Übung zur Analysis 2, SS 2010

1. Übungsblatt – Lösungsskizzen

Aufgabe 71

1. [2P] Aus $(e^{i\pi/4})^2 = i$ und $e^{ix} = \cos(x) + i\sin(x)$ folgt (schreibe $s = \sin(\pi/4)$ und $c = \cos(\pi/4)$)

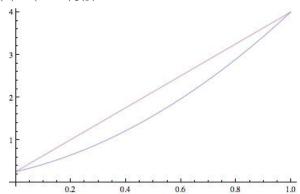
$$i = (c+is)^2 = c^2 + 2isc - s^2$$
,

also $c^2-s^2=0$. Da sowieso $s^2+c^2=1$ folgt $2s^2=1$, also $s=\pm 1/\sqrt{2}$. Aber wir wissen, dass $\sin(x)>0$ für $x\in]0,\pi[$, also $\sin(\pi/4)=\pm 1/\sqrt{2}$.

- 2. [2P] Genauso (mit $s = \sin(\pi/6)$, etc): $i = (c+is)^3 = c^3 + 3ic^2s 3cs^2 is^3$, also $c(c^2 3s^2) = 0$.
- 3. [2P] Es gilt $\sin(\pi/3)^2 + \cos(\pi/3)^2 = 1$. Aber $\cos(\pi/3) = \sin(\pi/2 \pi/3) = \sin(\pi/6)$. Somit $\sin(\pi/3)^2 + 1/4 = 1$.

Aufgabe 72

1. [1P] Der untere Graph ist $g(\lambda) = q(\lambda x + (1 - \lambda)y)$ und der obere ist $h(\lambda) = \lambda q(x) + (1 - \lambda)q(y)$:



2. [3P] Seien $x, y \in [a, b]$ und $\lambda \in [0, 1]$. Da f konvex ist, gilt

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$
.

Beide Seiten der Ungleichung liegen in]c,d[(warum?). Dag monoton steigend ist, gilt

$$g(f(\lambda x + (1 - \lambda)y)) \le g(\lambda f(x) + (1 - \lambda)f(y))$$
.

Da g konvex ist, gilt

$$g(\lambda f(x) + (1 - \lambda)f(y)) \le \lambda g(f(x)) + (1 - \lambda)g(f(y)).$$

Zusammen zeigt dies die Behauptung.

3. [3P] Da $f''(x) \ge 0$, ist f'(x) monton steigend (Satz 6.2.5). Seien $x, y \in]a, b[$ mit x < y, und sei $0 < \lambda < 1$. Setze $c = \lambda x + (1 - \lambda)y$. Dann x < c < y. Da f' auf [x, y] differenzierbar ist, ist der Mittelwertsatz (Satz 6.2.4) anwendbar. Man erhält

$$f(c) - f(x) = f'(\xi_1)(c - x)$$
 und $f(y) - f(c) = f'(\xi_2)(y - c)$,

wobei $\xi_1 < \xi_2$ (warum?). Da f' monoton steigend ist, folgt

$$\frac{f(c) - f(x)}{c - x} \le \frac{f(y) - f(c)}{y - c}$$

Da $c - x = (1 - \lambda)(y - x)$ und $y - c = \lambda(y - x)$ folgt die Behauptung.

4. [3P] Seien x, y, c wie in der Lösung von Teil 3. Da f konvex ist, gilt $f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$, also auch

$$\frac{f(c) - f(x)}{c - x} \le \frac{f(y) - f(c)}{y - c} .$$

Da $0 < \lambda < 1$ beliebig war, gilt dies bei gegebenem x < y für alle x < c < y. Da f differenzierbar ist, ergibt der Grenzwert $c \to x$

$$f'(x) \le \frac{f(y) - f(x)}{y - x} .$$

Genauso erhält man für $c \to y$

$$\frac{f(y) - f(x)}{y - x} \le f'(y) .$$

Also $f'(x) \leq f'(y)$. Da x < y beliebig war ist f' monoton steigend. Da f' differenzierbar ist, existiert der Grenzwert $t \to x$ von (f'(t) - f'(x))/(t - x). Die Monotonie von f' zeigt, dass $(f'(t) - f'(x))/(t - x) \geq 0$ (man unterscheide t < x und t > x), also gilt dies auch für den Grenzwert f''(x).

- 5. [2P] Berechnen der zweiten Ableitung zeigt, dass x^2 , e^x , e^{-x} , $-\log(x)$, $\cosh(x)$ konvex sind, nicht aber x^3 , $\cos(x)$.
- 6. [2P] Wir schreiben f(x) = a(b(c(d(x)))) mit

$$a(x) = x^2 + x^4$$
, $b(x) = 1 + x$, $c(x) = e^x$, $d(x) = 1/x$.

Die Funktionen a, b, c sind monoton steigend (erste Ableitung ≥ 0) und konvex (zweite Ableitung ≥ 0). Die Funktion d is konvex (zweite Ableitung ≥ 0). Nach Teil 2 ist a(b(c(d(x)))) konvex.

Aufgabe 73

Für x=y=0 ist die Ungleichung offensichtlich erfüllt, wir nehmen also im Folgenden x,y>0 an. Wir haben in Aufgabe 72 gesehen, dass $-\log(x)$ konvex ist. Also gilt

$$-\log(\lambda x + (1-\lambda)y) \le -\lambda \log(x) - (1-\lambda)\log(y) .$$

Für $\lambda = 1/p$ gilt $1 - \lambda = 1/q$, also

$$\log(x/p + y/q) \ge \log(x)/p + \log(y)/q = \log(x^{1/p}) + \log(y^{1/q}).$$

Die Funktion exp ist monoton steigend, also gilt auch

$$x/p + y/q = \exp(\log(x/p + y/q)) \ge \exp(\log(x^{1/p}) + \log(y^{1/q})) = x^{1/p} \, y^{1/q} \ .$$