Übung zur Analysis 2, SS 2010

3. Übungsblatt – Lösungsskizzen

Aufgabe 79

Sei $c \neq -1$. Da $(t^c)' = ct^{c-1}$ gilt $(\frac{1}{c+1}t^{c+1})' = t^c$ und somit

$$\int_{a}^{b} t^{c} dt = \frac{1}{c+1} t^{c+1} \Big|_{a}^{b} = \frac{1}{c+1} (b^{c+1} - a^{c+1})$$

für 0 < a < b.

Für c = -1 gilt

$$\int_{a}^{b} t^{c} dt = \log(b) - \log(a).$$

- 1. [2P] Das Integral konvergiert für c>-1, da dann $\lim_{a\searrow 0}a^{c+1}$ existiert. Falls c=-1, so konvergiert das Integral nicht, da $\lim_{a\searrow 0}\log(a)$ nicht existiert. Für c<-1 konvergiert das Integral nicht, da $\lim_{a\searrow 0}a^{c+1}$ nicht existiert.
- 2. [2P] Analog zu Teil 1. sieht man dass das Integral genau für c<-1 konvergiert.
- 3. [2P] Falls c=0 konvergiert das Integral offensichtlich nicht. Da $(\frac{1}{c}e^{ct})'=e^{ct}$ gilt

$$\int_{0}^{b} e^{ct} dt = \frac{1}{c} (e^{cb} - 1), \tag{1}$$

so dass

$$\lim_{b \to \infty} \int_0^b e^{ct} \, dt$$

genau dann existiert wenn c < 0 gilt.

Aufgabe 80

1. [1P] Mit partieller Integration erhält man

$$\int_0^{\pi} e^t \sin(t) dt = e^t \sin(t) \Big|_0^{\pi} - \int_0^{\pi} e^t \cos(t) dt = 0 - \left(e^t \cos(t) \Big|_0^{\pi} + \int_0^{\pi} e^t \sin(t) dt \right)$$

und somit

$$\int_0^{\pi} e^t \sin(t) \, dt = \frac{1}{2} (e^{\pi} + 1).$$

2. [1P] Nach der Definition von sinh(t) folgt direkt

$$\int_0^1 e^t \sinh(t) \, dt = \frac{1}{2} \int_0^1 e^{2t} - 1 \, dt = \frac{1}{4} (e^2 - 1) - \frac{1}{2}.$$

3. [1P] Mit partieller Integration erhält man

$$\int_{x}^{1} 1 \cdot \log(t) \, dt = t \cdot \log(t) \Big|_{x}^{1} - \int_{x}^{1} t \, \frac{1}{t} \, dt = x(1 - \log(x)) - 1$$

4. [1P] Partielle Integration ergibt

$$\int_{1}^{x} t \cdot \log(t) \, dt = \frac{1}{2} \left(t^{2} \cdot \log(t) \Big|_{1}^{x} - \int_{1}^{x} t \, dt \right) = \frac{1}{2} (x^{2} \log(x) - \frac{x^{2} - 1}{2})$$

5. [1P] Partielle Integration ergibt

$$\int_{-\pi}^{\pi} \sin(t) \sin(t) dt = -\cos(t) \sin(t)|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} \cos(t) \cos(t) dt$$

und mit $\cos^2(t) = 1 - \sin^2(t)$ kann man nach

$$\int_{-\pi}^{\pi} \sin^2(t) \, dt = \frac{1}{2} (-\cos(t)\sin(t)|_{-\pi}^{\pi} + \int_{-\pi}^{\pi} 1 \, dt) = \pi$$

auflösen.

Aufgabe 81

1. [2P] Aus Aufgabe 80.3 folgt dass $x(\log(x) - 1)$ eine Stammfunktion von $\log(x)$ ist. Da

$$\lim_{x \searrow 0} x(\log(x) - 1) = \lim_{x \searrow 0} -x = 0$$

(nach l'Hospital) konvergiert das Integral gegen

$$\lim_{x \searrow 0} \int_{x}^{1} \log(t) \, dt = \lim_{x \searrow 0} \left((-1) - x(\log(x) - 1) \right) = -1.$$

2. [2P] Es gilt

$$\int_0^x \frac{1}{1+t^2} dt = \arctan(x)$$

Nach Aufgabe 69.4. Ferner gilt $\lim_{x\to\infty}\arctan(x)=\frac{\pi}{2}$ nach Aufgabe 69, also konvergiert

$$\int_0^\infty \frac{1}{1+t^2} dt$$

gegen $\frac{\pi}{2}$. Da $\frac{1}{1+t^2} = \frac{1}{1+(-t)^2}$ gilt somit auch

$$\int_{-\infty}^{0} \frac{1}{1+t^2} dt = \frac{\pi}{2}$$

und insgesamt

$$\int_{-\infty}^{\infty} \frac{1}{1+t^2} dt = \pi.$$

Aufgabe 82

[3 P] Wir haben $\gamma'(t)=(-r\sin(t),r\cos(t),\lambda).$ Nach Satz R:6.27 gilt für die Länge $\Lambda(\gamma)$ der Kurve γ

$$\Lambda(\gamma) = \int_0^{2\pi w} |\gamma'(t)| \, dt = \int_0^{2\pi w} \sqrt{r^2 \sin^2(t) + r^2 \cos^2(t) + \lambda^2} \, dt = 2\pi w \sqrt{r^2 + \lambda^2}.$$

Aufgabe 83

- 1. [2P] Nach Satz 5.7.3(5) ist die Funktion $t^{x-1}e^{-t/2}$ beschränkt auf $[1,\infty[$. Sei M eine obere Schranke. Dann $0 \le t^{x-1}e^{-t} \le Me^{-t/2}$. Das uneigentliche Integral $\int_1^\infty Me^{-t/2}dt$ konvergiert nach Aufgabe 79, und nach Satz 7.4.4 (Majorantenkriterium) konvergiert damit auch $\int_1^\infty t^{x-1}e^{-t}dt$.
- 2. [1P] Auf]0,1] gilt $0 \le t^{x-1}e^{-t} \le t^{x-1}$. Nach Aufgabe 79 konvergiert $\int_0^1 t^{x-1} dt$ und nach Satz 7.4.4 (bzw. der Bemerkung danach) somit auch $\int_0^1 t^{x-1}e^{-t} dt$.
- 3. [2P] Es gilt $(t^x e^{-t})' = xt^{x-1}e^{-t} t^x e^{-t}$, also

$$\int_{a}^{b} x t^{x-1} e^{-t} dt = \left(t^{x} e^{-t} \right) \Big|_{a}^{b} + \int_{a}^{b} t^{x} e^{-t} dt \ .$$

Da $t^x e^{-t} \to 0$ für $t \to 0$ (da x > 0) und für $t \to \infty$ (Satz 5.7.3) gilt für den Grenzwert $a \to 0$ und $b \to \infty$,

$$x \int_0^\infty t^{x-1} e^{-t} dt = \int_0^\infty t^x e^{-t} dt \;,$$

also $x\Gamma(x) = \Gamma(x+1)$.

4. [1P] Es gilt $\Gamma(1) = \int_0^\infty e^{-t} dt = 1$ nach Gleichung (1). Sei $\Gamma(n+1) = n!$ für $n \le N$ gezeigt. Dann $\Gamma(N+2) = (N+1)\Gamma(N+1) = (N+1)\cdot N! = (N+1)!$.