Übung zur Analysis 2, SS 2010

12. Übungsblatt – Lösungsskizzen

Aufgabe 118

- 1. Dies ist eine homogene lineare DGL, sowie auch von der Form y' = f(x)g(y) mit g(y) > 0 im Definitionsbereich. Also sind a) und b) anwendbar. Und natürlich auch c) (mit 0 als inhomogenen Term), aber man macht sich dann unnötig Arbeit. (Jede Antwort a), b), c) mit korrekter Begründung wird als richtig gewertet).
- 2. Dies ist eine inhomogene lineare DGL, es ist nur c) anwendbar.
- 3. Diese DGL kann man als y' = f(x)g(y) schreiben mit f(x) = x + 1 und g(y) = 1/y + 1. Da y > 0 ist g(y) > 0 und Methode a) ist anwendbar.
- 4. Ja. Zu $y \in \mathbb{R}^n$ gibt es ein r > 0 und ein L > 0, so dass $|y' y| < r \Rightarrow |F_x(y) F_x(y')| \le L|y y'|$. Für $\varepsilon > 0$ wähle $0 < \delta < \varepsilon/L$.
- 5. Nein. Z.B. n=1 und f(x,y)=|y| genügt (sogar global) einer Lipschitz-Bedingung bezüglich y mit L=1, ist aber in 0 nicht differenzierbar.

Aufgabe 119

1. [2P] Wie verwenden Variation der Konstanten. Es ist $\varphi_0(x)=\exp(\int_{x_0}^x adt)=e^{(x-x_0)a}$, und wir müssen

$$\int_{x_0}^x \varphi_0(t)^{-1} b dt = b \int_{x_0}^x e^{-(t-x_0)a} dt$$

bestimmen. Wir unterscheiden a = 0 und $a \neq 0$. Für a = 0 erhalten wir

$$\int_{x_0}^{x} \varphi_0(t)^{-1} b dt = b \int_{x_0}^{x} dt = b(x - x_0)$$

und damit

$$\varphi(x) = \varphi_0(x)(c + \int_{x_0}^x \varphi_0(t)^{-1}bdt) = c + b(x - x_0).$$

Für $a \neq 0$ erhalten wir

$$\int_{x_0}^x \varphi_0(t)^{-1}bdt = \frac{b}{-a}e^{ax_0}(e^{-ax} - e^{-ax_0}) = \frac{b}{a}(1 - e^{-a(x - x_0)})$$

also

$$\varphi(x) = \left(c + \frac{b}{a}\right)e^{a(x-x_0)} - \frac{b}{a} .$$

- 2. [2P] a=0: Die Lösung erfüllt $\varphi(x_0)=c$ und $\varphi'(x)=b$. $a\neq 0$: Die Lösung erfüllt $\varphi(x_0)=c$ und $\varphi'(x)=\left(c+\frac{b}{a}\right)e^{a(x-x_0)}a=a\varphi(x)+b$.
- 3. ([2P] Lösung + [1P] maximales p) Wir verwenden Separation der Variablen. Es ist y' = f(x)g(y) mit $f(x) = \sin(x)$ und $g(y) = \exp(y) > 0$. Dann ist

$$G(y) = \int_0^y \frac{1}{g(t)} dt = \int_0^y e^{-t} dt = -e^{-y} + 1$$

und

$$F(x) = \int_0^x \sin(t)dt = -\cos(x) + 1$$
.

Es gilt $G(\mathbb{R}) =]-\infty, 1[$. Ferner gilt F(x) < 1 für $\cos(x) > 0$. Damit dies für alle $x \in]-p, p[$ gilt, muss $p \leq \pi/2$ erfüllt sein. Die Lösung ist durch $G(\varphi(x)) = F(x)$ bestimmt, also durch

$$-\exp(-\varphi(x)) + 1 = -\cos(x) + 1 \iff \varphi(x) = \log(1/\cos(x)).$$

Diese Lösung existiert zumindest auf]-p,p[mit $p=\pi/2$. Angenommen, die Lösung würde auf einem größeren Intervall existieren und angenommen, $\pi/2$ liegt in dem größeren Intervall. Dann muss die Lösung in $\pi/2$ stetig sein. Aber $\lim_{x \nearrow \pi/2} \log(1/\cos(x))$ existiert nicht. (Genauso kann man $-\pi/2$ ausschließen.) Also ist $p=\pi/2$ der größtmögliche Wert von p.

4. [1P] Es gilt in der Tat $\varphi(0) = 0$ und $\varphi'(x) = \cos(x)(-\cos(x)^{-2})(-\sin(x)) = \sin(x)/\cos(x) = \sin(x)\exp(\varphi(x))$.

Aufgabe 120 (Bernoullische Differentialgleichung)

Gilt Gleichung (2) für ψ , so folgt mit der Kettenregel

$$(1-\alpha)\varphi(x)^{-\alpha}\varphi'(x) = (1-\alpha)f(x)\varphi(x)^{1-\alpha} + (1-\alpha)g(x).$$

Da $\varphi(x) > 0$ und $\alpha \neq 1$ können wir mit $\varphi(x)^{\alpha}/(1-\alpha)$ multiplizieren, also $\varphi'(x) = f(x)\varphi(x) + g(x)\varphi(x)^{\alpha}$, und somit löst $\varphi(x)$ Gleichung (1). Gilt umgekehrt Gleichung (1), so setzen wir $\varphi(x) = \psi(x)^{1/(1-\alpha)}$ ein und erhalten

$$\frac{1}{1-\alpha}\psi(x)^{\alpha/(1-\alpha)}\psi'(x) = f(x)\psi(x)^{1/(1-\alpha)} + g(x)\psi(x)^{\alpha/(1-\alpha)} .$$

Wir multiplizieren beide Seiten mit $(1-\alpha)\psi(x)^{-\alpha/(1-\alpha)}$ und sehen, dass $\psi(x)$ Gleichung (2) löst.

Aufgabe 121

1. ([3P] Lösung + [1P] Probe) Wir verwenden Aufgaba 120 mit $\alpha=2$, f(x)=x und $g(x)=-e^{-x^2/2}$. Demnach müssen wir ein $\psi(x)$ finden, dass die Gleichung

$$y' = -xy + e^{x^2/2}$$

mit der Anfangsbedingung $\psi(0)=\varphi(0)^{1/(1-\alpha)}=1/2$ löst. Dies ist eine inhomogene linear Differentialgleichung. Also

$$\psi_0(x) = \exp(\int_0^x (-t)dt) = \exp(-x^2/2)$$

und

$$\psi(x) = \varphi_0(x)(1/2 + \int_0^x \psi_0(t)^{-1} e^{-t^2/2} dt) = \exp(-x^2/2)(1/2 + x)$$
.

Damit gilt (wegen $\varphi(x) = 1/\psi(x)$)

$$\varphi(x) = \frac{2}{1+2x} \exp(x^2/2) .$$

In der Tat gilt $\varphi(0) = 2$ und

$$\varphi'(x) = \frac{-2}{(1+2x)^2} 2\exp(x^2/2) + \frac{2}{1+2x} x \exp(x^2/2)$$

sowie

$$x\varphi(x) - \exp(-x^2/2)\varphi(x)^2 = x\frac{2}{1+2x}\exp(x^2/2) - \frac{2^2}{(1+2x)^2}\exp(x^2)\exp(-x^2/2)$$
.

2. [3P] Nach Aufgabe 120 müssen wir die Gleichung $y'=(1-\alpha)y+(1-\alpha)$ lösen. Die Anfangsbedingung lautet $\psi(0)=\varphi(0)^{1-\alpha}=c^{1-\alpha}$. Aus Aufgabe 119 kennen wir die allgemeine Lösung:

$$\psi(x) = (c^{1-\alpha} + 1)e^{(1-\alpha)x} - 1.$$

Die Bedingung $\psi(x) > 0$ ist genau dann erfüllt, wenn

$$(1-\alpha)x > -\log(c^{1-\alpha}+1)$$

Sei $u = -(1-\alpha)^{-1}\log(c^{1-\alpha}+1)$. Damit muss gelten x > u für $\alpha < 1$ und x < u für $\alpha > 1$.

Die Lösung von $y' = y + y^{\alpha}$ mit Anfangsbedingung ist

$$\varphi(x) = \psi(x)^{1/(1-\alpha)} = \left((c^{1-\alpha} + 1)e^{(1-\alpha)x} - 1 \right)^{1/(1-\alpha)} ,$$

und sie ist zumindest auf dem Intervall

$$\alpha<1\ :\ I=]u,\infty[\quad ,\quad \alpha>1\ :\ I=]-\infty,u[$$

definiert. Der einseitige Grenzwert von $\varphi(x)$ für $x \to u$ ist 0, somit gibt es kein φ , dass auf einem größeren Intervall definiert ist, und dessen Graph $\{(x, \varphi(x))|x \in I\}$ im Definitionsbereich $\mathbb{R} \times \mathbb{R}_{>0}$ liegt.