G .
In view of the definition of an immersion, this concept requires the Lie algebra h = L(H) of
g = L(G) to be a closed subalgebra of g which is complemented in the sense that there exists a
closed vector space complement. Conversely, it is shown in [La99] that for every complemented
closed subalgebra h ⊆ g , there exists a Lie subgroup in this sense ([La99, Th. VI.5.4]). For
a finite-dimensional Lie group G , this concept describes the analytic subgroups of G , because
every subalgebra of a finite-dimensional Lie algebra is closed and complemented. As the dense
wind in the two-dimensional torus G = T2 shows, subgroups of this type need not be closed. We
also note that the closed subspace

c0(N,R) ⊆ `∞(N,R)

of sequences converging to 0 is not complemented (see [Wer95, Satz IV.6.5] for an elementary
proof), hence not a Lie subgroup in the sense of Lang.

(b) The most restrictive concept of a Lie subgroup is the one used in [Bou89, Ch. 3]. Here
a Lie subgroup H is required to be a submanifold, which implies in particular that it is locally
closed and therefore closed. On the other hand, this implies that the quotient space G/H has
a natural manifold structure for which the quotient map q:G→ G/H is a submersion ([Bou89,
Ch. 3, §1.6, Prop. 11]).
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(c) For finite-dimensional Lie groups, closed subgroups are Lie subgroups, but for Banach–
Lie groups this is no longer true. What remains true is that locally compact subgroups (which are
in particular closed) are Lie subgroups (cf. [HoMo98, Th. 5.41(vi)]). How bad closed subgroups
may behave is illustrated by the following example due to K. H. Hofmann: We consider the real
Hilbert space G := L2([0, 1],R) as a Banach–Lie group. Then the subgroup H := L2([0, 1],Z)
of all those functions which almost everywhere take values in Z is a closed subgroup. Since the
one-parameter subgroups of G are of the form Rf , f ∈ G , we have L(H) = {0} . On the other
hand, the group H is arcwise connected and even contractible,because the map F : [0, 1]×H → H
given by

F (t, f)(x) :=
{
f(x) 0 ≤ x ≤ t
0 t < x ≤ 1

is continuous with F (1, f) = f and F (0, f) = 0.

The following proposition shows that Lie subgroups carry natural Lie group structures.

Proposition V.2.5. Let G be a locally exponential Lie group and H ⊆ G a Lie subgroup.
Then H carries a natural locally exponential Lie group structure such that L(H) is the Lie
algebra of H ,and the exponential map of H is given by the restriction

expH = expG |L(H):L(H) → H.

Moreover, the inclusion map ι:H → G is a morphism of Lie groups which is a homeomorphism
onto its image, and L(ι):L(H) → L(G) is the inclusion map.

Proof. (Idea) The idea is to apply Theorem III.2.1 to the subgroup H where U = expV
holds for some suitable open symmetric subset V ⊆ L(H).

Proposition V.2.6. If ϕ:G′ → G is a morphism of locally exponential Lie groups and H ⊆ G
is a Lie subgroup, then H ′ := ϕ−1(H) is a Lie subgroup. In particular, kerϕ is a Lie subgroup
of G′ .

Corollary V.2.7. If N E G is a normal subgroup of the locally exponential Lie group G
such that the quotient group G/N carries a locally exponential Lie group structure for which the
quotient map q:G→ G/N is a morphism of Lie groups, then N is a Lie subgroup.

Theorem V.2.8. (Quotient Theorem for locally exponential groups) Let N E G be a normal
Lie subgroup and n ⊆ g = L(G) its Lie algebra. Then the quotient group G/N is a locally
exponential Lie group if and only if there exists a 0-neighborhood U ⊆ g such that the operator

κg(x) :=
∫ 1

0

e−t ad x dt

on g satisfies
κg(x)(n) = n for all x ∈ U.

Corollary V.2.9. (Quotient Theorem for Banach–Lie groups) Let N E G be a closed subgroup
of the Banach–Lie group G . Then the quotient group G/N is a Banach–Lie group if and only
N is a normal Lie subgroup.

Proof. Since g = L(G) is a Banach–Lie algebra, the ideal n = L(N) is invariant under all
operators

κg(x) =
∫ 1

0

e−t ad x dt =
1− e− ad x

adx
=
∞∑

n=0

1
(n+ 1)!

(−1)n(adx)n.

For Spec(adx) ⊆ B2π(0) (which is the case on some 0-neighborhood of g), this operator is
invertible, and its inverse can be expressed by a power series in adx . Therefore we also get
κg(x)−1(n) ⊆ n , which implies κg(x)(n) = n .
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Algebraic subgroups

We will now discuss a very convenient criterion which in many concrete cases can be used
to verify that a closed subgroup H of a Banach–Lie group is a Lie subgroup. To this end, we
will need the concept of a polynomial function and of an algebraic subgroup.

Definition V.2.10. Let A be a Banach algebra. A subgroup G ⊆ A× is called algebraic if
there exists a d ∈ N0 and a set F of Banach space valued polynomial functions on A × A of
degree ≤ d such that

G = {g ∈ A×: (∀f ∈ F) f(g, g−1) = 0}.

Theorem V.2.11. (Harris/Kaup) [Ne04c, Prop. IV.14] Every algebraic subgroup G ⊆ A× of
the unit group A× of a Banach algebra A is a Lie subgroup.

Proposition V.2.12. Let E be a Banach space and F ⊆ E a closed subspace. Then

H := {g ∈ GL(E): g.F ⊆ F}

is a Lie subgroup of GL(E) .

Proof. Let V ⊆ g be an open 0-neighborhood such that exp |V :V → expV is a diffeomor-
phism and ‖ expx− 1‖ < 1 for all x ∈ V . Then the inverse function

log:= (exp |V )−1: expV → g

is given by the convergent power series

log(g) =
∞∑

n=1

(−1)n+1

n
(g − 1)n

(this requires a proof!). For g = expx ∈ (expV ) ∩ H , we then obtain x.F ⊆ F directly from
the power series.

Analytic subgroups

Definition V.2.13. Let G be a Lie group with an exponential function, so that we obtain
for each x ∈ g := L(G) an automorphism ead x := Ad(expx) ∈ Aut(g). A subalgebra h ⊆ g is
called stable if

ead x.h = Ad(expx).h = h for all x ∈ h.

An ideal n E g is called a stable ideal if

ead x.n = n for all x ∈ g.

The following lemma shows that stability of kernel and range is a necessary reqirement for
the integrability of a homomorphism of Lie algebras.

Lemma V.2.14. If ϕ:G→ H is a morphism of Lie groups with an exponential function, then
im(L(ϕ)) is a stable subalgebra of L(H) , and ker(L(ϕ)) is a stable ideal of L(G) .

Proof. For α := L(ϕ), we have ϕ ◦ expG = expH ◦α, which leads to

α◦ead x = L(ϕ)◦Ad(expx) = L(ϕ◦cexp x) = L(cϕ(exp x)◦ϕ) = Ad(expL(ϕ).x)◦L(ϕ) = ead α(x)◦α.

We conclude in particular that im(α) is a stable subalgebra and that kerα is a stable ideal.
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Example V.2.15. Let V := C∞(R,R) and consider the one-parameter group α: R → GL(V ),
given by α(t)(f)(x) = f(x + t). Then R acts smoothly on V , so that we may form the
corresponding semidirect product group

G := V oα R.

This is a Lie group with a smooth exponential function given by

exp(v, t) =
( ∫ 1

0

α(st).v ds, t
)
,

where ( ∫ 1

0

α(st).v ds
)
(x) =

∫ 1

0

v(x+ st) ds.

The Lie algebra g has the corresponding semidirect product structure g = V oD R with
Dv = v′ , i.e.,

[(f, t), (g, s)] = (tg′ − sf ′, 0).

In g ∼= V o R , we now consider the subalgebra h := V[0,1] o R , where

V[0,1] := {f ∈ V : supp(f) ⊆ [0, 1]}.

Then h clearly is a closed subalgebra of g . It is not stable because α(−t)V[0,1] = V[t,t+1]. The
subgroup of G generated by exp h contains {0} o R , V[0,1] , and hence all intervales V[t,t+1] ,
which implies that 〈exp h〉 = C∞c (R) o R .

The preceding lemma implies that the inclusion h ↪→ g does not integrate to a homomor-
phism ϕ:H → G of Lie group with an exponential function, for which L(ϕ) is the inclusion
h ↪→ g .

Definition V.2.16. Let G be a locally exponential Lie group. An analytic subgroup is an
injective morphism ι:H → G of locally exponential Lie groups for which H is connected and
the differential L(ι) of ι is injective.

Remark V.2.17. If ι:H → G is an analytic subgroup, then the relation

(5.2.1) expG ◦L(ι) = ι ◦ expH

implies that
ker(L(ι)) = L(ker ι) = {0},

so that L(ι):L(H) → L(G) is an injective morphism of locally exponential Lie algebras, which
implies in particular that h := im(L(ι)) is a stable subalgebra of L(G) (Lemma V.2.14).
Moreover, (5.2.1) shows that the subgroup ι(H) of G coincides, as a set, with the subgroup
〈expG h〉 of G generated by expG h . Therefore an analytic subgroup can be viewed as a locally
exponential Lie group structure on the subgroup of G generated by expG h .

Definition V.2.18. A locally convex Lie algebra g is called locally exponential if there exists
a symmetric convex open 0-neighborhood U ⊆ g and an open subset D ⊆ U × U on which we
have a smooth map

mU :D → U, (x, y) 7→ x ∗ y

such that (U,D,mU , 0) is a local Lie group with the additional property that
(E1) For x ∈ U and |t|, |s|, |t+ s| ≤ 1, we have (tx, sx) ∈ D with

tx ∗ sx = (t+ s)x.

(E2) The second order term in the Taylor expansion of mU is b(x, y) = 1
2 [x, y].

Since any local Lie group (U,D,mU , 0) on an open subset of a locally convex space V leads
to a Lie algebra structure on V (Remark III.1.12), condition (E2) only insures that g is the Lie
algebra of the local group.
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Lemma V.2.19. The Lie algebra of a locally exponential Lie group is locally exponential.

Theorem V.2.20. (Analytic Subgroup Theorem) Let G be a locally exponential Lie group
and g its Lie algebra. Then an injective morphism α: h → g of locally convex Lie algebras
integrates to an analytic subgroup if and only if h is a locally exponential Lie algebra.

The condition that a closed subalgebra h ⊆ g is locally exponential is quite subtle. It
means that for x, y sufficiently close to 0 in h , we have x ∗ y ∈ h . To verify this condition,
one would like to show that the integral curve γ(t) := x ∗ ty of the left invariant vector field
yl through x does not leave the closed subspace h of g . This leads to the additional condition
that dλx(0)(h) ⊆ h , which, under the assumption that h is stable, means that the operator
κg(x) =

∫ 1

0
e−t ad x dt satisfies κg(x)(h) = h for x ∈ h sufficiently close to 0 (Theorem V.2.8).

For a closed ideal n E g of the locally exponential Lie algebra g , the corresponding condition
κg(x)(n) = n for all x sufficiently close 0 is sufficient for n to be locally exponential. This result
is used in the proof of the Quotient Theorem V.2.8.

Corollary V.2.21. (Analytic Subgroup Theorem for Banach–Lie groups) Let G be a locally
exponential Lie group and g its Lie algebra. Then an injective morphism α: h → g of Banach
algebras always integrates to an analytic subgroup.
Proof. Using the BCH multiplication on a 0-neighborhood of h , it follows that h is locally
exponential.

Remark V.2.22. If G is a Banach–Lie group and h ⊆ g := L(G) a closed separable subalgebra,
then the analytic subgroup H := 〈exp h〉 ⊆ G satisfies

L(H) = {x ∈ g: exp(Rx) ⊆ H} = h,

i.e., exp Rx ⊆ H implies x ∈ h (Theorem 5.52 in [HoMo98]).
For non-separable subalgebras h , this is no longer true in general, as the following coun-

terexample shows ([HoMo98, p.157]): We consider the abelian Lie group g := `1(R,R)×R , where
the group structure is given by the addition. We write (er)r∈R for the canonical topological basis
elements of `1(R,R). Then the subgroup D generated by the pairs (er,−r), r ∈ R , is closed
and discrete, so that G := g/D is an abelian Lie group. Now we consider the closed subalgebra
h := `1(R,R) of g . As h +D = g , we have H := exp h = G , and therefore (0, 1) ∈ L(H) \ h.

Exercises for Section V

Exercise V.1. Let V be a locally convex space. Show that every continuous group homomor-
phism γ: (R,+) → (V,+) can be written as γ(t) = tv for some v ∈ E .

Exercise V.2. Let E be a Banach space.
(1) If F is a closed subspace of E and H := {g ∈ GL(E): g(F ) ⊆ F} (cf. Proposition V.2.12),

then
L(H) = {Y ∈ L(E):Y (F ) ⊆ F}.

(2) For each v ∈ E and H := {g ∈ GL(E): g(v) = v} , we have

L(H) = {Y ∈ L(E):Y.v = 0}.

Exercise V.3. Let A be a Banach space and m:A×A→ A a continuous bilinear map. Then
the group

Aut(A,m) := {g ∈ GL(A): (∀a, b ∈ A) m(g.a, g.b) = g.m(a, b)}
of automorphisms of the (not necessarily associative) algebra (A,m) is a Lie group whose Lie
algebra is the space

der(A,m) := {X ∈ L(A): (∀a, b ∈ A)X.m(a, b) = m(X.a, b) +m(a,X.b)}

of derivations of (A,m). Hint: Theorem V.2.11.



Monastir Summer School: Infinite-Dimensional Lie Groups 63

Exercise V.4. Let J be a set. For a tuple x = (xj)j∈J ∈ (R+)J , we define∑
j∈J

xj := sup
{ ∑

j∈F

xj :F ⊆ J finite
}
.

Show that
`1(J,R) :=

{
x = (xj)j∈J :

∑
j∈J

|xj | <∞
}

is a Banach space with respect to the norm ‖x‖1 :=
∑

j∈J |xj |. Define ej ∈ `1(J,R) by
(ej)i = δij . Show that the subgroup Γ generated by {ej : j ∈ J} is discrete.

VI. More on integrability of Lie algebras

We recall that a locally convex Lie algebra g is said to integrable if there exists some Lie
group G with L(G) = g (Definition III.1.9).

Examples VI.1. If g is a finite-dimensional Lie algebra, endowed with its unique locally convex
topology, then g is integrable. This is Lie’s Third Theorem. One possibility to prove this is first
to use Ado’s Theorem to find an embedding g ↪→ gln(R) and then to endow the analytic subgroup
G := 〈exp g〉 ⊆ GLn(R) with a Lie group structure such that L(G) = g (cf. Corollary V.2.20).

Proposition VI.2. Let G be a connected complex Lie group. Then each closed ideal of L(G)
is invariant under Ad(G) .

Proof. Let a E g = L(G) be a closed ideal. Since G is assumed to be connected, it suffices
to show that there exists a 1 -neighborhood U ⊆ G with Ad(U).a ⊆ a . We may w.l.o.g. assume
that U is diffeomorphic to an open convex 0-neighborhood in g . Then we find for every g ∈ U
a connected open subset V ⊆ C with 0, 1 ∈ V and a holomorphic map p:V → G with p(0) = 1
and p(1) = g .

Let w0 ∈ a and w(t) := Ad(p(t)).w0 for t ∈ V . We have to show that w(1) = Ad(g).w0 ∈
a . For the right logarithmic derivative v := Ad(p).δ(p):V → g , we obtain the differential
equation

(6.1) w′(t) = Ad(p(t)).[p−1(t).p′(t), w0] = Ad(p(t)).[δ(p)(t), w0] = [v(t), w(t)].

Since the maps v and w are holomorphic, their Taylor expansions converge for t close to 0:

v(t) =
∞∑

n=0

vnt
n and w(t) =

∞∑
n=0

wnt
n

in g . Then the differential equation (6.1) for w can be written as

∞∑
n=0

(n+ 1)wn+1t
n = w′(t) = [v(t), w(t)] =

∞∑
n=0

tn
n∑

k=0

[vk, wn−k].

Comparing coefficients now leads to

wn+1 =
1

n+ 1

n∑
k=0

[vk, wn−k],

so that we obtain inductively wn ∈ a for each n ∈ N . Since a is closed, we get w(t) ∈ a for t
close to 0. Applying the same argument in other points t0 ∈ V , we see that the set w−1(a) is
an open closed subset of V , and therefore that a(1) ∈ a because a(0) ∈ a and V is connected.
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Corollary VI.3. If g is a complex Fréchet–Lie algebra containing a closed ideal which is not
stable, then g is not integrable to a complex Lie group with an exponential function.

Remark VI.4. The preceding proposition can be generalized to the larger class of real analytic
Lie groups, where it can be used to conclude that the Lie group Diff(M) does not possess an
analytic Lie group structure. Indeed, for each non-dense open subset K ⊆M , the subspace

V(M)K := {X ∈ V(M):X |K = 0}

is a closed ideal of V(M) not invariant under Diff(M) because Ad(ϕ).V(M)K = V(M)ϕ(K) for
ϕ ∈ Diff(M).

Theorem VI.5. (Lempert) If M is a compact manifold, then the Fréchet–Lie algebra V(M)C
is not integrable to a regular complex Lie group.

Proof. (Sketch; see [Mil83]) Let g := V(M)C and K ⊆ M be an open non-empty subset of
M which is not dense. Then

iK := {x ∈ g:x |K = 0}
is a closed ideal of g .

Let G be a regular complex Lie group with Lie algebra g and let q: D̃iff(M) → Diff(M)0
denote the universal covering homomorphism of Diff(M)0 . Then the inclusion homomorphism
V(M) ↪→ g can be integrated to a Lie group homomorphism ϕ: D̃iff(M) → G . For g ∈ D̃iff(M),
we then have

Ad(ϕ(g)).iK = iϕ(g)(K),

contradicting the invariance of iK under Ad(G) (Proposition VI.2).

Remark VI.6. (a) In [Omo81], Omori shows that for any non-compact smooth manifold M ,
the Lie algebra V(M) is not integrable.

(b) Theorem VI.5 holds without the regularity assumption, resulting in the fact that V(M)C
is not integrable to any group G with an exponential function. The main point is that for any
such group G and X ∈ V(M) ⊆ g , the one-parameter group exp(RX) acts on g precisely as
the corresponding one-parameter group of Diff(M). This argument requires a uniqeness lemma
for “smooth” maps with values in Aut(g), which is far from being a Lie group (cf. [GN05]).

Example VI.7. To construct an example of a non-integrable Banach–Lie algebra, we proceed
as follows.

Let H be an infinite-dimensional complex Hilbert space and U(H) its unitary group. This
is a Banach–Lie group with Lie algebra

L(U(H)) = u(H) := {X ∈ L(H):X∗ = −X}.

The center of this Lie algebra is given by z(u(H)) = Ri1. We consider the Banach–Lie algebra

g :=
(
u(H)⊕ u(H)

)
/Ri(1,

√
21).

We claim that g is not integrable. Let us assume to the contrary that G is a connected Lie
group with Lie algebra g . Let

q: u(H)⊕ u(H) → g

denote the quotient homomorphism. According to Kuiper’s Theorem, the group U(H) and
hence the group G1 := U(H)×U(H) is contractible ([Ku65]) and therefore in particular simply
connected. Hence there exists a unique Lie group homomorphism

f :G1 → G with L(f) = q.

We then have expG ◦q = f ◦expG1
, and in particular exp(ker q) ⊆ ker f. As Z(G1) ∼= T2 is a two-

dimensional torus and exp(ker q) is a dense one-parameter subgroup of Z(G1), the continuity of
f implies that Z(G1) ⊆ ker f and hence that z(g1) ⊆ kerL(f) = ker q , which is a contradiction.

The following theorem is an immediate consequence of Corollary V.2.20.
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Theorem VI.8. (van Est–Korthagen, 1964) Let h and g be Banach–Lie algebras. If g is
integrable and ϕ: h ↪→ g is injective, then h is integrable.

Corollary VI.9. If g is a Banach–Lie algebra, then g/ ad z(g) ∼= ad g is integrable.
Proof. The adjoint representation ad: g → der g factors through an injective homomorphism
g/z(g) ↪→ der g , and

der g := {D ∈ L(g): (∀x, y ∈ g) D([x, y]) = [D(x), y] + [x,D(y)]}
is the Lie algebra of the Banach–Lie group Aut(g) (cf. Exercise V.3).

The following theorem generalizes Corollary VI.9. It requires more refined machinery
because for a locally convex Lie algebra g the group Aut(g) carries no natural Lie group structure.
Nevertheless, the technique of the proof is to endow the subgroup generated by ead g , which makes
sense for locally exponential Lie algebras, with a Lie group structure.

Theorem VI.10. For any locally exponential Lie algebra g , the quotient g/z(g) is integrable
to a locally exponential Lie group.

The preceding corollary reduces the integrability problem for Banach–Lie algebras, and even
for locally exponential Lie algebras, to the question when a central extension of an integrable Lie
algebra is again integrable. In this context, a central extension is a quotient morphism q: ĝ → g
of Lie algebras for which z := ker q is central in ĝ . Now the question is the following: given a
connected Lie group G with Lie algebra g , when is there a central group extension Z ↪→ Ĝ→ G
“integrating” the corresponding Lie algebra extension? Without going too much into details,
we cite the following theorem which points into a direction which can be followed with success
for general Lie groups (see [Ne02a]). Earlier versions of the following theorem for Banach–Lie
algebras have been obtained by van Est and Korthagen in their systematic discussion of the
non-integrability problem for Banach–Lie algebras in [EK64].

Theorem VI.11. Let G be a simply connected locally exponential Lie group with Lie algebra
g . Then one can associate to each central Lie algebra extension z ↪→ ĝ → g a singular cohomology
class c ∈ H2(G, z) ∼= Hom(π2(G), z) which we interpret as a period homomorphism

perc:π2(G) → z.

Then a corresponding central extension Z ↪→ Ĝ→→ G exists for a Lie group Z with Lie algebra
z if and only if im(perc) ⊆ z is discrete.

Remark VI.12. (a) Let g be a locally exponential Lie algebra and Gad a simply connected Lie
group with Lie algebra g/z(g) (Theorem VI.9). Then the preceding theorem implies in particular
that g is integrable if and only if the period homomorphism perg:π2(Gad) → z(g) associated to
the central extension ad: g → g/z(g) has discrete image.

The problem with this characterization is that in general it might be quite hard to determine
the image of the period homomorphism.

(b) For any quotient morphism G → G/N of Banach–Lie groups, Michael’s Selection
Theorem ([Mi59]) implies that G is a locally trivial topological N -principal bundle over G/N ,
which implies the existence of a corresponding long exact homotopy sequence.

If g is an integrable Banach–Lie algebra and G is a simply connected Banach–Lie group
with Lie algebra g , then the long exact homotopy sequence associated to the homomorphism
q:G→ Gad with kernel Z(G)0 induces a surjective connecting homomorphism

π2(Gad) → π1(Z(G)),
and by identifying the universal covering group of Z(G)0 with (z(g),+), one can show that
this connecting homomorphism coincides with the period map. Its image is the group π1(Z(G)),
considered as a subgroup of z . With this picture in mind, one may think that the non-integrability
on a Banach–Lie algebra g is caused by the non-existence of a Lie group Z with Lie algebra z(g)
and fundamental group im(perg).

(c) If g is finite-dimensional, then Gad is also finite-dimensional, and therefore π2(Gad)
vanishes by a theorem of E. Cartan ([Mi95, Th. 3.7]). Hence the period homomorphism perg is
trivial for every finite-dimensional Lie algebra g .
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Example VI.13. We consider the Lie algebra

g :=
(
u(H)⊕ u(H)

)
/Ri(1,

√
21)

from Example VI.7. Then z(g) ∼= iR , and one can show that the image of the period map is
given by

2πi(Z +
√

2Z) ⊆ iR,

which is not discrete.

Appendix A. Characters of the algebra of smooth functions

Theorem A.1. Let M be a finite-dimensional smooth paracompact manifold and A :=
C∞(M,R) the unital Fréchet algebra of smooth functions on M .
(1) If M is compact, then each maximal ideal of A is closed.
(2) Each closed maximal ideal of A is the kernel of an evaluation homomorphism

δp:A→ R, f 7→ f(p) .
(3) Each character χ:A→ R is an evaluation in some point p ∈M .

Proof. (1) If M is compact, then the unit group A× = C∞(M,R×) is an open subset of A .
If I ⊆ A is a maximal ideal, then I intersects A× trivially, and since A× is open, the same
holds for the closure I . Hence I also is a proper ideal, so that the maximality of I implies that
I is closed.

(2) Let I ⊆ A be a closed maximal ideal. If all functions in I vanish in the point p ∈M ,
then the maximality of I implies that I = ker δp . So we have to show that such a point exists.
Let us assume that this is not the case. From that we shall derive the contradiction I = A .

Let K ⊆ M be a compact set. Then for each p ∈ K , there exists a function fp ∈ I with
fp(p) 6= 0. The family (f−1

p (R×))p∈K is an open cover of K , so that there exist p1, . . . , pn ∈ K
with fK :=

∑
j f

2
pj
> 0 on K .

If M is compact, then we thus obtain a function fM ∈ I with no zeros, which leads to
the contradiction fM ∈ A× ∩ I . Suppose that M is non-compact. Then there exists a sequence
(Mn)n∈N of compact subsets with M =

⋃
nMn and Mn ⊆M0

n+1 . Let fn ∈ I be a non-negative
function supported by Mn+1 \M0

n−1 with fn > 0 on the compact set Mn \M0
n−1 . Here the

requirement on the support can be achieved by multiplying with a smooth function supported
by Mn+1 \M0

n−1 which equals 1 on Mn \M0
n−1 . Then the series

∑
n fn converges, because on

each set Mn it is eventually constant and each compact subset of M is contained in some Mn .
Now f :=

∑
n fn is a smooth function in I = I with f > 0. Hence f is invertible, which is a

contradiction.
(3) Let χ:A → R be a character. If f ∈ A is non-negative, then for each c > 0 we have

f + c = h2 for some h ∈ A× , and this implies that χ(f)+ c = χ(f + c) = χ(h)2 ≥ 0, which leads
to χ(f) ≥ −c , and consequently χ(f) ≥ 0.

Now let F :M → R be a smooth function for which the sets F−1(] −∞, c]) , c ∈ R , are
compact. Such a function can easily be constructed from a sequence (Mn)n∈N as above using a
smooth version of Urysohn’s Lemma (Exercise).

We consider the ideal I := kerχ . If I has a zero, then I = ker δp for some p ∈M and this
implies that χ = δp . Hence we may assume that I has no zeros. Then the argument under (2)
provides for each compact subset K ⊆M a compactly supported function fK ∈ I with fK > 0
on K . If h ∈ A is supported by K , we therefore find a λ > 0 with λfK −h ≥ 0, which leads to

0 ≤ χ(λfK − h) = χ(−h),

and hence to χ(h) ≥ 0. Replacing h by −h , we also get χ(h) ≤ 0 and hence χ(h) = 0.
Therefore χ vanishes on all compactly supported functions.
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For c > 0, we now pick fc ∈ I with fc > 0 on the compact subset F−1(] −∞, c]) and
fc ≥ 0. Then there exists a µ > 0 with µfc +F ≥ c on F−1(]−∞, c]) . Now µfc +F ≥ c holds
on all of M , and therefore

χ(F ) = χ(F + µfc) ≥ c.

Since c > 0 was arbitrary, we arrive at a contradiction.

Appendix B. The compact open topology

In this appendix, we discuss some properties of the compact open topology on the space
C(X,Y ) of continuous maps between two topological spaces X and Y .

Definition B.1. If X and Y are topological spaces, then the topology on C(X,Y ) generated
by the sets

W (K,O) := {f ∈ C(X,Y ): f(K) ⊆ O},
K ⊆ X compact and O ⊆ Y open, is called the compact open topology.

The following lemma is extremely useful to construct group topologies from a filter basis of
identity neighborhoods. Here we shall use it to see that for a topological group G , the compact
open topology turns C(X,G) into a topological group.

Lemma B.2. Let G be a group and F a filter basis of subsets of G satisfying
(U0)

⋂
F = {1} .

(U1) (∀U ∈ F)(∃V ∈ F) V V ⊆ U.

(U2) (∀U ∈ F)(∃V ∈ F) V −1 ⊆ U.

(U3) (∀U ∈ F)(∀g ∈ G)(∃V ∈ F) gV g−1 ⊆ U.

Then there exists a unique group topology on G such that F is a basis of 1-neighborhoods in G .
This topology is given by {U ⊆ G: (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.
Proof. ([Bou88, Ch. III, §1.2, Prop. 1]) Let

τ := {U ⊆ G: (∀g ∈ U)(∃V ∈ F) gV ⊆ U}.
First we show that τ is a topology. Clearly Ø, G ∈ τ . Let (Uj)j∈J be a family of elements of
τ and U :=

⋃
j∈J Uj . For each g ∈ U , there exists a j0 ∈ J with g ∈ Uj and a V ∈ F with

gV ⊆ Uj0 ⊆ U . Thus U ∈ τ , and we see that τ is stable under arbitrary unions.
If U1, U2 ∈ τ and g ∈ U1 ∩ U2 , then there exist V1, V2 ∈ F with gVi ⊆ Ui . Since F is a

filter basis, there exists V3 ∈ F with V3 ⊆ V1 ∩ V2 , and then gV3 ⊆ U1 ∩ U2 . We conclude that
U1 ∩ U2 ∈ τ , and hence that τ is a topology on G .

We claim that the interior of a subset U ⊆ G is given by

U0 = U1 := {u ∈ U : (∃V ∈ F) uV ⊆ U}.
In fact, if there exists a V ∈ F with uV ⊆ U , then we pick a W ∈ F with WW ⊆ V and
obtain uWW ⊆ U , so that uW ⊆ U1 . Hence U1 is open, and it clearly is the largest open subset
contained in U , i.e., U1 = U0 . It follows in particular that U is a neighborhood of g if and
only if g ∈ U0 , and we see in particular that F is a basis of the neighborhood filter of 1 . The
property

⋂
F = {1} implies that for x 6= y , there exists U ∈ F with y−1x 6∈ U . For V ∈ F

with V V ⊆ U and W ∈ F with W−1 ⊆ V , we then obtain y−1x 6∈WW−1 , i.e., xW ∩yW = Ø.
Thus (G, τ) is a Hausdorff space.

To see that G is a topological group, we have to verify that the map

f :G×G→ G, (x, y) 7→ xy−1

is continuous. So let x, y ∈ G , U ∈ F and pick V ∈ F with yV y−1 ⊆ U and W ∈ F with
WW−1 ⊆ V . Then

f(xW, yW ) = xWW−1y−1 = xy−1y(WW−1)y−1 ⊆ xy−1yV y−1 ⊆ xy−1U,

implies that f is continuous in (x, y).
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Lemma B.3. Let X be a non-empty topological space and G a topological group. Then the
set C(X,G) of all continuous maps X → G is a group with respect to pointwise multiplication.
The unit element of this group is the constant function 1 . The system F of all sets W (K,U) ⊆
C(X,G) , where K ⊆ X is compact and U ⊆ G is an open 1-neighborhood, is a filter basis, and
there exists a unique group topology on C(X,G) for which F is a basis of 1-neighborhoods.

This topology is called the topology of compact convergence or the topology of uniform
convergence on compact sets.

Proof. First we show that F is a filter basis:
For each x ∈ X , the set W ({x}, G) is contained in F , so that F is not empty. Since

each set W (K,U) contains the constant map 1 , it is non-empty. We further have W (K1, U1) ∩
W (K2, U2) ⊇ W (K1 ∪ K2, U1 ∩ U2). This proves that F is a filter basis of subsets of G . We
now verify the conditions in Lemma B.2:

(U0): If f ∈ C(X,G) is contained in W ({x}, U) for all 1 -neighborhoods U in G , it
follows from the fact that G is Hausdorff that f(x) = 1 , so that

⋂
F consists only of the

constant function 1 .
(U1): For each W (K,U) ∈ F , we find a 1 -neighborhood V ⊆ G with V V ⊆ U . Then

W (K,V )W (K,V ) ⊆W (K,U).
(U2): W (K,U)−1 = W (K,U−1).
(U3): For f ∈ C(X,G) and W (K,U) ∈ F , we consider the open set

E := {(x, g) ∈ X ×G: f(x)gf(x)−1 ∈ U}.

Then K × {1} ⊆ E and the compactness of K imply the existence of a 1 -neighborhood V in
G with K × V ⊆ E . Then fW (K,V )f−1 ⊆W (K,U).

Now Lemma B.2 shows that there exists a unique group topology on C(X,G) for which F
is a basis of 1-neighborhoods.

Proposition B.4. For a topological space X and a topological group G , the compact open
topology coincides on C(X,G) with the topology of compact convergence for which the sets
W (K,O) , K ⊆ X compact and O an open 1-neighborhood in G , form a basis of identity
neighborhoods.

Proof. Step 1: The topology of compact convergence is finer than the compact open
topology because each set W (K,O) is open in the topology of compact convergence. In fact, for
f ∈ W (K,O) the set f(K) ⊆ O ⊆ G is compact, so that there exists a 1 -neighborhood U ⊆ G
with f(K)U ⊆ O . This implies that f ·W (K,U) ⊆W (K,O), and hence that W (K,O) is open
in the topology of uniform convergence on compact subsets of X .

Step 2: Let f0 ∈ C(X,G). We claim that each set of the form f0W (K,V ) contains a
neighborhood of f0 in the compact open topology.

Let W = W−1 ⊆ G be an open 1 -neighborhood. Since f0 is continuous, each k ∈ K has
a compact neighborhood Uk in K with f0(Uk) ⊆ f0(k)W . The compactness of K implies that
it is covered by finitely many of the sets Uk , so that there exist k1, . . . , kn ∈ K with

K ⊆ Uk1 ∪ . . . ∪ Ukn
.

Then the sets Qj := f0(Ukj
)W are open in G with f0 ∈ W (Ukj

, Qj). Therefore P :=⋂n
j=1W (Ukj

, Qj) is a neighborhood of f0 with respect to the compact open topology. For
f ∈ P and x ∈ Ukj , we have f0(x) ∈ Qj and f(x) ∈ Qj , which implies that

f0(x)−1f(x) ∈ Q−1
j Qj ⊆W−1f0(Ukj

)−1f0(Ukj
)W ⊆W−1W−1f0(kj)−1f0(kj)WW ⊆W 4 ⊆ V.

We conclude that f ∈ f0W (K,V ) and therefore P ⊆ f0W (K,V ). This completes the proof.
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Remark B.5. (a) If G is a fixed topological group, then C(·, G) is a contravariant functor from
the category of Hausdorff topological spaces and continuous maps to the category of topological
groups.

In fact, for each continuous map f :X → Y , we have a group homomorphism

f∗ = C(f,G):C(Y,G) → C(X,G), ξ 7→ ξ ◦ f.

For each compact subset K ⊆ X and each open subset O ⊆ G , we have

(f∗)−1(W (K,O)) ⊇W (f(K), O),

which implies the continuity of C(f,G).
(b) If X is a fixed Hausdorff space and ϕ:G→ H a morphism of topological groups, then

the map
ϕ∗ = C(X,ϕ):C(X,G) → C(X,H), ξ 7→ ϕ ◦ ξ

is a group homomorphism. For each compact subset K ⊆ X and each open subset O ⊆ H , we
have

(ϕ∗)−1(W (K,O)) ⊇W (K,ϕ−1(O)),

which implies the continuity of C(X,ϕ).

Proposition B.6. Let X and Y be topological spaces. On C(X,Y ) , the compact open
topology coincides with the graph topology, i.e., the topology generated by the sets of the form

C(X,Y )U,K := {f ∈ C(X,Y ): Γ(f |K) ⊆ U},

where U ⊆ X × Y is open, K ⊆ X is compact, and Γ(f) ⊆ X × Y is the graph of f .
If, in addition, X is compact, then a basis for the graph topology is given by the sets

C(X,Y )U := {f ∈ C(X,Y ): Γ(f) ⊆ U},

where U ⊆ X × Y is open.

Proof. Let f ∈ C(X,Y ), K ⊆ X compact and U ⊇ Γ(f |K) be an open subset of X×Y . Then
there exists for each x ∈ X a compact neighborhood Kx of x in K and an open neighborhood
Uf(x) of f(x) in Y with Kx × Uf(x) ⊆ U and f(Kx) ⊆ Uf(x) . Covering K with finitely many
sets Kxi

, i = 1, . . . , n , we see that

n⋂
i=1

W (Kxi , Uf(xi)) ⊆ C(X,Y )U,K .

This implies that each set C(X,Y )U,K is open in the compact open topology.
Conversely, let K ⊆ X be compact and O ⊆ Y open. Then

W (K,O) = {f ∈ C(X,Y ): Γ(f |K) ⊆ X ×O} = C(X,Y )X×O,K

is open in the graph topology. We conclude that the graph topology coincides with the compact
open topology.

Assume, in addition, that X is compact. The system of the sets C(X,Y )U is stable under
intersections, hence a basis for the topology it generates. Each set C(X,Y )U = C(X,Y )U,X

is open in the graph topology. If, conversely, K ⊆ X is compact and U ⊆ X × Y is open
with f ∈ C(X,Y )U,K , then V :=

(
(X \ K) × Y

)
∪ U is an open subset of X × Y with

f ∈ C(X,Y )V ⊆ C(X,Y )U,K . This completes the proof.
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Appendix C. Lie algebra cohomology

The cohomology of Lie algebras is the natural tool to understand how we can build new Lie
algebras ĝ from given Lie algebras g and a in such a way that a E ĝ and ĝ/a ∼= g . An important
special case of this situation arises if a is assumed to be abelian. We will see in particular how
the abelian extensions of Lie algebras can be parametrized by a certain cohomology space.

Cohomology with values in topological modules

Let K be a topological field of characteristic zero (all field operations are assumed to be
continuous). A topological Lie algebra g is a K-Lie algebra which is a topological vector space
for which the Lie bracket is a continuous bilinear map. A topological g-module is a g-module V
which is a topological vector space for which the module structure, viewed as a map g×V → V ,
(x, v) 7→ x.v is continuous. Note that every module V of a Lie algebra g over a field K becomes
a topological module if we endow K , g and V with the discrete topology. In this sense, all the
following applies in particular to general modules of Lie algebra over fields of characteristic zero.

Definition C.1. Let V be a topological module of the topological Lie algebra g . For p ∈ N0 ,
let Cp

c (g, V ) denote the space of continuous alternating maps gp → V , i.e., the Lie algebra
p-cochains with values in the module V . We write C•(g, V ) :=

⊕
p∈N0

Cp
c (g, V ). Note that

C1
c (g, V ) = L(g, V ) is the space of continuous linear maps g → V . We use the convention

C0
c (g, V ) = V . We then obtain a chain complex with the differential

dg:Cp
c (g, V ) → Cp+1

c (g, V )

given on f ∈ Cp
c (g, V ) by

(dgf)(x0, . . . , xp) :=
p∑

j=0

(−1)jxj .f(x0, . . . , x̂j , . . . , xp)

+
∑
i<j

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp),

where x̂j indicates omission of xj . Note that the continuity of the bracket on g and the action
on V imply that dgf is continuous and an element of Cp+1

c (g, V ).
For elements of low degree, we have in particular:

p = 0 : dgf(x) = x.f

p = 1 : dgf(x, y) = x.f(y)− y.f(x)− f([x, y])
p = 2 : dgf(x, y, z) = x.f(y, z)− y.f(x, z) + z.f(x, y)− f([x, y], z) + f([x, z], y)− f([y, z], x)

=
∑
cyc.

x.f(y, z)− f([x, y], z),

where we have used the notation∑
cyc.

γ(x, y, z) := γ(x, y, z) + γ(y, z, x) + γ(z, x, y).

In this sense, the Jacobi identity reads
∑

cyc.[[x, y], z] = 0.
Below we shall show that d2

g = 0, so that the space Zp
c (g, V ) := ker(dg |Cp

c (g,V )) of p-
cocycles contains the space Bp

c (g, V ) := dg(Cp−1
c (g, V )) of p-coboundaries. The quotient

Hp
c (g, V ) := Zp

c (g, V )/Bp
c (g, V )

is the p-th continuous cohomology space of g with values in the g-module V . We write [f ] :=
f +Bp

c (g, V ) for the cohomology class of the cocycle f .
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On C•c (g, V ), we have a natural representation of g , given for x ∈ g and f ∈ Cp
c (g, V ) by

the Lie derivative

(Lxf)(x1, . . . , xp) = x.f(x1, . . . , xp)−
p∑

j=1

f(x1, . . . , [x, xj ], . . . , xp)

= x.f(x1, . . . , xp) +
p∑

j=1

(−1)jf([x, xj ], x1, . . . , x̂j , . . . , xp).

We further have for each x ∈ g an insertion map

ix:Cp
c (g, V ) → Cp−1

c (g, V ),
(
ix.f

)
(x1, . . . , xp−1) = f(x, x1, . . . , xp−1),

where we define ix to be 0 on C0
c (g, V ) ∼= V .

Lemma C.2. For x, y ∈ g , we have the following identities:
(1) Lx = dg ◦ ix + ix ◦ dg (Cartan formula).
(2) [Lx, iy] = i[x,y] .
(3) [Lx, dg] = 0 .
(4) d2

g = 0 .
(5) Lx(Zp

c (g, V )) ⊆ Bp
c (g, V ) . In particular, the natural g-action on Hp

c (g, V ) is trivial.

Proof. (1) Using the insertion map ix0 , we can rewrite the formula for the coboundary
operator as

(
ix0 .dgf

)
(x1, . . . , xp) = x0.f(x1, . . . , xp)−

p∑
j=1

(−1)j−1xj .f(x0, . . . , x̂j , . . . , xp)

+
p∑

j=1

(−1)jf([x0, xj ], x1, . . . , x̂j , . . . , xp)

+
∑

1≤i<j

(−1)i+jf([xi, xj ], x0, . . . , x̂i, . . . , x̂j , . . . , xp)

=x0.f(x1, . . . , xp)−
p∑

j=1

(−1)j−1xj .f(x0, . . . , x̂j , . . . , xp)

−
p∑

j=1

f(x1, . . . , xj−1, [x0, xj ], xj+1, . . . , xp)

−
∑

1≤i<j

(−1)i+jf(x0, [xi, xj ], . . . , x̂i, . . . , x̂j , . . . , xp)

=(Lx0f)(x1, . . . , xp)− dg

(
ix0f

)
(x1, . . . , xp).

This proves our assertion.
(2) The explicit formula for Lx implies that for y = x1 , we have iyLx = Lxiy − i[x,y].

(3),(4) Let ϕ:C•c (g, V ) → C•c (g, V ) be a linear map for which there exists an ε ∈ {±1}
with ϕ ◦ ix = εix ◦ϕ for all x ∈ g and a k ∈ N with ϕ(Cp

c (g, V )) ⊆ Cp+k
c (g, V ) for each p ∈ N0 .

We claim that ϕ = 0. Since the operators ix:Cp
c (g, V ) → Cp−1

c (g, V ), x ∈ g , separate the
points, it suffices to show that ix ◦ϕ = εϕ◦ ix vanishes for each x ∈ g . On C0

c (g, V ), this follows
from the definition of ix , and on Cp

c (g, V ), p ∈ N , we obtain it by induction.
Now we prove (3). From (2) we get

L[x,y] = [Lx,Ly] = [dg ◦ ix,Ly] + [ix ◦ dg,Ly]

= [dg,Ly] ◦ ix + dg ◦ i[x,y] + i[x,y] ◦ dg + ix ◦ [dg,Ly]

= [dg,Ly] ◦ ix + L[x,y] + ix ◦ [dg,Ly],
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so that ϕ := [dg,Ly] anticommutes with the operators ix (ε = −1 and k = 1). Therefore the
argument in the preceding paragraph shows that ϕ vanishes, which is (3).

To obtain (4), we consider the operator ϕ = d2
g . Combining (3) with the Cartan Formula,

we get

(C.2) 0 = [dg,Lx] = d2
g ◦ ix − ix ◦ d2

g,

so that the argument above applies with ε = 1 and k = 2. This proves that d2
g = 0.

(5) follows immediately from the Cartan formula (1).

Definition C.3. A linear subspace W of a topological vector space V is called (topologically)
split if it is closed and there is a continuous linear map σ:V/W → V for which the map

W × V/W → V, (w, x) 7→ w + σ(x)

is an isomorphism of topological vector spaces. Note that the closedness of W guarantees that
the quotient topology turns V/W into a Hausdorff space which is a topological vector space
with respect to the induced vector space structure. A continuous linear map f :V →W between
topological vector spaces is said to be (topologically) split if the subspaces ker(f) ⊆ V and
im(f) ⊆W are topologically split.

Remark C.4. Let g be a Lie algebra and

0 → V1
α−−→V2

β−−→V3 → 0

be a topologically split short exact sequence of g-modules. Identifying V1 with α(V1) ⊆ V2 ,
we then obtain injective maps αp:Cp

c (g, V1) → Cp
c (g, V2) and surjective maps βp:Cp

c (g, V2) →
Cp

c (g, V3) which lead a short exact sequence

0 → C•c (g, V1)
α∗−−→C•c (g, V2)

β∗−−→C•c (g, V3) → 0

of cochain complexes. These maps can be combined to a long exact sequence

0 → H0
c (g, V1) → H0

c (g, V2) → H0
c (g, V3) → H1

c (g, V1) → H1
c (g, V2) → H1

c (g, V3) → . . . ,

where, for p ∈ N0 , the connecting map

δ:Hp
c (g, V3) → Hp+1(g, V1)

is defined by δ([f ]) = [dgf̃ ] , where f̃ ∈ Cp(g, V2) satisfies β ◦ f̃ = f , which implies that
im(dgf̃) ⊆ V1 if f is a cocycle.

Affine actions of Lie algebras and 1-cocycles

Definition C.5. Let g be a (topological) Lie algebra and n another (topological) Lie algebra,
which is a (topological) g-module on which g acts by derivations. A linear map f : g → n is
called a crossed homomorphism if

f([x, y]) = x.f(y)− y.f(x) + [f(x), f(y)]

holds for x, y ∈ g . With respect to the bracket on C•(g, n), this is the Maurer Cartan equation

dgf +
1
2
[f, f ] = 0

(cf. Exercise II.14).
If V := n is abelian, hence simply a g-module, then the crossed homomorphisms are the

1-cocycles. The elements of the subspace B1(g, V ) (the 1-coboundaries) are called principal
crossed homomorphisms.

In the following, we write aff(V ) = V o gl(V ) for the affine Lie algebra of V , where
gl(V ) := L(V ), endowed with the commutator bracket. A continuous affine action of a Lie
algebra g on V is a homomorphism π: g → aff(V ) satisfying the following continuity condition:
We associate to each pair (v,A) ∈ aff(V ) the affine map x 7→ A.x+ v and we require the map

g× V → V, (x, v) 7→ π(x).v

to be continuous.
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Proposition C.6. Let (ρ, V ) be a topological g-module. An element f ∈ C1
c (g, V ) is in

Z1
c (g, V ) if and only if the map

ρf = (f, ρ): g → aff(V ) ∼= V o gl(V ), x 7→
(
f(x), ρ(x)

)
is a homomorphism of Lie algebras. The space H1

c (g, V ) parametrizes the ead V -conjugacy classes
of continuous affine actions of g on V whose corresponding linear action coincides with ρ .

The coboundaries correspond to those affine actions which are conjugate to a linear action,
i.e., which have a fixed point. The relation f = −dgv is equivalent to ρf (x).v = 0 for all x ∈ g .

Proof. The first assertion is easily checked. For v ∈ V , we consider the automorphism
of aff(V ) given by ηv = ead v = 1 + ad v . Then ηv(w, x) = (w − x.v, x), showing that
ηv ◦ ρf = ρf−dgv, where dgv(x) = x.v . Thus two affine actions ρf and ρf ′ are conjugate under
some ηv if and only if the cohomology classes of f and f ′ coincide. In this sense, H1

c (g, V )
parametrizes the ead V -conjugacy classes of affine actions of g on V whose corresponding linear
action coincides with ρ , and the coboundaries correspond to those affine actions which are
conjugate to a linear action. Moreover, it is clear that an affine action ρf is linearizable, i.e.,
conjugate to a linear action, if and only if there exists a fixed point v ∈ V , i.e., ρf (x).v = 0 holds
for all x ∈ g . This condition means that f = −dgv .

Abelian extensions and 2-cocycles

Definition C.7. Let g and n be topological Lie algebras. A topologically split short exact
sequence

n ↪→ ĝ →→ g

is called a (topologically split) extension of g by n . We identify n with its image in ĝ , and write
ĝ as a direct sum ĝ = n ⊕ g of topological vector spaces. Then n is a topologically split ideal
and the quotient map q: ĝ → g corresponds to (n, x) 7→ x . If n is abelian, then the extension is
called abelian.

Two extensions n ↪→ ĝ1 →→ g and n ↪→ ĝ2 →→ g are called equivalent if there exists a
morphism ϕ: ĝ1 → ĝ2 of topological Lie algebras such that the diagram

n ↪→ ĝ1 →→ gyidn

yϕ

yidg

n ↪→ ĝ2 →→ g

commutes. It is easy to see that this implies that ϕ is an isomorphism of topological Lie algebras,
hence defines an equivalence relation. We write Ext(g, n) for the set of equivalence classes of
extensions of g by n .

We call an extension q: ĝ → g with ker q = n trivial, or say that the extension splits, if
there exists a continuous Lie algebra homomorphism σ: g → ĝ with q ◦σ = idg . In this case, the
map

n oS g → ĝ, (n, x) 7→ n+ σ(x)

is an isomorphism, where the semi-direct sum is defined by the homomorphism

S: g → der(n), S(x)(n) := [σ(x), n].

Definition C.8. Let a be a topological g-module. To each continuous 2-cocycle ω ∈ Z2
c (g, a),

we associate a topological Lie algebra a⊕ωg as the topological product vector space a×g endowed
with the Lie bracket

[(a, x), (a′, x′)] := (x.a′ − x′.a+ ω(x, x′), [x, x′]).

The quotient map q: a⊕ω g → g, (a, x) 7→ x is a continuous homomorphism of Lie algebras with
kernel a , hence defines an a -extension of g . The map σ: g → a⊕ω g, x 7→ (0, x) is a continuous
linear section of q .
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Proposition C.9. Let (a, ρa) be a topological g-module and write Extρa(g, a) for the set of
all equivalence classes of a-extensions ĝ of g for which the adjoint action of ĝ on a induces the
given g-module structure on a . Then the map

Z2
c (g, a) → Extρa(g, a), ω 7→ [a⊕ω g]

factors through a bijection

H2
c (g, a) → Extρa(g, a), [ω] 7→ [a⊕ω g].

Proof. Suppose that q: ĝ → g is an a -extension of g for which the induced g-module structure
on a coincides with ρa . Let σ: g → ĝ be a continuous linear section, so that q ◦ σ = idg . Then

ω(x, y) := [σ(x), σ(y)]− σ([x, y])

has values in the subspace a = ker q of ĝ and the map

a× g → ĝ, (a, x) 7→ a+ σ(x)

defines an isomorphism of topological Lie algebras a⊕ω g → ĝ .
It is easy to verify that a ⊕ω g ∼ a ⊕η g if and only if ω − η ∈ B2

c (g, a). Therefore the
quotient space H2

c (g, a) classifies the equivalence classes of a -extensions of g by the assignment
[ω] 7→ [a⊕ω g] .
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31, Birkhäuser Verlag, 2001; 131–178.

[Ne02a] —, Central extensions of infinite-dimensional Lie groups, Annales de l’Inst.
Fourier 52:5 (2002), 1365–1442.

[Ne02b] —, Classical Hilbert–Lie groups, their extensions and their homotopy groups, in
“Geometry and Analysis on finite and infinite-dimensional Lie groups,” Eds. A.
Strasburger, W. Wojtynski, J. Hilgert and K.-H. Neeb, Banach Center Publi-
cations, to appear.

[Ne04a] —, Abelian extensions of infinite-dimensional Lie groups, Travaux Math. 15
(2004), 69–194.

[Ne04b] —, Non-abelian extensions of topological Lie algebras, Commun. in Algebra, to
appear.



76 monas.tex January 9, 2006

[Ne04c] —, Infinite-dimensional Lie groups and their representations, in “Lie Theory:
Lie Algebras and Representations,” Progress in Math. 228, Ed. J. P. Anker, B.
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