Übung zur Analysis 2, SS 2010

6. Übungsblatt – Lösungsskizzen

Aufgabe 90

Punkte separieren:

- 1. Ja, für $x \in X$ bezeichne χ_x die Funktion, die nur in x den Wert 1 und ansonsten den Wert 0 annimmt. Dann gilt $\chi_x(x) \neq \chi_x(y)$ falls $x \neq y$.
- 2. Nein, da für x = 0 und y = 1 immer f(x) = f(y) gilt.
- 3. Ja. Falls $x=(x_1,...,x_n)\neq y=(y_1,...,y_n)$ in \mathbb{R}^n , so gilt $x_i\neq y_i$ für mindestens ein $1\leq i\leq n$. Offensichtlich ist $\lambda_i((x_1,...,x_n))=x_i$ linear und es gilt

$$\lambda_i(x) = x_i \neq y_i = \lambda_i(y).$$

Algebren:

- 1. Ja: für zwei Funktionen f, g und $c \in \mathbb{C}$ sind f + g, $f \cdot g$ und $c \cdot f$ wieder Funktionen, und die konstante Funktion 1 ist auch in der Menge.
- 2. Nein: falls f > 0, so ist $(-1) \cdot f \ngeq 0$.
- 3. Ja: falls f, g differenzierbar und $c \in \mathbb{R}$, so sind f + g, $f \cdot g$ und $c \cdot f$ wieder differenzierbar. Die konstante Funktion 1 ist auch differenzierbar.
- 4. Ja: für zwei stetige und beschränkte Funktionen f,g und $c \in \mathbb{C}$ sind f+g, $f \cdot g$ und $c \cdot f$ wieder stetig und beschränkt. Die konstante Funktion 1 ist auch stetig und beschränkt.
- 5. Nein: z.B. ist $x + x^2$ nicht in $\{x^n : [0,1] \to \mathbb{R} \mid n \in \mathbb{N}\}$ enthalten.

Aufgabe 91

1. Sei $\varepsilon > 0$. Nach Definition existieren $N, M \in \mathbb{N}$, so dass

$$|f(x) - f_n(x)| < \frac{\varepsilon}{2}$$
 und $|g(x) - g_m(x)| < \frac{\varepsilon}{2}$

für alle $n>N,\,m>M,$ und alle $x\in X$ gilt. Also gilt

$$|f(x) + g(x) - f_n(x) - g_n(x)| \le |f(x) - f_n(x)| + |g(x) - g_n(x)| < \varepsilon$$

für alle $n > \max\{M, N\}$ und somit konvergiert $f_n + g_n$ gleichmäßig gegen f + g.

2. Da $||f|| := \sup\{|f(x)| | x \in X\}$ gilt für alle $x \in X$

$$|f(x)g(x)| = |f(x)||g(x)| \le |f(x)||g|| \le ||f|||g||,$$

und somit auch $||fg|| = \sup\{|f(x)g(x)| \mid x \in X\} \le ||f|| ||g||.$

3. Nach Satz 8.4.2 gilt $f,g \in \mathcal{C}(X)$. Gleichmäßige Konvergenz ist nach Satz 8.4.1 das gleiche wie Konvergenz in $\mathcal{C}(X)$ bzgl. der Metrik $d(h,h') = \|h - h'\|$. Da $\|g_n\| \leq \|g\| + \varepsilon =: M$ für ein $\varepsilon > 0$ und alle n > N für ein $N \in \mathbb{N}$, gilt

$$||fg - f_n g_n|| = ||f(g - g_n) + (f - f_n)g_n|| \le ||f(g - g_n)|| + ||(f - f_n)g_n||$$

$$\le ||f|||g - g_n|| + ||f - f_n|||g_n|| \le ||f|||g - g_n|| + ||f - f_n||M.$$

Da $f_n \to f \Leftrightarrow ||f - f_n|| \to 0$ implizieren $f_n \to f$ und $g_n \to g$ in $\mathcal{C}(X)$ also $f_n g_n \to f g$.

4. Es gilt: $f \in \overline{A} \Leftrightarrow f$ ist gleichmäßiger Grenzwert einer Folge $(f_n)_{n \in \mathbb{N}}$ mit $f_n \in A$. Nach Teil 1. folgt, dass, falls $(f_n)_{n \in \mathbb{N}}$ glm. gegen f und $(g_n)_{n \in \mathbb{N}}$ glm. gegen g konvergiert, dann auch $f_n + g_n$ gleichmäßig gegen f + g konvergiert. Also ist f + g auch ein gleichmäßiger Grenzwert einer Folge in A. Ebenso folgt $f, g \in \overline{A} \Rightarrow f \cdot g \in \overline{A}$ aus Teil 3. Falls $(f_n)_{n \in \mathbb{N}}$ glm. gegen f konvergiert, so konvergiert $(c \cdot f_n)_{n \in \mathbb{N}}$ glm. gegen $c \cdot f$. Also gilt $f \in \overline{A} \Rightarrow c \cdot f \in \overline{A}$ und \overline{A} ist somit eine Algebra.

Aufgabe 92

1. Sei $\varepsilon > 0$ gegeben. Da F gleichmäßig stetig ist existiert ein $\delta > 0$ so dass

$$|x - y| < \delta \Rightarrow |F(x) - F(y)| < \varepsilon$$
 (1)

für alle $x, y \in \mathbb{C}$ gilt. Da $(f_n)_{n \in \mathbb{N}}$ gleichmäßig gegen f konvergiert, existiert ein $N \in \mathbb{N}$, so dass

$$|f(x) - f_n(x)| < \delta$$

für alle n > N und alle $x \in X$. Damit gilt nach (1)

$$|F(f(x)) - F(f_n(x))| < \varepsilon$$

für alle $x \in X$ und n > N.

2. Da f_n stetig auf einer kompakten Menge ist, ist jedes f_n , sowie die Grenzfunktion f (nach Satz 8.4.2) beschränkt. Da $|f_n(x)| \leq |f(x)| + \varepsilon$ für ein $\varepsilon > 0$ alle n > N für ein $N \in \mathbb{N}$, nehmen also alle f_n Werte in der abgeschlossenen und beschränkten Menge

$$B := \{ z \in \mathbb{C} : |z| \le \sup\{ \|f_1\|, ..., \|f_N\|, \|f\| \} + \varepsilon \}$$

an. Folglich gilt $F \circ f_n = F|_B \circ f_n$, wobei $F|_B$ die Einschränkung von F auf B ist. Da $F|_B$ nach Satz 5.3.8 gleichmäßig stetig ist, ist die Folge $(F|_B \circ f_n)_{n \in \mathbb{N}}$ also gleichmäßig konvergent nach Teil 1.

Aufgabe 93

Gleichmäßiger Abschluss von E₁:

Sei f_k eine Folge in E_1 , die gleichmäßig auf [0,1] konvergiert. Dann gilt $f_k(x) = x^{n_k}$ für eine Folge $(n_k)_{k \in \mathbb{N}}$ mit $n_k \in \mathbb{N}$. Wir zeigen, dass dann n_k ab einem $K \in \mathbb{N}$ bereits konstant ist. Wir unterscheiden zwei Fälle:

- 1. Die Folge $(n_k)_{k\in\mathbb{N}}$ ist nicht beschränkt: Dann gibt es eine Teilfolge n_{k_l} , die streng monoton steigend ist. Die Teilfolge $(f_{k_l}(x))_{l\in\mathbb{N}}$ konvergiert punktweise gegen 0 für x<1, denn $n_{k_l}\to\infty$ für $l\to\infty$, und somit $\lim_{l\to\infty}x^{n_{k_l}}=0$. Für x=1 ist $f_k(x)=1$, also auch $\lim_{l\to\infty}f_{k_l}(1)=1$. Per Annahme konvergiert f_k gleichmäßig, also insbesondere auch punktweise. Damit konvergiert auch jede Teilfolge gegen den Grenzwert, und wir sehen, dass die Grenzfunktion nicht stetig ist. Dies ist ein Widerspruch zu Satz 8.2.6=R:7.12. Somit kann Fall 1 nicht auftreten.
- 2. Die Folge $(n_k)_{k\in\mathbb{N}}$ ist beschränkt: Also hat diese Folge Werte in einem kompakten Raum und demnach mindestens einen Häufungspunkt. Sie hat sogar genau einen, da es bei zwei verschiedenen Häufungspunkten zwei konstante Teilfolgen n_{k_m} und n_{k_l} gäbe, was aber die Konvergenz (sogar die punktweise Konvergenz) von $(f_k)_{k\in\mathbb{N}}$ ausschliessen würde.

Also ist jede gleichmäßig konvergente Folge von Monomen ab einem $N \in \mathbb{N}$ konstant, und demnach ist der gleichmäßige Abschluss von E_1 gleich E_1 .

Gleichmäßiger Abschluss von E₂:

Die Folge $f_k(x) = \frac{1}{2^k}x^k$ ist eine Folge in E_2 , die offensichtlich punktweise gegen die konstante Nullfunktion auf [0,1] konvergiert. Da [0,1] kompakt ist, jedes f_k und die Grenzfunktion stetig ist und

$$\frac{1}{2^k}x^k \ge \frac{1}{2^{k+1}}x^{k+1}$$

für $x \in [0,1]$ gilt, ist die Konvergenz nach Theorem R:7.13 gleichmäßig. Jede gleichmäßig konvergente Folge $(f_k)_{k \in \mathbb{N}} = (\frac{1}{2}x)^{n_k}$ in E_2 , für die $(n_k)_{k \in \mathbb{N}}$ unbeschränkt ist, konvergiert gegen die konstante Nullfunktion, da

$$0 \le (\frac{1}{2}x)^{n_k} \le \frac{1}{2^{n_k}}$$

für unbeschränktes n_k gegen Null konvergiert. Falls n_k beschränkt ist, so ist die Folge irgendwann konstant (siehe oben) und konvergiert gegen ein Element aus E_2 . Also ist

$$\overline{E}_2 = E_2 \cup \{0 : [0,1] \to \mathbb{R}\}.$$