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Abstract

Ziel dieser Arbeit ist die Initialisierung einer Lie-theoretischen Behandlung von
Symmetriegruppen von Hauptfaserbiindeln, hauptsachlich von Eichgruppen. Fiir
ein fixes K-Hauptfaserbiindel P bezeichnen wir diese mit Gau(P) und identifizieren
sie meistens mit der Gruppen der dquivarianten glatten Abbildungen C*°(P, K)X.
Diese Gruppen werden als unendlichdimensionale lokalkonvexe Lie-Gruppen be-
handelt. Da unendlichdimensionale Lie-Theorie ein Gebiet ist, das momentan
einem regen Forschugsprozess unterworfen ist und die Terminologie noch nicht
gefestigt ist, miissen wir die Fragestellung préazisieren. In dieser Arbeit wird den
folgenden Fragen nachgegangen:

e Fiir welche P ist Gau(P) eine unendlichdimensionale Lie-Gruppe?
e Wie kénnen die Homotopiegruppen 7, (Gau(P)) bestimmt werden?
e Wie sieht die Erweiterungstheorie von Gau(P) aus?

Dies ist natiirlich nur ein kleiner Teil der Fragen, die mit Lie-Gruppen ver-
bunden sind. Sie konnen alle mit der gleichen Idee behandelt werden, die wir im
Folgenden beschreiben. Ein Biindel kann (bis auf Aquivalenz) auf mehrere ver-
schiedenen Arten beschrieben werden. Zwei verschiedene Arten sind durch die
Beschreibung durch eine klassifizierende Abbildung fp und durch einen Kozyk-
lus Kp gegeben. Eine klassifizierende Abbildung fp ist eine global definierte
Abbildung mit Werten in einem klassifizierenden Raum, wahrend ein Kozyklus
aus vielen lokal definierten Abbildungen besteht, die Werte in der Lie-Gruppe
K annehmen und bestimmte Kompatibilitatsbedingungen erfiillen. Diese beiden
Objekte, klassifizierende Abbildungen und Kozyklen, leben in zwei verschiedenen
Welten, namlich Topologie und Lie-Theorie.

Die Idee ist nun, diese beiden Konzepte zu kombinieren und die bestehenden
Resultate aus Topologie und Lie-Theorie zu benutzen um Antworten auf die oben
genannten Fragen zu erhalten. Da diese Fragen recht allgemein gehalten sind kann
man nicht erwarten, Antworten in dieser Allgemeinheit zu erhalten. In dieser
Arbeit werden wir jedoch viele interessante Falle aus der mathematischen Physik
behandeln. Die dabei erzielten Resultate beinhalten:

e Konstruktion einer Lie-Gruppenstruktur auf Gau(P) falls die Struktur-
gruppe lokal exponentiell ist.

e Eine kanonische schwache Homotopiedquivalenz Gau(P) — Gau.(P).

e Entwicklung eines Gattungsverfahrens fiir Hauptfaserbiindel.

e Konstruktion einer Erweiterung Gau(P) — Aut(P) — Diff (M )p.

e Bestimmung einiger Homotopiegruppen und aller rationalen Homotopiegrup-
pen von Gau(P) fiir endlichdimensionale Hauptfaserbiindel iiber Sphéren.

e Konstruktion zentraler Erweiterungen Z — Gp — Gau(P)o.
e Konstruktion einer automorphen Wirkung von Aut(P) auf Gp.
e Anwendung auf affine getwistete Kac-Moody Gruppen.
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Abstract

The aim of this thesis is to consider symmetry groups of principal bundles
and to initiate a Lie theoretic treatment of these groups. These groups of main
interest are called gauge groups. When taking a particular principal K-bundle
P into account, we denote the gauge group of this bundle by Gau(P), which we
mostly identify with the space of smooth K-equivariant mappings C°°(P, K)¥.
These groups will be treated as infinite-dimensional Lie groups, modelled on an
appropriate vector space. Since Lie theory in infinite dimensions is a research area
which is presently under active development, this terminology is not settled, and
we have to make precise what we mean with “infinite-dimensional Lie theory”.
The following questions are considered in this thesis:

e For which bundles P is Gau(P) an infinite-dimensional Lie group, modelled
on an appropriate locally convex space?

e How can the homotopy groups 7, (Gau(P)) be computed?
e What extensions does Gau(P) permit?

Of course, this is only a marginal part of the questions that come along with
Lie groups. These problems have in common that they can be approached with the
same idea, which we describe now. Along with a bundle P come many different
ways of describing it (up to equivalence). Two fundamental different ways are
given by describing P either in terms of a classifying map fp, or by a cocycle Kp.
A classifying map fp is a globally defined map fp with values in some classifying
space, while a cocycle consists of many locally defined maps, with values in a Lie
group, obeying some compatibility conditions. These objects, classifying maps and
cocycles, live in two different worlds, namely topology and Lie theory.

The idea now is to combine these two concepts and to use the existing tools
from topology and Lie theory in order to give answers to the questions above. Since
the questions are formulated quite generally, we cannot hope to get answers in full
generality, but for many interesting cases occurring in mathematical physics, we
will provide answers. These include:

e Construction of a Lie group structure on Gau(P) if the structure group is
locally exponential.

e Showing that the canonical inclusion Gau.(P) — Gau(P) is a weak homo-
topy equivalence.

e Providing a smoothing procedure for continuous principal bundles.

e Construction of an Extension of Lie groups Gau(P) — Aut(P) — Diff (M)p.

e (Calculation of some homotopy groups and of all rational homotopy groups
of Gau(P) for finite-dimensional principal bundles over spheres.

e Construction of central extensions Z — Gp — Gau(P)y.
e Construction of an automorphic action of Aut(P) on Gp.
e Applications to affine twisted Kac-Moody groups.
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Chapter 1

Introduction

Bundle theory and Lie theory are two of the most important topics in Mathematical
Physics. Bundles occur naturally in the description of many physical systems, often
in terms of (co-) tangent bundles of manifolds or in terms of principal bundles.
These descriptions always carry redundant information, emerging from introducing
coordinates or from geometrical realisations. This redundant information gives rise
to symmetries of the mathematical description, which can be expressed in terms
of groups. In many interesting cases, these groups are geometric objects itself and
are called Lie groups.

One of the most popular examples is general relativity, which is formulated in
terms of manifolds and the curvature of vector bundles. The pioneering idea of
EINSTEIN was that any point and any coordinate system of the manifold should
have equal physical laws. This assumption leads to a theory which is invariant
under diffeomorphisms by assumption. Thus general relativity may be viewed
as a theory formulated in terms of manifolds M and their tangent bundles T'M,
which has the Lie group Diff (M) as symmetry group.

The aim of this thesis is to consider symmetry groups of principal bundles
and to initiate a Lie theoretic treatment of these groups. The groups of main
interest are gauge groups, which can be viewed as the “internal” symmetry groups
of quantum field theories (cf. [MM92] [Na00]). When taking a particular principal
bundle P into account, we denote the gauge group of this bundle by Gau(P).
These groups will be treated as infinite-dimensional Lie groups, modelled on an
appropriate vector space. Since Lie theory in infinite dimensions is a research area
which is presently under active development, this terminology is not settled, and
we have to make precise what we mean with “infinite-dimensional Lie theory”.
The following questions are considered in this thesis:



2 Introduction

e For what bundles P is Gau(P) an infinite-dimensional Lie group, modelled
on an appropriate locally convex space?

e How can the homotopy groups 7,(Gau(P)) be computed?

e What extensions does Gau(P) permit?

Of course, this is only a marginal part of the questions that come along with
Lie groups. These problems have in common that they can be approached with the
same idea, which we describe now. Along with a bundle P come many different
ways of describing it (up to equivalence). Two fundamental different ways are
given by describing P either in terms of a classifying map fp, or by a cocycle Kp.
A classifying map fp is a globally defined map fp with values in some classifying
space, while a cocycle consists of many locally defined maps, with values in a Lie
group, obeying some compatibility conditions. These objects, classifying maps and
cocycles, live in two different worlds, namely topology and Lie theory.

The idea now is to combine these two concepts and to use the existing tools
from topology and Lie theory in order to give answers to the questions above. Since
the questions are formulated quite generally, we cannot hope to get answers in full
generality, but for many interesting cases occurring in mathematical physics, we
will provide answers.

We now give a rough outline of the results that can be found in this thesis,
without going into too much detail. Throughout the thesis, we always assume that
the base spaces of the bundles under consideration are connected.

Chapter [2 In the first section, we introduce manifolds with corners, which are
the objects that we use extensively throughout the thesis. We have the need
to work with these objects, since we are forced to consider compact subsets
of certain open subsets of a manifold as manifolds themselves (e.g., [0, 1]" as
a manifold with corners in R™). Since we want to work with mapping spaces,
we take a quite uncommon definition of a manifold with corners, which we
show to be equivalent to the usual one later in the chapter.

In the second section, we introduce mapping spaces and topologies on them.
In particular, we define the C°°-topology on spaces of smooth mappings
between manifolds, which is the topology we use throughout this thesis.
Along with this, we show and recall some basic facts on spaces of smooth
mappings with values in locally convex spaces or Lie groups and on spaces
of smooth sections in vector bundles. These facts are the Lie theoretic tools
for mapping spaces, mentioned above, which we use.

In the last section, we relate our concept of a manifold with corners to the
one more frequently used in the literature. The results of this section are
also well-known, but we will derive alternative proofs.
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Chapter [3} In this chapter, we introduce Lie group structures on the gauge group
Gau(P) and on the automorphism group Aut(P) of a principal bundle P over
a compact manifold M. In the first section, we consider the gauge group
Gau(P) and introduce a Lie group topology on it under a technical require-
ment. This requirement, called “property SUB”, encodes exactly what we
need to ensure the construction of a canonical Lie group topology on Gau(P).

Theorem (Lie group structure on Gau(P)). Let P be a smooth princi-
pal K-bundle over the compact manifold M (possibly with corners). If P has
the property SUB, then Gau(P) = C>(P, K)X carries a Lie group structure,
modelled on C*®(P,)X. If, moreover, K is locally exponential, then Gau(P)
IS S0. ]

In the remainder of the section, we discuss the question what bundles have
the property SUB. Most bundles (including all bundles modelled on Banach
spaces) have this property.

In the second section, we derive a first major step towards the computation
of the homotopy groups m,(Gau(P)) of the gauge group. Following ideas
from mapping groups, we reduce the determination of ,(Gau(P)) to the
case of continuous gauge transformations Gau.(P).

Theorem (Weak homotopy equivalence for Gau(P)). Let P be a
smooth  principal K-bundle over the compact manifold M (possibly
with corners).  If P has the property SUB, then the natural inclu-
sion ¢ : Gau(P) — Gau.(P) of smooth into continuous gauge transfor-
mations 1S a weak homotopy equivalence, i.e., the induced mappings
mn(Gau(P)) — m, (Gau.(P)) are isomorphisms of groups for n € WNy. n

This theorem is the first connection between the two worlds described above,
i.e., Lie theory (considering Gau(P) as the object of interest) and topology
(considering Gau.(P) as the object of interest). It reduces the determination
of m,(Gau(P)) completely to the determination of m,(Gau.(P)), which we
will consider in Chapter [4

In the third section, we develop the technique of reducing problems for gauge
transformations to problems on Lie group valued mappings, satisfying some
compatibility conditions further, to bundle equivalences. With the aid of
some technical constructions, we derive the following two theorems, which
are somewhat apart from the main objective of this chapter.

Theorem (Smoothing continuous principal bundles). Let K be a Lie
group modelled on a locally convexr space, M be a finite-dimensional para-
compact manifold (possibly with corners) and P be a continuous principal
K-bundle over M. Then there exists a smooth principal K-bundle P over
M and a continuous bundle equivalence 2 : P — P. n
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Theorem (Smoothing continuous bundle equivalences). Let K be a
Lie group modelled on a locally convex space, M be a finite-dimensional
paracompact manifold (possibly with corners) and P and P’ be two smooth
principal K-bundles over M. If there exists a continuous bundle equivalence
Q: P — P, then there exists a smooth bundle equivalence Q0 : P — P'. m

Again, these theorems provide an interplay between locally defined Lie group
valued functions with compatibility conditions on the one hand and classi-
fying maps in classifying spaces on the other, because the classical proof
of these theorems in the case of finite-dimensional bundles uses classifying
maps.

The last section of Chapter |3|is a first approach to the extension theory of
Gau(P). One way of defining Gau(P) is to consider it as a normal sub-
group of Aut(P), i.e., Aut(P) is the extension of some group isomorphic to
Aut(P)/ Gau(P) by Gau(P). By using techniques from the Lie theory of
mapping spaces, we put this into a Lie theoretic context.

Theorem (Aut(P) as an extension of Diff (M)p by Gau(P)). Let
P be a smooth principal K-bundle over the closed compact manifold M. If
P has the property SUB, then Aut(P) carries a Lie group structure such
that we have an extension of smooth Lie groups

Gau(P) — Aut(P) ——» Diff(M)p,

where Q : Aut(P) — Diff (M) is the canonical homomorphism and Diff (M )p
is the open subgroup of Diff (M) preserving the equivalence class of P under
pull-backs. n

Chapter [4: In this chapter, we turn to the computation of m,(Gau.(P)), which
we have seen to be isomorphic to 7,(Gau(P)) in Chapter [3] We can thus
work in a purely topological setting and take the existing tools of homotopy
theory into account. In the first section, we explain how the problem of the
determination of Gau,.(P) can be expressed in terms of long exact homotopy
sequences and connecting homomorphisms.

In the second section, we show how the connecting homomorphisms, men-
tioned above, can be computed in terms of homotopy invariants of the struc-
ture group and the bundle. The crucial tool will be the evaluation fibration
ev : Gau.(P) — K, determined uniquely by pg - ev(f) = f(po) for some base-
point py. Furthermore, it will turn out that the case of bundles over spheres
is the generic one.

Theorem (Connecting homomorphism is the Samelson product).
Let K be locally contractible and P be a continuous principal K-bundle over
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S™ . represented by
bem,1(K)=I[S", BK], = Bun(5™, K).

Then the connecting homomorphisms 6, : T,(K) — Tpim—1(K) in the long
exact homotopy sequence

e Tt () 2 T () — 1 (Gate(P)) = () = 6 () =+

induced by the evaluation fibration, are given by 0,(a) = —(b,a)s, where
(-,-)s denotes the Samelson product. n

In the last section of Chapter |4, we explain how this exact sequence can
be used to compute m,(Gau.(P)). Since for many questions in infinite-

dimensional Lie theory it suffices to know the rational homotopy groups
7Q(Gau,(P)), we focus on 7&(Gau.(P)).

Theorem (Rational homotopy groups of gauge groups). Let K be a
finite-dimensional Lie group and P be a continuous principal K-bundle over
X, and let X3 be a compact orientable surface of genus g. If X = S™, then

T (Gaue(P)) & m,, (K) & m}(K)

n+m

forn>1. If X =% and K is connected, then
T (Gau(P)) = ml,(K) @ mh (K)* & nd(K)

forn >1. [

Since the rational homotopy groups of finite-dimensional Lie groups are
known, this yields a complete description of the rational homotopy groups of
gauge groups for finite-dimensional bundles with connected structure group
over spheres and compact surfaces.

Chapter 5} In this chapter, we consider the construction of central extensions
of Gau(P) and applications to Kac-Moody groups. In the first section,
we consider the construction of a central extension of the gauge algebra
g := gau(P), which is motivated by the corresponding construction for triv-
ial bundles. This central extension g, is given by a “covariant” cocycle
w:gxg—3nu(Y), which is constructed with the aid of some K-invariant
bilinear form «: € x £ — Y. The target space 3u(Y) of w is some locally
convex space 3p/(Y), which depends on Y and on the base manifold M of
the bundle P under consideration.

In the second and third section, we check the integrability conditions from
the established theory of central extensions of infinite-dimensional Lie groups
for the central extension g,. We again encounter the interplay between the
Lie theoretic properties of Gau(P) and the topological properties of P, which
make the proof of the following theorem work.
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Theorem (Integrating the central extension of gau(P)). Let P be a
finite-dimensional smooth principal K-bundle over the closed compact man-
ifold M and k : ¢ x € — V(%) be universal. Furthermore, set 3 := 30 (V (8)),
g:=gau(P) and G := Gau(P)y. If w:gx g— 3 is the covariant cocycle,
then the central extension 3 — o — @ of Lie algebras integrates to an exten-
sion of Lie groups Z — G — G. [

In the third section, we also consider the construction of a canonical action
of the automorphism group Aut(P) of the bundle P on the central extension
0. This action will become important in the last section, because it is closely
related to Kac—-Moody algebras and their automorphisms. At the end of the
section, we show that we also get a canonical action of Aut(P) on the central
extension G.

Theorem (Integrating the Aut(P)-action on g;l(\’P)). Let P be a
finite-dimensional smooth principal K-bundle over the closed compact man-
ifold M and set g := gau(P) and G := Gau(P)y. Ifw:g x g — 3 is the co-

variant cocycle and if Z — G — G s the central extension from the preced-
ing theorem, then the smooth action of Aut(P) on g, integrates to a smooth

action of Aut(P) on G. n

As an application, we describe in the last section of Chapter [5] the relation
of the results of the previous chapters to Kac-Moody groups. After making
the setting of Kac—-Moody groups precise, we consider in particular their
homotopy groups and show how the automorphic action of Aut(P) on g,
leads to a geometric description of the automorphism group of twisted loop
algebras. In the end of this section we give an outlook how the results of
this thesis can be used to construct generalisations of Kac—-Moody algebras
and groups.

The thesis is organised as follows. In the beginning of each chapter and section,
we give a rough outline of our aims. During each section, we give ongoing comments
that should motivate the procedure of the section and should illustrate the flow of
ideas. Terminology and notation can mostly be found in remarks and definitions,
as long as they are important for the sequel.

Relations of the work presented in this thesis to work of other authors (at least
as long as they are known to the author of the thesis), ideas for further research
and open problems can be found at the end of each section and sometimes in the
motivating text at the beginning of sections and chapters. However, if we cite a
result directly, we make this explicit at the point of occurrence without repeating
it again at the end of the section.

In the appendix, we present some facts on infinite-dimensional Lie theory and
bundle theory, which we often refer to. This presentation is not meant to be
exhaustive, it should only make it easier to follow the text by stating some things
explicitly instead of referring to the literature.



Chapter 2

Foundations

This chapter presents the underlying material for the following chapters. We shall
introduce manifolds with corners in the first section, which we will need to consider
in the topologisation of the gauge group, even for principal bundles over manifolds
without boundary. The second section provides the facts on spaces of smooth
maps, which we shall use in the sequel. These two concepts, manifolds with corners
and spaces of smooth maps along with their properties, will be the cornerstones
of the theory we will build in the following chapters. Since our definition of a
manifold with corners is somewhat uncommon, we relate it to the commonly used
definition of a manifold with corners in the third and last section.

2.1 Manifolds with corners

In this section we present the elementary notions of differential calculus on locally
convex spaces for not necessarily open domains and introduce manifolds with cor-
ners. Since we are aiming for mapping spaces, we need a notion of differentiability
involving only the values of a given function on its domain without referring to
extensions of the map to some open neighbourhood.

The idea, taken from [Mi80], is to restrict attention to maps which are defined
on an open and dense subset of its domain, because this determines a continu-
ous map completely. It will turn out that with this definition, most ideas from
manifolds without boundary carry over to manifolds with corners, as long as only
tangent mappings and their continuity are involved.

Definition 2.1.1. Let X and Y be a locally convex spaces and U C X be open.
Then f:U — Y is differentiable or C! if it is continuous, for each v € X the

differential quotient
o S @+ ) — f(z)
df (z).v = }Llino A

exists and if the map df : U x X — Y is continuous. If n > 1 we inductively define
f to be C™ if it is C' and df is C"~! and to be C* or smooth if it is C". We say

7



8 2. Foundations

that f is C'°° or smooth if f is C™ for all n € INy. We denote the corresponding
spaces of maps by C"(U,Y) and C>(U,Y). ]

Definition 2.1.2. Let X and Y be locally convex spaces, and let U C X be a
set with dense interior. Then f : U — Y is differentiable or C" if it is continuous,
fint = fligyy 18 C* and the map

d(fi) : int(U) x X =Y, (z,0) — d(fin) (x).v0

extends to a continuous map on U x X, which is called the differential df of f. If
n > 1 we inductively define f to be O™ if it is C' and df is C"~!. We say that f
is C'™ or smooth if f is C" for all n € INy. We denote the corresponding spaces of
maps by C"(U,Y’) and C>(U,Y). ]

Similarly, we introduce holomorphic mappings on non-open domains. We shall
not need this concept very often.

Definition 2.1.3. If X and Y are locally convex complex vector spaces and
U C X has dense interior, then a smooth map f : U — Y is called holomorphic if
fint is holomorphic, i.e., if each map dfin(z) : X — Y is complex linear (cf. [Mi84]
p. 1027]). We denote the space of all holomorphic functions on U by O(U,Y) . =

Remark 2.1.4. Note that in the above setting df(z) is complex linear for all
x € U due to the continuity of the extension of dfi. [

We now introduce higher differential of smooth function, which have not been
defined in Definition R.1.2]

Remark 2.1.5. Since int(U x X" ') =int(U) x X! we have for n =1 that
(df ), = d (finr) and we inductively obtain (d"f), . = d" (finr). Hence the higher
differentials d"f are defined to be the continuous extensions of the differentials
d"( fint) and thus we have that a map f : U — X is smooth if and only if

d" (fin) 1 int(U) x X"t =Y
has a continuous extension d"f to U x X! for all n € IN. [

Of course we have a chain rule, the most important tool in any notion of
differential calculus. However, in the way we introduced differentiable maps we
need to assume that mappings are well-behaved with respect to the interiors of
the domains in order to have a chain rule.

Remark 2.1.6. If f:U; — Uy, g: U, — Y with f(int(U;)) C int(Us) are C*,
then the chain rule for locally convex spaces [Gl02a, Proposition 1.15] and
(g0 flint = Gint © fine imply that go f: Uy — Y is C! and its differential is given
by d(go f)(z).v =dg(f(x)).df (x).v. In particular, g o f is smooth if g and f are
SO. n
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With the above definitions and the chain rule in mind, we can now introduce
manifolds with corners, and furthermore, complex manifolds with corners.

Definition 2.1.7. (cf. [Le03] for the finite-dimensional case and [Mi80]) Let Y
be a locally convex space, Ai,..., A\, be continuous linearly independent linear
functionals on Y and Y+ :=(,_, A\, (R$) . If M is a Hausdorff space, then a
collection (U, ¢;)ier of homeomorphisms ¢; : U; — ¢(U;) onto open subsets ¢;(U;)
of Y (called charts) defines a differential structure on M of codimension n if
UserU; = M and for each pair of charts ¢; and ¢; with U; N U; # 0 the coordinate
change
pi (UiNUj) 32 = ¢; (¢ 1(2) € 9;(U;NT;)

is smooth in the sense of Definition [2.1.2] Furthermore, M together with a differ-
ential structure (U;, ¢;)ier is called a manifold with corners of codimension n.

If, in addition, Y is finite-dimensional and M is paracompact, then we call M
a finite-dimensional manifold with corners. [

Remark 2.1.8. Note that the previous definition of a manifold with corners co-
incides for Y = R" with the one given in [Le03] and in the case of codimension 1
and a Banach space Y with the definition of a manifold with boundary in [La99],
but our notion of smoothness differs. In both cases a map f, defined on a non-
open subset U C Y, is said to be smooth if for each point x € U there exists an
open neighbourhood V,, C Y of z and a smooth map f, defined on V, with f = f,
on UNV,. However, it will turn out that for finite-dimensional manifolds with
corners the two notions coincide. [

Definition 2.1.9 (Complex Manifold with Corners). A manifold with cor-
ners is called a complex manifold with corners if it is modelled on a complex
vector space Y and the coordinate changes in Definition [2.1.7] are holomorphic. m

In order to check that concepts for manifolds, which are introduced in terms of
charts (e.g., the smoothness of functions) do not depend on the choice of charts,
we always need the chain rule for the composition of coordinate changes. Now the
chain rule (Remark has an additional assumption besides the smoothness
of the maps under consideration. We shall show that this assumption is always
satisfied by the coordinate changes of a manifold with corners.

Lemma 2.1.10. If M is manifold with corners modelled on the locally
conver space Y and ¢; and ; are two charts with U;NU; #0, then

pj 0@y H(int(pi(U; NU;))) C int(p, (U; N T)).

Proof. Denote by o : (U NU;) — p;(U;NU;), ©+ ¢;(p; (z)) and f=a!
the corresponding coordinate changes. We claim that da(z) : Y — Y is an iso-
morphism if z € int(y;(U; N Uj)). Since 8 maps a neighbourhood W, of a(x) into
int(p;(U; N U;)), we have do(B(y)).(dB(y).v) =v for v € Y and y € int(W,) (cf.
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Remark [2.1.6). Since (y,v) — do(3(y)).(dB(y).v) is continuous and int(W,) is

dense in W, df(a(z)) is a continuous inverse of da(z).

Now suppose z € int(¢;(U;NU;)) and «(z) ¢ int(p;(U; N U;)). Then
Ai(a(z)) =0 for some ¢ € {1,...,n} and thus there exists a v € Y such that
a(z) +tv e p;(U;NU;) for t € [0,1] and a(z) +tv ¢ ¢;(U; N U;) for t € [—1,0).
But then v ¢ im(da(x)), contradicting the surjectivity of da(z). ]

With the aid of the invariance of interior points under coordinate changes of
the preceding lemma, we now define the boundary of a manifold with corners.
This should not be mixed up with the boundary for a topological space, since
the latter can only be defined for topological subspaces (and the boundary of the
whole space is always empty).

Remark 2.1.11. The preceding lemma shows that the points of
int(Yy) are invariant under coordinate changes and thus the interior
int(M) = U;c; ¢; '(int(Y})) is an intrinsic object, attached to M. We de-
note by OM := M\ int(M) the boundary of M. If OM = (), i.e., if M is a manifold
without boundary, then we also say that M is a manifold without boundary or
closed manifold or locally convex manifold. [

As indicated before, we now can say what a smooth map on a manifold with
corners should be.

Definition 2.1.12. A map f : M — N between manifolds with corners is said to
be C™ (respectively, smooth) if f (int(M)) C int(/N) and the corresponding coor-
dinate representation

ei(U; N fHUy)) 2 5 (f (95 () € @;(U;)

is C™ (respectively, smooth) for each pair ¢; and ¢; of charts on M and N. We
again denote the corresponding sets of mappings by C"(M, N) and C*°(M, N).
A smooth map f: M — N between complex manifolds with corners is said to be
holomorphic if for each pair of charts on M and N the corresponding coordinate
representation is holomorphic. We denote the set of holomorphic mappings from
M to N by O(M, N). n

Remark 2.1.13. For a map f to be smooth it suffices to check that

pUN V) 320 d(fle (2) € (V)

maps int(p(U N f~1(V))) into int(¢(V')) and is smooth in the sense of Definition
for each m € M and an arbitrary pair of charts o : U — YT and vy : V — Y'*

around m and f(m) due to Remark and Lemma [2.1.10] ]

Because differentiable maps have continuous differentials by their very defi-
nition, we shall also obtain tangent maps from smooth maps on manifolds with
corners.
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Definition 2.1.14. If M is a manifold with corners with differential structure
(Ui, ¢i) ;1> which is modelled on the locally convex space Y, then the tangent space
in m € M is defined to be T,,M := (Y x I,,) / ~, where I, :={iel:meU;}
and (z,7) ~ (d (¢;j09; ") (pi(m)).z,j). The set TM :=Upey{m} x T,,M is
called the tangent bundle of M. Note that the tangent spaces T}, M are isomorphic
for all m € M, including the points in OM. [

Proposition 2.1.15. The tangent bundle T M is a manifold with corners and the
map 7 : TM — M, (m,[x,1]) — m is smooth.

Proof. Fix a differential structure (U;, ;)ic; on M. Then each U; is a manifold
with corners with respect to the differential structure (U, ;) on U;. We endow
each T'U; with the topology induced from the mappings

pry : TU; — M, (m,v) —m
pry:TU; =Y, (m,v) — v,

and endow T'M with the topology making each TU; — TM, (m,v) — (z, [v,1i])
a topological embedding. Then ¢; o pry X pry : TU; — ¢(U;) X Y defines a differ-
ential structure on T'M and from the definition it follows immediately that 7 is
smooth. [

Corollary 2.1.16. If M and N are manifolds with corners, then a
map f:M — N is C' if f(int(M)) Cint(N), fi = fliwan s C' and
T fine : T(int(M)) — T(int(N)) C TN extends continuously to TM. If, in addi-
tion, f 1s C™ forn > 2, then the tangent map

Tf:TM — TN, (m,[z,i]) = (f(m),[d (¢; 0 f o) (gi(m)) @, 5])
is well-defined and C™ 1. [

Definition 2.1.17. If M is a manifold with corners, then for n € INy the
higher tangent bundles T™M are the inductively defined manifolds with cor-
ners T°M := M and T"M :=T (T"'M). If N is a manifold with corners and
f:M — N is C™, then the higher tangent maps T™f :T™M — T™N are the
maps defined inductively by T°f := f and T™f := T(T™ ' f) if 1 < m. "

Corollary 2.1.18. If M, N and L are manifolds with corners and f: M — N
and g: N — L with f(int(M)) Cint(N) and g(int(N)) Cint(L) are C", then
fog: M — L is C" and we have T™(go f) =T™f oT™g for all m < n. [

Definition 2.1.19. If M is a manifold with corners and T'M is its tan-
gent bundle, then a wector field on M is a smooth mapping X : M — TM
such that X (m) € T,,M. We denote the space of all vector fields on M by
V(M). It is a vector space with respect to (X +Y)(m)= X(m)+ Y (m) and
(A-X)(m) =X X(m). =
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We finally observe that we also have smooth partitions of unity for finite-
dimensional manifolds with corners. This will be a very useful tool in many con-
structions.

Proposition 2.1.20. If M is a finite-dimensional paracompact manifold with cor-
ners and (U;)ier s a locally finite open cover of M, then there exists a smooth
partition of unity (f;)icr subordinated to this open cover.

Proof. The construction in [Hi76, Theorem 2.1] actually yields smooth functions
fi : U; — R also in the sense of Definition [2.1.12] n

2.2 Spaces of mappings

This section provides the background for the topological treatments of mapping
spaces in the following chapters. The general philosophy in these chapters is to use
the existing results for mapping spaces whenever possible and reduce the occurring
questions of continuity (and differentiability, which we view as a special case of
continuity) to mapping spaces.

The topology underlying all definitions will always be the compact-open topol-
ogy. This topology on spaces of continuous mappings leads also to topologies on
spaces of smooth mappings and of differential forms, which we shall introduce now.

Definition 2.2.1. If X is a Hausdorff space and Y is a topological spaces, then
the compact-open topology on the space of continuous functions is defined as the
topology generated by the sets of the form

[C W] :={feCX,Y): [(C) c W},

where C runs over all compact subsets of X and W runs over all open subsets
of Y. We write C'(X,Y). for the space C(X,Y’) endowed with the compact-open
topology.

If G is a topological group, then C(X,G) is a group with respect to pointwise
group operation. Furthermore, the topology of compact convergence coincides
with the compact-open topology [Bo89al, Theorem X.3.4.2] and thus C(X, G). is
again a topological group. A basis of unit neighbourhoods of this topology is given
by |C,W |, where C runs over all compact subsets of X and W runs over all open
unit neighbourhoods of G. If X itself is compact, then this basis is already given
by | X, W], where W runs over all unit neighbourhoods of G.

If Y is a locally convex space, then C(X,Y") is a vector space with respect to
pointwise operations. The preceding discussion implies that addition is continuous
and scalar multiplication is also continuous. Since its topology is induced by the
seminorms

pc:C(X,Y) =K, [ sup,ccip(f(z))},
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where C runs over all compact subsets of X and p runs over all seminorms, defining
the topology on Y, we see that C'(X,Y), is again locally convex.

If M and N are manifolds with corners, then every smooth map f: M — N
defines a sequence of continuous map 7" f : T"M — T"N on the iterated tangent
bundles. We thus obtain an inclusion

C(M,N) = [[ O M, T" M), f = (T"f)nen

n=0

and we define the C'*°-topology on C*°(M, N) to be the initial topology induced
from this inclusion. For a locally convex space Y we thus get a locally convex
vector topology on C*(M,Y).

If £=(Y,£: F— X) is a continuous vector bundle and S.(£) is the set of
continuous sections, then we have an inclusion S.(€) — C(X, F) and we thus
obtain a topology on S.(£). If £ is also smooth, then we have an inclusion
S(€) — C*(M, F), inducing a topology S(&), which we also call C*°-topology. =

Remark 2.2.2. If M is a manifold with corners and Y is a locally convex space,
then we can describe the C*°-topology on C*°(M,Y") alternatively as the initial
topology with respect to the inclusion

C®(M,Y) = [[C(T"M,Y), [ (d")nen,

n=0

where d"f = pro. oT"f. In fact, we have T'f = (f,df) and we can inductively
write 7™ f in terms of d'f for [ < n. This implies for a map into C°°(M,Y) that
its composition with each d" is continuous if and only if its composition with all
T™ is continuous. Because the initial topology is characterised by this property,
the topologies coincide. [

Definition 2.2.3. If £ = (Y, : E — M) is a smooth vector bundle and p € IN,
then a &-valued p-form on M is a function w which associates to each m € M
a p-linear alternating map w,, : (1,,M)? — E,, such that in local coordinates the
map

(m, Xl,ma s 7Xp,m) = Wm(Xl,ma s 7Xp,m)

is smooth. We denote by

P(M,E) ={w: U (T,,M)? — E :wis a £ valued p-form on M}

meM

the space of E-valued p-forms on M which has a canonical vector space structure
induced from pointwise operations. [
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Remark 2.2.4. If £ = (Y,{: E — M) is a smooth vector bundle over the finite-
dimensional manifold M, then each &£-valued p-form w maps vector fields
Xi,...,X, to a smooth section w.(Xy,...,X,) =wo (X3 x---xX,) in S(E),
which is C*°(M, R)-linear by definition. Conversely, any alternating C'*° (M )-linear
map w : V?(M) — S(E) determines uniquely an element of QP(M, E) by setting

wm<X1,m7 cee 7Xn,m) = w(jzh B ’Xp)(m)7

where Z is an extension of X; ,, to a smooth vector field. That wy, (X1 m, .- ., Xpm)
does not depend on the choice of this extension follows from the C*°(M,R)-
linearity of w, if one expands different choices in terms of basis vector fields. Note
that the assumption on M to be finite-dimensional is crucial for this argument. m

Remark 2.2.5. If £ is a smooth vector bundle, then a O-form is in particular a
smooth section, whence a smooth map on M, and a 1-from defines in particular a
smooth mapping on T'M. We thus have canonical injections

OO(M,€) — C=(M, E)
QY M, E) — C=(TM, E)

and we use this to endow Q°(M,E) and Q' (M, E) with a locally convex vector
topology. Furthermore, since the conditions on w in the previous definition are
closed, these embeddings are closed. [

We now consider the continuity properties of some very basic maps, i.e., re-
striction maps and gluing maps. These maps we shall encounter often in the
sequel.

Lemma 2.2.6. If £ is a smooth wvector bundle over M and U C M s
open and Ey = &|, is the restricted vector bundle, then the restriction map
resy : S(E) — S(&y), o — ol is continuous. If, moreover, U is a manifold with
corners, then the restriction map resy : S(€) — S(&7), 0 +— oy is continuous.

Proof. Because each compact C C T"U or ¢! C T"U is also compact in T"M,
this follows directly from the definition of the C'"*°-topology. [

Proposition 2.2.7. If £ is a smooth vector bundle over the finite-dimensional
manifold with corners M and S(E) is the vector space of smooth sections with
pointwise operations, then the C°°-topology is a locally convexr vector topology on
S(E). Furthermore, if (U;)icr is an open cover of M such that each U; is a manifold
with corners and &; 1= 5'@- denotes the restricted bundle, then the C*°-topology on
S(E) is initial with respect to

res: S(&) = [[S(&), o (o

el

7, Jiel (2.1)
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Proof. By choosing an open cover (U;);c; of M such that each U, is a trivial-
ising manifold with corners, the second assertion implies the first, because then
S(&) = C®(U,;,Y). Since T"U; — T"M is a closed embedding it is proper and
thus for each compact C C T"M, C N'T"U; is also compact. Hence, if

|_017 WIJ n---N |_Cla VVlJ
is a basic open subset in C(1T"M,T"E)., then
|CynT"U;,Whln---n | CNTU;, W

is an open basic neighbourhood in C(7T"U;,T"E), for each i € I. Now it follows
directly from the definition of the C*°-topology on S(&) that it is initial. [

Corollary 2.2.8. The restriction maps resy and resg from Lemma are
smooth. ]

Proposition 2.2.9. If £ is a smooth vector bundle over the finite-dimensional
manifold with corners M, s = (U;);er s an open cover of M such that each U; is
a manifold with corners and &; := |, denotes the restricted bundle, then

Sa(€) ={(0:)ier € @ S(&) : oi(x) = 05(x) forall z € T;NT;}
iel
is a closed subspace of @,.; S(&;) and the gluing map
glue : Sg(€) — S(E), glue((0:)icr)(x) = 0i(x) if x € U; (2.2)
18 1nverse to the restriction map .

Proof. Since evaluation maps are continuous in the C*°-topology and Sg(€) can
be written as an intersection of kernels of evaluation maps, it is closed. Further-
more, it is immediate that glue is a linear inverse to the restriction map. That the
restriction map is open follows again from the fact that 7°U; C T™M is closed an
thus glue is continuous. [

Corollary 2.2.10. If £ is a smooth vector bundle over the finite-dimensional
manifold with corners M, tf = (U;)ier is an open cover of M and &; := &|; denotes
the restricted bundle, then

Su(&) = {(01)iecr € D S(&) : 0i(w) = 05(x) forall x € U;NT;}

i€l
is a closed subspace of @, ; S(&) and the gluing map
glue : Sy(€) — S(E), glue((0y)ier)(z) = oi(x) if x € U; (2.3)

1s tnverse to the restriction map.
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Proof. Again, Sy(€) can be written as the intersection of kernels and glue is
clearly linear and bijective. Furthermore, choose an open cover (V;);es such
that each V; is a manifold with corners and V; C Uy(jy for some i(j) € I and let
E; == &|y. be the restricted bundle. Then S(&;) — S(&;), 0 — ol is continuous
and ’ ’

glue((o7)ier) = glue((i(y|y,)jes)

shows that glue is continuous. [

After having introduced a locally convex vector topology on C*°(M,Y) for Y a
locally convex space in Definition [2.2.1} we now wish to have that C*(M, K) is a
Lie group if K is so. This will not hold in general, we have to restrict to compact
M for this purpose. This will be the main reason for working with bundles over
compact base spaces in the following chapters.

In order to show that C*>°(M, K) is a Lie group we follow the way from [GI02b]
and [Ne01].

Lemma 2.2.11. If M is a finite-dimensional manifold with corners and
X and Y are locally convexr spaces, then there 1is an isomorphism

C®(M, X xY)=C®(M,X) x C®(M,Y).
Proof. The proof of [GI02D, Lemma 3.4] carries over without changes. [

Lemma 2.2.12. If M and N are finite-dimensional manifolds with corners, Y is
locally convex and f: N — M is smooth, then the map C*(M,Y) — C*(N,Y),
v +— yo [ is continuous.

Proof. The proof of [GI02D, Lemma 3.7] carries over without changes. [

Lemma 2.2.13. If M is a finite-dimensional manifold with corners and Y is
a locally convex space, then the map C*°(M,Y) — C®(T"M,T"Y), v+ T"y is
CONtINUOUS.

Proof. The proof of [GI02b, Lemma 3.8] carries over for n =1, where [GI02D]
Lemma 3.7] has to be substituted by Lemma [2.2.12/ and [GI02b, Lemma 3.4] has
to be substituted by Lemma/|2.2.11] The assertion follows from an easy induction.m

Lemma 2.2.14. If X is a Hausdorff space, Y and Z are locally convex spaces,
UCY isopen and f: X x U — Z is continuous, then the map

fti : C<X7 U)c - C(X> Z>C7 s f o (lde)/)
18 continuous.

Proof. Since the topology of compact convergence and the compact-open topol-
ogy coincide on C'(X, X) and C(X,Y) [Bo89a, Theorem X.3.4.2], this is [GI02D]
Lemma 3.9]. m
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Lemma 2.2.15. If M is a finite-dimensional manifold with corners, X and Y
are locally convex spaces, U C X is open and f : M x U — Y is smooth, then the
mapping

fi: C®°(M,U) — C*(M,Y), v fol(idum,7)

1S continuous.
Proof. For v € C*(M,U) we have

T(fyy) =T(f o (idar,y)) = Tf o T(idpr,v) = T f o (idrar, Ty) = (Tf)s(T)

and thus inductively

T™(fy) = T(T"(fyy)) = T((T" )T 1)
=T(T" " fo (idpi-1ar, T" 7)) =T"f o (idgupr, T"y) = (T" f)ﬁT"fy.

Now, we can write the map v~ T"(fyy) as the composition of the two
maps v — (idgnpr, T%y) and (idgnpr, T7y) — (T" f)3T" which are continuous by
Lemma and Lemma . Hence, f; is continuous, because a map from any
topological space to C*°(M,Y) is continuous if all compositions with d" = pry, o T"
are continuous. [

Proposition 2.2.16. a) If M is a compact manifold with corners, X andY are
locally convex spaces, U C X is open and f : M x U — Y is smooth, then the map-
ping fy : C*(M,U) — C*(M,Y), v+ fo(idp,7) is smooth.

b) If, in addition, X and Y are complex wvector spaces and fn,:U —Y,
m — f(m,z) is holomorphic for all m € M, then f; is holomorphic.

Proof. a) (cf. [NeOl, Proposition II1.7]) We claim that

d*(fy) = (d3f); (2.4)

holds for all n € Ny, where db f(x,y).v := d" f(x,y).(0,v). This claim immediately
proves the assertion due to Lemma [2.2.15]

To verify (2.4) we perform an induction on n. The case n = 0 is trivial, hence
assume that (2.4]) holds for n € Ny and take

v € C®(M,U) x C®°(M,X)" =2 C®(M,U x X")
and
neC®(M,X)"=C®(M,X").

Then im(y) C U x X" ! and im(n) C X™ are compact and there exists an € > 0
such that
im(y) + (—¢,¢e)im(n) C U x X",
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Hence, v+ hn € C®(M,U x X"1) for all h € (—¢,¢) and we calculate

(@ ) o m) () = T ("ol + ) — " (1)) ()

i)

2 tim (A3 (v,7(x) + hn()) — 451 (,7()) )

h—0

) lim 1 dy <<d§f (z,7(z) + th n(m))) : n(m)) dt

w /01 lim ds ((de(m, () +th 77(”5))> ) 77(9”)) dt

h—0

= dy ™ f (2, y(2),m(x)) = (d5H ), (v, m) (),

where 7) holds by the induction hypothesis, i) holds by the Fundamental Theorem
of Calculus |Gl02a, Theorem 1.5] and i) holds due to the differentiability of
parameter-dependent Integrals (cf. [GNOTal).

b) The formula d(f;) = (d2f); shows that d(f;) is complex linear. ]

Corollary 2.2.17. If M is a compact manifold with corners, X andY are locally
convez spaces, U C X are open and f: U — Y is smooth (respectively, holomor-
phic), then the push-forward f, : C*°(M,U) — C>®(M,Y), v+ f o~ is a smooth
(respectively, holomorphic) map.

Proof. Define f: M xU — Y, (x,v) — f(z) and apply Proposition [2.2.16, =

Remark 2.2.18. If M is a complex manifold with corners and Y is a locally
convex complex vector space, then O(M,Y) is a closed subspace of C*(M,Y).
In fact, the requirement that df (x) is complex linear is a closed condition as an
equational requirement on df (x) in the topology defined in Definition [2.2.1] m

We now see that C(M, K) is in fact a Lie group, provided that M is compact.
Along with this assertion, we also consider the case when K is a complex Lie group.

Theorem 2.2.19 (Lie group structure on C*°(M, K)). Let M be a compact
manifold with corners, K be a Lie group and let ¢ : W — (W) C ¢ be a convex
centred chart of K. Furthermore denote . : C°(M, W) — C>(M,¥), v — por.

a) If M and K are smooth, then v, induces a locally convex manifold structure
on C®(M, K), turning it into a Lie group with respect to pointwise opera-
tions.

b) If M is smooth and K is complex, then ¢, induces a complex manifold struc-
ture on C*°(M, K), turning it into a complex Lie group with respect to point-
wise operations.
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c) If M and K are complex, then the restriction of @. to O(M, W) induces a
complezx manifold structure on O(M, K), turning it into a complex Lie group
with respect to pointwise operations, modelled on O(M,¥).

Proof. Using Corollary and Proposition [2.2.16] the proof of the smooth
case in [GI02b] 3.2] yields a). Since Proposition also implies that the group
operations are holomorphic, b) is now immediate. Using the same argument as
in a), we deduce c), since ¢, maps O(M, W) bijectively to O(M, p(W)), which is
open in O(M, ¢). n

We now derive the smoothness of the restriction and gluing maps for Lie group
valued functions (cf. Lemma and Proposition [2.2.9)). This will be important

tools in many following constructions.

Lemma 2.2.20. If M is a compact manifold with corners, K s a Lie group and
U C M is a manifold with corners, then the restriction

res : C°(M,K) — C*(U,K), v+ |z
is a smooth homomorphism of Lie groups.

Proof. If ¢ : W — (W) C ¢t is a convex centred chart, then the coordinate rep-

resentation on C*°(M, W) is given by C®(M, p(W)) — C>*(U, p(W)), n — nlg,
which is smooth. n

Proposition 2.2.21. Let K be a Lie group, M be a compact mﬂw’fold with cor-
ners with an open cover ¥ = (V1,...,V,,) such that 0 = (V1,...,V,,) is a cover by
manifolds with corners. Then

Gy ={(n,-..,7m) € HC’OO(Vi,K) yi(x) = v;(x) forall x € V,NV;}
i=1

is a closed subgroup of [[1, C>*(Vi, K), which is a Lie group modelled on the
closed subspace

gw = {(n,...,m) € [[C(Vi, ) s mi(a) = my(2) for all z € V,nV;}

i=1
of @i, C=(V;, &) and the gluing map
glue : Gg — C¥(M, K), glue(y1,...,7) = v(z) ifr € V;

1s an isomorphism of Lie groups.
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Proof. Since the evaluation map is continuous, G is closed as it can be written
as an intersection of closed subgroups. Let ¢ : W — (W) C £ be a convex centred
chart of K. Then

O={(n,-+,7m) € C(Vy, K) : %:(V;) C W}

is an open unit neighbourhood in []_, C=(V;, K) and
O ={(71,--,m) € C¥(Vi,#) : %:(V3) C (W)}

is an open Zero neighbourhood in gy and  the chart
(Y1, 37m) — (pom,...,po07,) defines a Lie group structure on Gg as in
Theorem 2.2.19

Clearly, glue is an isomorphism of abstract groups and because the restriction
map, provided by Lemma [2.2.20] is smooth, it suffices to show that glue is smooth
on a unit neighbourhood. Since the charts are given by push-forwards, the co-
ordinate representation of glue on O N Gy is given by the gluing map on the Lie
algebra, which is smooth (cf. Proposition . [

We finally collect some facts on actions on spaces of smooth mappings arising as
pull-backs and push-forwards of smooth mappings. These facts we will frequently
refer to in the sequel.

Proposition 2.2.22. Let X,Y, Z be locally convex spaces, U C Z be an open sub-
set, M be a locally convex manifold without boundary and f : U x M x X —Y be
smooth. Then the push forward

fo: UxC®(M, X) = C=(M,Y),  [fu(z,6)(m) = f(z,m,£(m))

18 smooth.

Proof. This is a special case of [Gl04, Proposition 4.16]. n

Corollary 2.2.23. If G is a Lie group that acts smoothly on some locally convex
space Y and M is a compact manifold without boundary, then the induced pointwise
action

COO(M> G) X COO(M7 Y) - COO(M7 Y)’ (75)(m) = V(m)g(m)
18 smooth.

Proof. Taking f1: M xY =Y, (m,y) — vy(m).y for a fixed v € C®(M,G),
Proposition shows that C'°(M, ) acts by continuous linear automorphisms.
If we identify some unit neighbourhood U C C*°(M, G) with an open subset of
its modelling space, then Proposition [2.2.22] applied to fo: U XM xY — Y,
(v, m,x) — v(m).x, yields the assertion, because it suffices for an action to be
smooth on some unit neighbourhood by Lemma [A.3.3] n
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Lemma 2.2.24. If M and N are smooth locally convex manifolds without bound-
ary, Y is a locally convex space and f € C*°(N, M) is smooth, then the pull-back

[FC®°(M,Y)— C°(N,)Y), ~v—~yof
18 linear and continuous.

Proof. It is immediate that f* is linear and by [GI04, Lemma 4.11], it is contin-
uous. "

Lemma 2.2.25. If G is a Lie group, M is a finite-dimensional manifold without
boundary with a smooth action G X M — M and and Y is a locally convex space,
then the pull-back action

G x C®(M,Y) — C*(M,Y), (gn)(m)=n(g~".m)
is smooth. In particular, if M is compact, then the action

Diff (M) x C®°(M,Y) — C*(M,Y), gnp=nog !
is smooth.

Proof. Considering the trivial vector bundle & = (Y,pr; : M x Y — M) with
the trivial G-action on M, this is a special case of [GI06, Proposition 6.4]. ]

Lemma 2.2.26. If M is a smooth compact manifold without boundary and Y is
a locally convex space, then the action

Diff (M) x Q'(M,Y) — QY(M,Y), gw= (¢ )V'w=woTg™!
18 smooth.

Proof. This follows from [GI06, Corollary 6.6]. =

Proposition 2.2.27. If M is a compact manifold without boundary and K is a
Lie group, then the action

Diff (M) x C*°(M,K) — C®(M,K), gy=~og " (2.5)
18 smooth.

Proof. This is [GI06, Proposition 10.3] [



22 2. Foundations

2.3 Extensions of smooth maps

This section draws on a suggestion by Helge Glockner and was inspired by [Br92l
Chapter IV]. We relate the notions of differentiability on sets with dense interior,
introduced in Definition [2.1.2] to the usual notion of differentiability on a non-open
subset U C R™ (cf. Remark [2.1.8)).

We will see that, at least under some mild requirements, this notion coincides
with the definition given in Definition [2.1.2]

We shall use the following observation, also known as exponential law or Carte-
sian closedness principle to reduce the extension of smooth maps from [0, 1] to
R™ to the extension of smooth maps from [0, 1] to R.

Proposition 2.3.1. If X, Y are Fréchet spaces, Uy C X and Uy C R™ have dense
interior, then we have a linear isomorphism

MU x Un, Y) — C*(U, C%(Uy,Y)), [ (x)(y) = fla,y).

Proof. First we check that f" actually is an element of C*°(U;, C*(Us,Y)).
Since for open domains in Fréchet spaces, the notion of differentiability from
Definition and the one used in the convenient calculus coincide (cf. Re-
mark [A.1.2), [KM97, Lemma 3.12] implies that f"(2)l;, ) € C(int(Us),Y)
if z €mt(U;). Since d"f extends continuously to the boundary, so does
d"(fM(x)).  So [y, defines a map to C*(U2,Y) which is continuous
since C(U x V,W) = C(U,C(V,W)) if V is locally compact ([Bo89a, Corollary
X.3.4.2]). Next we show that we can extend it to a continuous map on Uj. If
x € OU; N Uy, then there exists a sequence (z;);en in int(U;) with x; — x and thus
(d™(f"(xi)));en 1s a Cauchy sequence in C(T"U,,Y’) since d” f is continuous. Since
C>®(Uy,Y) is complete, (f"(z;));cn converges to some f"(z) € C*(U,,Y), and
this extends f"[;;,) continuously. Since the inclusion C*(Us,Y) — C(Us,Y) is
continuous and continuous extensions are unique we know that this extension is
actually given by f". With Remark 2.1.5] the smoothness of f" follows in the
same way as the continuity. It is immediate that ” is linear and injective, and
surjectivity follows directly from C'(X x Y, Z) = C(X,C(Y, Z)). n

To use the previous fact we need to know that the spaces under consideration
are Fréchet spaces.

Remark 2.3.2. Let M be a o-compact finite-dimensional manifold with corners
and Y be a Fréchet space. Then C'(M,Y) and C*(int(M),Y) are Fréchet spaces
too (cf. [GNQ7a]). Thus, the locally convex vector topology on C*°(M,Y) from
Definition is complete, turning it into a Fréchet space. Note that this is not
immediate if one uses the notion of smoothness on M from [Le03] or [La99] as in

Remark 2.1.8 n
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We now show how smooth mappings on [0, 1] can be extended to R. As said
before, this will be the generic case which we will reduce the general extension
problem to.

Lemma 2.3.3. If Y is a locally convexr space and (fn)ne]NO s a sequence in
CY(R,Y) such that (f(x))n converges for some x € R and that (f},),cn, converges
uniformly on compact subsets to some f € C(R,Y), then (f,) converges to some
feC'R,Y) with f' = f.

Proof. This can be proved as in the case Y = R (cf. [Br92, Proposition IV.1.7]).m

Lemma 2.3.4. Let Y be a Fréchet space. If (v,)nen, is an arbitrary sequence in
Y, then there exists an f € C®(R,Y) such that f™(0) = v, for alln € IN,.

Proof. (cf. [Br92, Proposition IV.4.5] for the case Y = R). Let ( € C*°(R, R) be
such that supp(¢) C [-1,1] and ((z) =1 if =1 <2 < $ and put {(z) ==z ((x).
Then supp(§) C [—1, 1] and §|[_%7%1 = id[_%é]. Since £F is compactly supported,
there exists for each n € IN an element M, x € R such that | (§k)(n) ()] < My
for all z € R. Now let (p,,)men be a sequence of seminorms defining the topology
on Y with p; < py <.... We now choose ¢, > 1 such that pk(vk)cz_k My < 27F
if n < k. Note that this is possible since there are only finitely many inequal-
ities for each k. Set fo, 1= 1o Uk (c,;lé(ck ))k, and note that fy(0) = vy and
fm(0) =0 if m > 1, which shows in particular that (f,,(0)) converges. We show
that f := lim,, .o f, has the desired properties. If ¢ > 0 and ¢ € IN, we let m., > ¢
be such that 27™<¢ < . Thus

pe(fS = 1y =pe( Y v (E e ™)
kil-ﬁ-ms,g
< Y (o) My <27 <k
k:1+m€,g

for all m > m., and n < ¢. It follows for n < ¢ that the sequence ( fr(r?f ))m@N
converges uniformly to some f" & C*®°(R,Y) and the preceding lemma im-
plies (f"') = f", whence f™ = f".  Since ¢ was chosen arbitrarily, f is
smooth. We may interchange differentiation and the limit by the preceding
lemma and since ¢x&(c - ) equals the identity on a zero neighbourhood, we have

Fm(0) = (hmm%o f,{”) (0) = lim,,___ (ff;?(O)) = Up. .

Corollary 2.3.5. If Y is a Fréchet space, then for each f € C=([0,1],Y) there
exists an f € C®(R,Y) with f‘[o = f.
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Proof. (cf. [KM97, Proposition 24.10]) For n € Ny set v, := f™(0) and
w, := f™(1).  Then the preceding lemma yields f_,f, € C®(R,Y) with
F0) = v, = f™(0) and f™(0) = w, = f™(1). Then

f-(z) ifz<0
flz):=<¢ flz) ifo<z<l1
folx—=1) ifz>1

defines a function on R which has continuous differentials of arbitrary order and
hence is smooth. n

As indicated before, a combination of Proposition and Corollary
enables us now to extend smooth mappings defined on [0, 1]” to smooth mappings
on R™.

Theorem 2.3.6 (Extension of smooth maps). If Y is a Fréchet space and
feC>(0,1]"Y), then there ezists an f € C*(R",Y) with f‘[o g = f

Proof. Set fy:= f. Using Proposition [2.3.1} we can view f; as an element
foeC™([0,1],C>= ([0,1]""1,Y)),

which we can extend to an element of C* (R, C*> ([0,1]""!,Y)) by Corollary [2.3.5
and Remark[2.3.2] This can again be seen as an element f; € C* (R x [0,1]"71,Y).

In the same manner, we obtain a map

fo€C™(R* x[0,1]"7%Y)

extending f; as well as fo. Iterating this procedure for each argument results in a
map f := f, which extends each f; and so it extends fy = f. n

The case of manifolds with corners, more general than [0, 1]", now follows from
this case by a partition of unity argument.

Proposition 2.3.7. IfY is a Fréchet space, M is a finite-dimensional manifold
without boundary, L C M has dense interior and is a manifold with corners with
respect to the charts obtained from the restriction of the charts of M to L, then
there ezists an open subset U C M with L C U such that for each f € C*(L,Y)
there exists a f € C=(U,Y) with f|L = f.

Proof. For each m € 0L there exists a set L,, which is open in M and a chart
©Om ¢ Ly, — R™ such that ¢,,,(L N Ly,) € RY and ¢, (m) € OR’}. Then there exists
a cube

Cni=[r1—c,x1+e] X...x [, —¢&,2,+¢] Con(LNLy),
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where

_ SDm(m)z it @m(m)l 75 0
ne { e if 0y (m); = 0

(actually C,, is contained in R’} and shares the i-th “boundary-face” with R’
if ©,,(m); =0). Then C,, is diffeomorphic to [0,1]”. The diffeomorphism is de-
fined by multiplication and addition and extends to a diffeomorphism of R"™. We
now set U = int(L) UU,,cornr Vs Vin :=int(p;,' (Crn)). Then this open cover
has a locally finite refinement (int(L), (V})ier) with V) C V,,,(;) for some function
I 51+ m(i) € OL. Now, choose a partition of unity g, h, (hz)zg subordinated to
the open cover (U\L, 1nt(L), (VD ier)-

If feC>®(L,M), then Theorem yields a smooth extension f,, of
fow ¢, and thus fn = fmo ©mly, is smooth and extends f. We now set

flw) = )+ Y hil@) Fny (2

el

where we extend f and f,, by zero if not defined. Since h (respectively, h;) vanishes
on a neighbourhood of each point in JL (respectively, 0V,,q)), this function is
smooth and since fm’meL = fly, p, for all m € 9L, it also extends f. [
Corollary 2.3.8. If U C (R™)" is open, Y a Fréchet space and f:U —Y is
smooth in the sense of Deﬁnition then there erists an open subsezﬁ C R",
with U C U, such that for each f € C®(U,Y) there exists an f € C*(U,Y) with

ﬂU:f' "

Remark 2.3.9. Similar statements to the ones from this section, known as the
Whitney Extension Theorem, can be found in [Wh34], [KM97, Theorem 22.17]
and [KM97, Theorem 24.10]. The remarkable point in the proofs given here is that
the used methods are quite elementary, up to the Cartesian closedness principle
from [KM97], which we used in the proof of Proposition [2.3.1] "






Chapter 3

The gauge group as an
infinite-dimensional Lie group

This chapter introduces the gauge groups Gau(P) of a smooth principal K-bundle
and describes various aspects of it as an infinite-dimensional Lie group.

The first section describes the topologisation of Gau(P), which is the start-
ing point for any further considerations. In the second section, we describe how
the topology introduced in the first section can be made accessible by reduc-
ing the determination of the homotopy groups m,(Gau(P)) to the determination
of m,(Gau.(P)), where Gau.(P) is the continuous gauge group. Developing the
techniques of Section further, we obtain in the third section a nice result on
smoothing continuous principal bundles and bundle equivalences. Although this
section does not deal with Gau(P), we placed it here, because the ideas used in
this section are similar to the ideas used in the second section. In the fourth and
last section we describe how the topologisation of Gau(P) leads to a topologisation
of the automorphism group Aut(P) of P.

3.1 The Lie group topology on the gauge group

In this section we introduce the object of central interest, namely the gauge group
Gau(P) of a smooth principal K-bundle P and describe how it can be topologised
as an infinite-dimensional Lie group. We shall mostly identify the gauge group
with the space of K-equivariant continuous mappings C*(P, K)¥, where K acts
on itself by conjugation from the right.

This identification allows us to topologise the gauge group very similar to map-
ping groups C*°(M, K) for compact M. Since the compactness of M is the crucial
point in the topologisation of mapping groups, we can not take this approach
directly, because our structure groups K shall not be compact, even infinite-

dimensional. The procedure in this section is motivated by the observation that
for trivial bundles, C*(P, K)X = C*>(M, K). In fact, if 0 : M — P is a global

27
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section, then
C>*(P,K)X — C*(M,K), v~ ~voo

is an isomorphism. If M is compact, then we can take this isomorphism to turn
C>(P, K)¥X into an infinite-dimensional Lie group, modelled on C>° (M, £).

In the case of a non-trivial bundle things are more subtle and we shall use this
section to describe how the above idea generalises to non-trivial bundles.

Throughout this section we work with bundles over compact manifolds M,
possibly with corners.

We first give the basic definitions of the objects under consideration.

Definition 3.1.1. If K is a topological group and P = (K, 7 : P — M) is a con-
tinuous principal K-bundle, then we denote by

Aut.(P) := {f € Homeo(P) : pyo f = fopy forall ke K}
the group of continuous bundle automorphisms and by
Gau.(P) :={f € Aut(P) : o f =7}

the group of continuous vertical bundle automorphisms or continuous gauge group.
If, in addition, K is a Lie group, M is a manifold with corners and P is a smooth
principal bundle, then we denote by

Aut(P) :={f € Diff(P) : prof = fopg forall ke K}

the the group of smooth bundle automorphisms (or shortly bundle automor-
phisms). Then each F' € Aut(P) induces an element Fy, € Diff(M), given by
Fy(p- K) = F(p) - K if we identify M with P/K. This yields a homomorphism
Q : Aut(P) — Diff (M), F — F) and we denote by Gau(P) the kernel of @) and
by Diff(M)p the image of ). Thus

Gau(P) = {f € Aut(P) : mo f = 7},

which we call the group of (smooth) vertical bundle automorphisms or shortly the
gauge group of P. [

As said in the introduction to this section, the gauge group is isomorphic
to a group of equivariant mappings. This identification will be the key to the
topologisation of the gauge group.

Remark 3.1.2. If P is a smooth principal K-bundle and if we denote by

C®(P,K)* :={ye C®(P,K):v(p-k)=k"'-~(p)-k forall pc Pkc K}
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the group of K-equivariant smooth maps from P to K, then the map
C¥(P,K)" 3 fr (p—p- f(p)) € Gau(P)

is an isomorphism of groups and we will mostly identify Gau(P) with C*°(P, K)&
via this map. n

The algebraic counterpart of the gauge group is the gauge algebra. This will
serve as the modelling space for the gauge group later on.

Definition 3.1.3. If P is a smooth principal K-bundle, then the space

gau(P) := C>(P, &)
={ne C®(P,eX :np-k)=Ad(k ) n(p) forall pc Pke K}

is called the gauge algebra of P. We endow it with the subspace topology from
C>®(P,t) and with the pointwise Lie bracket. n

It will be convenient to have different pictures of the gauge algebra in mind. We
will use these pictures interchangeably and relate them in the following proposition.

Proposition 3.1.4. Let P = (K,7: P — M) be a smooth principal K-bundle
over the finite-dimensional manifold with corners M. If V := (V;,0:)ic1 15 a
smooth closed trivialising system of P with transition functions k;; : V.N Vj — K,
then we denote

gy(P) == {(ﬂi)iel € HCOO(Vz’>{’«) :mi(m) = Ad(ki;(m)).n;(m) Ym € V; HVJ} :

If V denotes the smooth open trivialising system underlying V, then we set

gv(P) = {(ni)iel e [TC=(Vi®) - m(m) = Ad(kiy(m)).ny(m) ¥m € Vi Va} )

iel
and we have isomorphisms of topological vector spaces
gau(P) = C=(P,6)" = S(Ad(P)) = gv(P) = gy(P).

Furthermore, each of these spaces is a locally convex Lie algebra in a natural way
and the isomorphisms are isomorphisms of topological Lie algebras.

Proof. The last two isomorphisms are provided by Proposition[2.2.9/and Corollary
2.2.10} so we show C°(P, )" = gy(P).

For each n € C°°(P, &)X the element (1;);c; with n; = 1 o o; defines an element
of g(P) and the map

¢ : COO<P7 E)K - QV(,P)? nr— (ni)iel
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is continuous. In fact, o;(m) = o;(m) - k;;(m) for m € V; NV, implies

ni(m)=n(oi(m))=n(o;(m) - kji(m)) =Ad(kji(m)) =" n(o;(m)) = Ad(ki;(m)).n;(m)

and thus (7;)ier € gy(P). Recall that if X is a topological space, then a
map f: X — C®(V;, ) is continuous if and only if x> d"f(x) is continuous
for each n € Ny (Remark [2.2.2). This implies that 1 is continuous, because
d™n; = d"noT"o; and pull-backs along continuous maps are continuous.

On the other hand, if k; : 7=4(V;) — K is given by p = o;(7(p)) - ki(p) and if
(m:)ier € gy(P), then the map

n:P—¢t pe Ad(k(p)" i (x(p)) if =(p) eV,

is well-defined, smooth and K-equivariant. Furthermore, (1;);c; — 7 is an inverse
of ¢ and it thus remains to check that it is continuous, i.e., that

ay(P) 2 (Mi)ier — d"n € C(T" P, ¢)

is continuous for all n € Ny. If C CT"P is compact, then (7"7)(C) C T"M
is compact and hence it is covered by finitely many 7"V;,,..., T"V;  and thus
(T (Wﬁl(%)))i:il . 1s a finite closed cover of C'C T"P. Hence it suffices to

-----

show that the map
gv(P) > (n:)ier = T" (1l p1(v,y) € C(T 71 (V3), )

is continuous for n € Ny and ¢ € [ and we may thus w.l.o.g. assume that P is
trivial. In the trivial case we have n = Ad(k™').(no7) if p — (7(p), k(p)) defines
a global trivialisation. We shall make the case n = 1 explicit. The other cases can
be treated similarly and since the formulae get quite long we skip them here.

Given any open zero neighbourhood in C(T'P, t), which we may assume to be
|C, V] with C C TP compact and 0 € V' C ¢ open, we have to construct an open
zero neighbourhood O in C*°(M, ) such that ¢(O) C |C,V|. For f € C*(M,¥)
and X, € C we get with Lemma

d(p(n)(X,) = Ad(k™ (p)).dif (T (X,)) — [6' (k) (X,), Ad(k™ (p)) 7' (7 ())]-

Since 6'(C) C € is compact, there exists an open zero neighbourhood V' C & such
that
A(R ).V + [1(k)(X,), Ad(k () V'] € V

for each X, € C. Since T'm : TP — TM is continuous, Tw(C) is compact and we
may set O = |T'n(C),V’].

That gy (P) and gy (P) are locally convex Lie algebras follows because they are
closed subalgebras of [],., C>(V;,€) and [],., C>(V/;, ). Since the isomorphisms

C=(P,5)" = S(Ad(P)) = gv(P) = gy(P).

are all isomorphisms of abstract Lie algebras an isomorphisms of locally convex
vector spaces, it follows that they are isomorphisms of topological Lie algebras. m
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As indicated in the introduction to this section, we would like to use smooth
sections to pull back elements in C*°(P, K)¥ to mappings in C*°(M, K). Since
global sections do not exist in the non-trivial case (by definition), we have to
use local sections. This will lead to an isomorphic picture of the gauge group in
terms of K-valued mappings, defined on (subsets of) the base M, and transition
functions. The following definition and remark will make this precise.

Definition 3.1.5. If P is a smooth K-principal bundle with compact base M
and V = (V;,0:)i=1,.n 18 s a smooth closed trivialising system with corresponding

.....

transition functions k;; : V; N Vj — K, then we denote

Gy(P) == {(%’)z’:l ..... n € HCOO(Vi, K) : yi(m) = kij(m)y;k;i(m) Vm € V; ﬂV]}

and turn it into a group with respect to pointwise group operations. [

Remark 3.1.6. In the situation of Definition |3.1.5 the map

(3.1)
is an isomorphism of abstract groups, where the map on the right hand side is
well-defined because kq, (p) = ki;j(m(p)) - ko, (p) and thus

ko (P) - (T (P) - ko, (p) = ko, (p) ™ - Kji(m(p)) - 3w (p)) - Kij(m(P)) Ko, )
5 ((p))

= ko, (p) ™" 75(7(p)) - ko, (p)-

In particular, this implies that ©((v;)i=1...) is smooth. Since for m € V; the

evaluation map ev,, : C*°(V;, K) — K is continuous, Gy(P) is a closed subgroup
of the Lie group [[_, C*(V;, K). u

Since an infinite-dimensional Lie group may posses closed subgroups which
are no Lie groups (cf. [Bo89bl Exercise II1.8.2]), the preceding remark does not
automatically yield a Lie group structure on Gy(P). However, in many situations,
it will turn out that Gy;(P) has a natural Lie group structure.

The following definition encodes the necessary requirement ensuring a Lie
group structure on Gy(P) that is induced by the natural Lie group structure
on [[iL, C>(V;, K). Since quite different properties of P will ensure this require-
ment it seems to be worth extracting it as a condition on P. The name for this
requirement will be justified in Corollary [3.1.9]

Definition 3.1.7. Let P is a smooth principal K-bundle with compact base M

.....
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P has the property SUB with respect to V if there exists a convex centred chart
w: W — W’ of K such that

i=1 i=1

is bijective. We say that P has the property SUB if P has this property with
respect to some trivialising system. |

It should be emphasised that in all relevant cases, known to the author, the
bundles have the property SUB, and it is still unclear, whether there are bundles,

which do not have this property (cf. Lemma [3.1.13[ and Remark [3.1.14)). This
property now ensures the existence of a natural Lie group structure on GV(P).

Proposition 3.1.8. a) Let P be a smooth principal K-bundle with compact base
M, which has the property SUB with respect to the smooth closed trivialising system
V. Then ¢, induces a smooth manifold structure on Gu(P) N[, C(Vi, W).
Furthermore, the conditions 1) — iii) of Proposition are satisfied such that
Gy(P) can be turned into a Lie group modelled on gy(P).

b) In the setting of a), the map ¢ : Gu(P) — C=(P, K)X is an isomorphism
of topological groups if C*(P, K)¥ is endowed with the subspace topology from
C*(P,K).

c) In the setting of a), we have L(Gw(P)) = gy(P).

Proof. a) Set U := Gy(P) N[[iL, C(V;, K). Since ¢, is bijective by assumption
and ¢, (U) is open in gy(P), it induces a smooth manifold structure on U.

Let Wy CW be an open unit neighbourhood with Wy Wy C W and
Wyt =Wy, Then Up:= Gu(P) N, C>*(V;,Wp) is an open unit neighbour-
hood in U with Uy - Uy € U and Uy = Uy . Since each C=(V;, K) is a topological
with ;- U; - ;1 € C=(V;, W). Since C=(V;, W) is open in C®(V;, K), so is
Ul :=U; N C>®(V;,Wp). Hence

----------

and conditions i) — éii) of Proposition are satisfied, where the required
smoothness properties are consequences of Proposition and Corollary
(cf. [GIO2D, 3.2]).

b) We show that the map ¢ : Gy(P) — C=(P, K)¥ from is a homeomor-
phism. Let Pl =: P; be the restricted bundle. Since T "V, is closed in T"M, we
have that C°°(P, K)¥ is homeomorphic to

Go(P) = {(Giicr,m € [[ OB, K)F :3(p) = F3(p) for all p e 7 (VinV;)}
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as in Proposition With respect to this identification, v is given by

(Vi)iz1,.n — (k;1 c(viom) ko, )iz1..m

and it thus suffices to show the assertion for trivial bundles. So let 0 : M — P
be a global section. The map C*(M,K) > f— for € C®(P,K) is continuous
since

CO(M,K)> fTfonr)=T"foTkn = (T*n).(T*f) € C(T*P,T*K)

is continuous as a composition of a pullback an the map f + T* f, which defines the
topology on C*°(M, K). Since conjugation in C*°(P, K) is continuous, it follows
that ¢ is continuous. Since the map f — f oo is also continuous (with the same
argument), the assertion follows.

c) This follows immediately from L(C>®(V;, K)) = C>(V;, ) (cf. [GI02b] Sec-
tion 3.2]). =

The next corollary is a mere observation. Since it justifies the name “property
SUB”, it is made explicit here.

Corollary 3.1.9. IfP is a smooth principal K-bundle with compact base M, hav-
ing the property SUB with respect to the smooth closed trivialising system V, then
Gy(P) is a closed subgroup of [, C°(V;, K), which is a Lie group modelled on
ov(P). =

Y

We want to use the isomorphism Gau(P) = Gy(P) to introduce a Lie group
structure on Gau(P). Until now, our construction depends on a particular choice
of a trivialising system, but this would be inappropriate for a natural Lie group
structure on Gau(P). We show next that in fact, different choices of trivialising
systems lead to isomorphic Lie group structures on Gau(P).

Proposition 3.1.10. Let P be a smooth principal K-bundle over the compact base
M. IfV = (V,, Oi)iz1,..m andU = (Uj, T;)j=1,..m are two smooth closed trivialising
systems and P has the property SUB with respect to V and U, then Gy(P) s
isomorphic to Gy (P) as a Lie group.

Proof. First, we note that if the covers underlying V and U are the same, but
the sections differ by smooth functions k; € C>*(V;, K), i.e., o0; = 7; - k;, then this
induces an automorphism of Lie groups

GV(P) - GV(P)a (%‘)i:L...,n = (ki_l i ki)i:l,...,na

because conjugation with k; ' is an automorphism of C*°(V;, K).

Since each two open covers have a common refinement it suffices to show the
assertion if one cover is a refinement of the other. So let Vi,...,V,, be a refine-
ment of Uy,..., U, and let {1,...,n} 30— j(i) € {1,...,m} be a function with
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Vi € Uj@y. Since different choices of sections lead to automorphisms we may as-
sume that o; = OJ'(Z')’V-’ implying in particular ki (m) = k;@);(m). Then the
restriction map from Lemma [2.2.20] yields a smooth homomorphism

b Gy(P) = GH(P),  ()jes = (%0057, ier-

For ¢)~! we construct each component wj_l : Gy(P) — C=(U;, K) separately.
The condition that (1&;1) jeJ is inverse to 1 is then
7 (W) |y, = forall @ with j = ji). (3.2)

Set I; :={i€I:V;CU,} and note that j(i) = j implies i € I;. Since a
change of the sections o; induces an automorphism on Gy(P) we may assume that
o; = Jj(i)’ﬁ foreach ¢ € I;. Let x € Uj\ Uier, Vi. Thenx €'V, for some i, € I and
thus there exists an open neighbourhood U, of z such that U, is a manifold with
corners, contained in U]- N Viz. Now finitely many U,,,...,U,, cover Uj\ Uier, Vi
and we set

wj—l((%)ie[) = glue ((%)ielj, <(kﬂzk *Viay, kzzkﬂ Uzk)k:1 l) .

.....

Then this defines a smooth map by Proposition [2.2.21{and (3.2 is satisfied because
j(i) =i implies i € I, n

We now come to the main result of this section.

Theorem 3.1.11 (Lie group structure on Gau(P)). Let P be a smooth prin-
cipal K-bundle over the compact manifold M (possibly with corners). If P has the
property SUB, then Gau(P) = C*®(P, K)X carries a Lie group structure, modelled
on C*(P, &)X, If, moreover, K is locally exponential, then Gau(P) is so.

Proof. We endow Gau(P) with the Lie group structure induced from the isomor-
phisms Gau(P) = C>(P, K)* = Gy(P) for some smooth closed trivialising system
V. To show that Gau(P) is locally exponential if K is so we first show that if M
is a compact manifold with corners and K has an exponential function, then

(eXpK)* COO(MaE) _)O(X)(M?K)? 7 — eXPg o7
is an exponential function for C*°(M, K). For x € ¢ let v, € C*°(R, K) be the
solution of the initial value problem (0) = e, 7/(t) = y(t).z (cf. Definition|A.1.10).
Take n € C*°(M, ). Then

Dyt R C(MLK),  (£,m) = g (1) = oxpye(t - n(m)
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is a homomorphism of abstract groups. Furthermore, I'; is smooth, because it is
smooth on a zero neighbourhood of R, for the push-forward of the local inverse of
expy provide charts on a unit neighbourhood in C*°(M, K'). Then

5l(rn)(t) = Fn(t)_l ) F/(t) = F77<t)_1 ’ Fn(t) /A

thought of as an equation in the Lie group
T(C*®(M,K)) = C®(M,t) x C*(M,K), shows that nw— T,(1)=expgoy
is an exponential function for C*(M, K). The proof of the preceding lemma
yields immediately that

i=1
is a diffeomorphism and thus Gau(P) is locally exponential. [

It remains to elaborate on the arcane property SUB. First we shall see that
this property behaves well with respect to refinements of trivialising systems.

Lemma 3.1.12. Let P be a smooth principal K-bundle aver the compact base
M, and let V = (Vi,00)iz1,..n be a smooth closed trivialising system of P. If

U= (U;,7j)j=1...m is a refinement of V, then P has the property SUB with respect

.....

to V if and only if P has the property SUB with respect to U.

Proof. Let {1,...,m} > j —i(j) € {1,...,n} be a map such that U; C Vj;, and
T = Oi(j) ‘Uj' Then we have bijective mappings

(cf. Proposition|3.1.10). Now let ¢ : W — W’ be an arbitrary convex centred chart
of K and set

Q = Gu(P)N H C(Vy,W)  Q:=Gg(P)n H C(U;, W)

Q=g@Pn[[cV.W) Q@ =gP)n][[CT.W)
i=1 =1

Then we have ¥g(Q) = @ and 4(Q") = @’ and the assertion follows from the

commutative diagram

Q —— Q
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Although it is presently unclear, which bundles have the property SUB and
which not, we shall now see that P has the property SUB in many interesting
cases.

Lemma 3.1.13. Let P be a smooth principal K -bundle over the compact manifold
with corners M. Then P has the property SUB

i) with respect to each global smooth trivialising system (M, o) if P is trivial,
i) with respect to each smooth closed trivialising system if K is abelian,

iii) with respect to each smooth closed trivialising system if K is a Banach—Lie
group,

iv) with respect to each smooth closed trivialising system if K is locally exponen-
tial.

Proof. i) If P is trivial, then there exists a global section o : M — P and thus

V = (M, o) is a trivialising system of P. Then Gy(P) = C°(M, K) and ¢,
is bijective for any convex centred chart ¢ : W — W,

ii) If K is abelian, then the conjugation action of K on itself and the adjoint
action of K on £ are trivial. Then a direct verification shows that ¢, is
bijective for any trivialising system ) and any convex centred chart ¢.

iii) If K is a Banach-Lie group, then it is in particular locally exponential (cf.
Remark [A.1.11)) and it thus suffices to show iv).

iv) Let K be locally exponential and V = (Vi,ai)izl,__W be a trivialising sys-
tem. Furthermore, let W’ C £ be an open zero neighbourhood such that
expy restricts to a diffeomorphism on W’ and set W = exp(W’) and
¢ :=exp ! : W — W' Then we have

n n

(Wizt,n €G(P)N][C(Vi, W) & ¢u((3)im1,..0) €gu(P)N] [ C(Vi, W),
i=1 i=1
because expy (Ad(k).x) =k - expy(z) - k! holds for all k € K and z € W’
(cf. Lemma[A.1.12)). Furthermore, (1);)i=1,..., — (€xpon;)i=1,..» provides an
inverse to .
Since smooth closed trivialising systems always exist by Lemma [B.1.13] P has
the property SUB in each of these cases. n

Remark 3.1.14. The preceding lemma shows that there are different kinds of
properties of P that can ensure the property SUB, i.e., topological in case i),
algebraical in case i) and geometrical in case iv). It thus seems to be hard to find
a bundle which does not have this property. However, a more systematic answer
to the question which bundles have this property is not available at the moment.m
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Problem 3.1.15. Is there a smooth principal K-bundle P over a compact base
space M which does not have the property SUB? [

Lie group structures on the gauge group have already been considered by other
authors in similar settings.

Remark 3.1.16. If the structure group K is the group of diffeomorphisms
Diff(N) of some closed compact manifold N, then it does not follow from Lemma
that P has the property SUB, because Diff (/V) fails to be locally exponen-
tial or abelian. However, in this case, Gau(P) is as a split submanifold of the
Lie group Diff(P), which provides a smooth structure on Gau(P) [Mi91, Theorem
14.4].

Identifying Gau(P) with the space of section in the associated bundle AD(P),
where AD : K x K — K is the conjugation action, [OMYKS83|, Proposition 6.6]
also provides a Lie group structure on Gau(P).

The advantage of Theorem is, that it provides charts for Gau(P), which
allows us to reduce questions on gauge groups to similar question on mapping
groups. This correspondence is crucial for all the following considerations. [

3.2 Approximation of continuous gauge trans-
formations

As indicated in Appendix [A] and Section [5.2] obtaining a good knowledge of the
(low-dimensional) homotopy groups of an infinite-dimensional Lie group is an im-
portant task. The goal of this section is to make the homotopy groups of the gauge
group more accessible by reducing their computation to the continuous case, i.e.,
we shall prove that m,(Gau(P)) is isomorphic to m,(Gau.(P)). Since continuous
maps are much more flexible than smooth maps are, this will make the computa-
tion of the homotopy groups easier, as explained in Chapter [4]

This chapter was mainly inspired by [Ne02al, Section A.3] and [Hi76l, Chapter 2].

We first provide the facts on the group of continuous gauge transformations
that we shall need later on.

Remark 3.2.1. Let P = (K,7: P — X) be a continuous principal K-bundle.
Then the same mapping as in the smooth case (cf. Remark [3.1.2)) yields an iso-
morphism

Gau.(P) = C(P,K)" :={y e C(P,K):~(p-k) =k -~(p) -k Vp € P,k € K},

and C(P, K)¥ is a topological group as a closed subgroup of C(P, K).. We equip
Gau,(P) with the topology defined by this isomorphism.
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as a closed subgroup. Then

G.5(P) > (vi)ier — (p — ko, (p) " i (m(p)) ko, (p) if p € W_l(vi)> € C(P,K)¥,

defines an isomorphism of groups and a straightforward verification shows that
this map also defines an isomorphism of topological groups. In exactly the same
way one shows that

GC,V(P) = {(71)16[ S H O(V;, K) . %(m) = kw(m) . fyj(m) . kﬂ(m)‘v’m c V; N ‘/J}

i€l

is also isomorphic to C'(P, K)X as a topological group.

If, in addition, X is compact and (V;);cr also covers X, then there exists a
same argumentat as in the proof of Proposition shows that C(P, K)¥, with
the subspace-topology from C'(P, K)., can be turned into a Lie group. [

We collect some concepts and facts from general topology that we shall use
throughout this chapter.

Remark 3.2.2. If X is a topological space, then a collection of subsets (U;);er
of X is called locally finite if each x € X has a neighbourhood that has non-
empty intersection with only finitely many U;, and X is called paracompact if
each open cover has a locally finite refinement. If X is the union of countably
many compact subsets, then it is called o-compact, and if each open cover has a
countable subcover, it is called Lindelof.

Now let M be a finite-dimensional manifold with corners, which is in partic-
ular locally compact and locally connected. For these spaces, [Du66, Theorems
X1.7.2+3] imply that M is paracompact if and only if each component is o-compact
or, equivalently, Lindel6f. Furthermore, [Du66, Theorem VIII.2.2] implies that M
is normal in each of these cases. [

Remark 3.2.3. If (Ui>ie ; is a locally finite cover of M by compact sets, then for

fixed i € I, the intersection U; ﬂUj is non-empty for only finitely many j € I.
Indeed, for every x € U, there is an open neighbourhood U, of x such that
I,:={jel:U,NU,;# 0} is finite. Since U, is compact, it is covered by finitely
many of these sets, say by U,,,...,U,, . Then J:=1, U...UI, is the finite set
of indices j € J such that U; N Uj is non-empty, proving the claim. [
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We now start the business of approximating continuous maps by smooth ones.
In the case of functions with values in locally convex spaces, this is quite easy.

Proposition 3.2.4. If M is a finite-dimensional o-compact manifold with cor-
ners, then for each locally convex space Y the space C*(M,Y) is dense in
C(M,Y).. If f € C(M,Y) has compact support and U is an open neighbourhood
of supp(f), then each neighbourhood of f in C(M,Y"). contains a smooth function
whose support is contained in U.

Proof. The proof of [Ne02a, Theorem A.3.1] carries over without changes. ]

Corollary 3.2.5. If M s a finite-dimensional o-compact manifold with corners
and V' is an open subset of the locally convex space Y, then C°(M, V') is dense in
C(M,V).. n

Proof. Since each open subset of C'(M, V), is also open in C'(M,Y),, this follows
immediately from the previous proposition. [

We are now aiming for a similar statement for gauge transformations. In order
to do so, we need to localise the smoothing process from Proposition [3.2.4, This
means to organise an inductive smoothing process in a way that

e at each step, we smooth the function on a region, where it takes values
in an open subset of K, which is diffeomorphic to an open convex zero
neighbourhood of ¢

e when doing so, we should not vary the function in a region, where it is already
smooth.

The following lemma provides the tool for this “localised” smoothing process.

Lemma 3.2.6. Let M be a finite-dimensional o-compact manifold with corners,
Y be a locally conver space, W C'Y be open and convex and let f: M — W be
continuous. If L C M 1is closed and U C M is open such that f is smooth on
a neighbourhood of L\U, then each neighbourhood of f in C(M,Y). contains a
continuous map g : M — W, which is smooth on a neighbourhood of L and which
equals f on M\U.

Proof. (cf. [Hi76, Theorem 2.5]) Let A C M be an open set containing L\U such
that f‘A is smooth. Then L\A C U is closed in M so that there exists V C U
open with

INACVCVCU
Then {U, M\V} is an open cover of M, and there exists a smooth partition of
unity {f1, f2} subordinated to this cover. Then

Gp: C(M,W)e = C(M,Y)e, Gr(y)(@) = fi(@)y(x) + fo(2) f ()
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is continuous since v — f1y and f1y — fiv + fof are continuous.

If v is smooth on AUV then so is Gf(7), because f; and f, are smooth, f is
smooth on A and f2|v = 0. Note that L C AU (L\A) C AUV, so that AUV is
an open neighbourhood of L. Furthermore we have G(vy) =~y on V and Gy(y) = f
on M\U. Since G¢(f) = f, there is for each open neighbourhood O of f an open
neighbourhood O’ of f such that G;(O") C O. By the preceding Corollary there
is a smooth function h € O’ such that g := G¢(h) has the desired properties. =

We first aim for a generalisation of the previous lemma to functions with values
in a locally convex Lie group K. Note that we used a convexity argument in the
proof of the previous lemma, showing that the local convexity of K will be crucial
for the generalisation to work.

Lemma 3.2.7. Let M be a finite-dimensional o-compact manifold with corners,
K be a Lie group, W C K be diffeomorphic to an open convexr subset of & and
f: M — W be continuous. If L C M 1is closed and U C M is open such that f is
smooth on a neighbourhood of L\U, then each neighbourhood of f in C(M, W),
contains a map which s smooth on a neighbourhood of L and which equals f on
M\U.

Proof. Let ¢ : W — (W) C ¢t be the postulated diffeomorphism. If
| K1, Vi N...N|K,,V,| is an open neighbourhood of f € C(M, K)., where we
may assume that V; C W, then | Ky, (Vi) N...N | K, ¢(V,)] is an open neigh-
bourhood of ¢ o f in C(M,p(W)).. We apply Lemma to this open neigh-
bourhood to obtain a map h. Then ¢! o h has the desired properties. [

Proposition 3.2.8. Let M be a connected paracompact finite-dimensional man-
ifold with corners, K be a Lie group and f € C(M,K). If L C M is closed and
U C M is open such that f is smooth on a neighbourhood of L\U, then each open
neighbourhood O of f in C(M, K). contains a map g, which is smooth on a neigh-
bourhood of L and equals f on M\U.

Proof. We recall the properties of the topology on M from Remark [3.2.2] If f is
smooth on the open neighbourhood A of L\U, then there exists an open set A" C M
such that L\U C A’ C A/ C A. We choose an open cover (W;);cs of f(M), where
cach W; is an open subset of K diffeomorphic to an open zero neighbourhood of
t and set V; := f~1(W;). Since each z € M has an open neighbourhood V, ; with
Vz,; compact and W] C Vj for some j € J, we may redefine the cover (V;);c; such
that V is compact and f(V;) C W, for all j € J.

Since M is paracompact, we may assume that the cover (V}),e; is locally finite,
and since M is normal, there exists a cover (V});cr such that for each i € I there
exists a 7 € J such that VZ’ C Vj. Since M is also Lindelof, we may assume that
the latter is countable, i.e., I = INT:={1,2,...}. Hence M is also covered by
countably many of the V; and we may thus assume V; C V; and f(V;) C W; for
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each ¢ € N* Furthermore we set V; := () and Vg := (). Observe that both covers
are locally finite by their construction. Define

Li=LNVA\(Vju...uV/)

which is closed and contained in V;. Since L\A" C U we then have L;\A" C V;NU
and there exist open subsets U; C V; N U such that L\A' CU; CU; CV;NU. We
claim that there exist functions g; € O, ¢ € INy, satisfying

gi =gi-1 on M\U; for i >0,

g:(V;) CW; forall 4,5 € Ny and
g; is smooth on a neighbourhood of LoU...UL; U A’

For i = 0 we have nothing to show, hence we assume that the g; are defined for
t < a. We consider the set

Q = {7 € C(‘/:za Wa) *Y = Ga—1 O1 V:z\m}a
which is a closed subspace of C'(V,, W,).. Then the map

‘ | (=) it zeU,
FiQ- COnw), P ={ 10 Rt
is continuous since U, is closed. Note that, by induction, g, 1(V,) € W,, whence
Ja-1ly, € Q. Since F' is continuous and F'(g,-1ly,) = ga—1, there exists an open
set O’ C C(V,,W,) containing ga—1|va such that F(O'N Q) C O.

Since (V})jen, is locally finite and V; is compact, the set {j € Ny : U, NV} # 0}
is finite and hence

0"=0'n () 1U.nV;, W]
j€Ng

is an open neighbourhood of g, 1|y, in C(Va, Wa). by induction. We now
apply Lemma with to the manifold with corners V,, the closed set
L = (LNV)U(A' NV,) CV,, the open set U, C V,, Ja-1ly, € Q C C(Vo, W,)
and the open neighbourhood O” of ga,llva. Due to the construction we have
L \U, CANVyand LNV!C LyU...U L,. Hence we have

L\U, C(LoU...ULy 1 U(LN\U))UANVNU,) CLiU...UL, 1 U(ANV,)

so that g, 1]y, is smooth on a neighbourhood of L \U,. We thus obtain a map
h € O" which is smooth on a neighbourhood of Lj, and which coincides with g, 1],
on V,\U, 2 V,\U,, hence is contained in O” N Q, and we set g, := F(h). Since
h(U, NV;) CW; and g,1(V;) € W;, we have F(h)(V;) C W;. Furthermore F(h)
inherits the smoothness properties from g, ; on M \E, from A on V, and since
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L, C LNV, it has the desired smoothness properties on M. This finishes the
construction of the g;.

We now construct g. First we set m(z):=max{i:z €V;} and
n(z) := max{i: x € V;}. Then obviously n(z) <m(z) and each x € M has a
neighbourhood on which gy(y), ..., gm() coincide since U; C V; and g; = g;—1 on

M\U;. Hence g(x) := gn)(x) defines a continuous function on M. If z € L, then
r € LyU...U Ly) and thus g is smooth on a neighbourhood of z. If x € M\U,
then v ¢ Uy U...U U,y and thus g(z) = f(x). ]

To make the following technical proofs more readable, we first introduce some
notation.

Remark 3.2.9. In the remaining section, multiple lower indices on subsets of M
always indicate intersections, namely U;..., ;= U; N ... N U,. [

The following technical Lemma will make the smoothing process work.

Lemma 3.2.10. Let M be a manifold with corners that is covered locally finitely
by countably many compact sets (Ui)iem. Moreover, let k;; :Uij — K be contin-
uous functions into a Lie group K so that k;; = kj’il holds for all i,7 € IN. Then
for any convex centred chart ¢ : W — (W) of K, each sequence of open unit
neighbourhoods (VVJ{)jeN with WJ’ C W and each a € N, there are p-convexr open
unit neighbourhoods W5 C W in K for indices i < j and W* C W} for j € N that

satisfy

k’ﬂ(I) . (VVZ-?)_I . V[/ia . kl](l') - VV]Q for all x € Uija and 1 < j, (33)
kji(x) - (VVZ‘;‘)_1 Wi - kij(x) S W5 forall x € Uijna and i < j <n (3.4)

Proof. Initially, we set W := W/ for all i, respectively W := W for all i < j,

disregarding the conditions and . These sets are shrinked later so that
they satisfy and .

Our first goal is to satisfy . We note that the condition in becomes
trivial if Uja is empty, because this implies Uija = (). So we need to consider at
most finitely many conditions on corresponding to the finitely many j € IN
such that Uja # (), and we deal with those inductively in decreasing order of j,
starting with the maximal such index.

For fixed j and all i < j with U, # 0, we describe below how to make the (-
convex unit neighbourhoods W and W on the left hand side smaller so that the
corresponding conditions are satisfied. Making W and W;* smaller does not
compromise any conditions on W, and W5 for j' > j that we guaranteed before,

because these sets can only appear on the left hand side of such conditions.
To satisfy condition (3.3) for given i < j and W}*, we note that the function

Soij : Uija x K x K — K, (ill', k,k/) — kﬂ(l’) . kil . k/ . k”(.l’)
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is continuous and maps all the points (x,e,e) for z € Uija to e. Hence we
may choose open neighbourhoods U, of z and ¢-convex open unit neighbour-
hoods W, C W and W, C W such that ¢;(U, x W, x W) C W5, Since UZN
is compact, it is covered by finitely many U,, say by (U).er for a finite set
F C Ujjo. Then we replace W2 and W by their subsets (), W, and (o, W,
respectively, which are ¢-convex open unit nelghbourhoods in K such that
0ij (Uija X Wi x W) C We, in other words, is satisfied

Our second goal is to make the sets W also satlsfy ., which is non-trivial
for the finitely many triples (i, j,n) € IN3 Wlth i < j <n that satisfy Ujjna # 0.
We can argue as above, except for a slightly more complicated order of processing
the sets W, on the right hand side. Namely, we define the following total order

(i,7) < (i',7) = j<jor(j=j7 andi<?) (3.5)

on pairs of real numbers, in particular on pairs of indices (4, 7) in IN x IN with i < 7.
Note that this guarantees (i, j) < (j,n) and (i,n) < (j,n) whenever i, j, n are as in
condition (3.4). We process the pairs (j,n) with U;jna # 0 for some i in descending
order, starting with the maximal such pair. At each step, we fix Wi and make
W and W smaller for all relevant ¢ < j so that ( is satlsﬁed This does

ij
not violate any conditions . or . that we guaranteed earlier in the process,
because W5 and W can only appear on the left hand side of such conditions. For

the choice of the smaller unit neighbourhoods, we use the continuous function
Pijn - U'L’jna x K x K — K, (l’, k, k/) — kﬂ(fﬂ) . kil . k'/ . ku(.ﬂj)

and the compactness of Uijm and argue as before. We thus accomplish our second
goal. [

We are now ready to prove the generalisation of Proposition [3.2.4] This propo-
sition is the first hint that the spaces C(P, K)% and C*(P, K)X are topologically
closely related.

Proposition 3.2.11. If P is a smooth principal K-bundle over the connected,
paracompact finite-dimensional manifold with corners M, then Gau.(P) is dense

in Gau(P).

Proof. Let (U;)jes be a trivialising open cover of M. Proposition yields

locally finite open covers (Ui[)\])ielN of M for every A\ € {0,00} U (1 + %]N) such

that the closures UE/\] are compact manifolds with corners and

UEOO] U[J+1]CU[J+1] Ui[j+2/3] U[j+2/3]

[+1/3]

cubt gt ey c v c T o,
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holds for all 4, j € IN, where U; denotes a suitable set of the cover (U;),e for every
1 € IN. Furthermore , let

be a the transition functions of a fixed cocycle arising from the trivialising cover.
By Remark we may identify Gau.(P) with

G(P) = {()ien € [] CT K) : 3s(a) = ki) - 15(0) - k() Vo € UL

€N
or with
GOUP) = {()ien € [ CO K) : 7sl) = kig(w) - 75 () - kyu(x) Vo € Ty},
€N

and each v = (;)ien € GI®(P) is given by the restriction of some uniquely deter-
mined element of GI%(P).
Let ¢ : W — (W) C ¢ be a convex centred chart of K. Then a basic open

neighbourhood of (v;)en in GI™(P) is given by

{(fien € GPI(P): (o] 47 )U) S Wi forall i<m}  (36)
for open unit neighbourhoods W; C W. Then

kji(z) - kij(x) =e € W, forall x e UE? and i <j<m
and a compactness argument as in Lemma [3.2.10] yields open unit neighbourhoods
W! C K with

kji(x) - W - kys(z) C W, forall € UESJ and @ <j<m (3.7)

]

For i >m, we set W/ =W. We shall inductively construct smooth maps
Vi : UEO] — K such that

(a) 4j = kji - % - kij pointwise on UZ] forallt < j € IN,
(b) (7 -4 ) (T)) € We for all i,a € N and

(c) (- %_1)(U£OO]) C W, foralli <m

are satisfied at each step, where the W are ¢-convex unit neighbourhoods pro-

vided by Lemma |3.2.10| that we apply to the countable compact cover (UEO})Z. N’
to the transition functions k;;, and to (W))ien. Then (7|5 )ien is an element

of GI*®/(P), contained in the basic open neighbourhood (3.6 and thus establishes
the assertion.




3.2. Approximation of continuous gauge transformations 45

To construct the smooth function 7y : U[lo] — K, we apply Proposition |3.2.8| to

the continuous map f:=v, on M = A:=U := U[IO] and to the open neighbour-

hood
o= (10wl n () [T v | ) -
aeN
of v1, which is indeed open, since only finitely many U[lli are non-empty. By con-
struction, 7; satisfies (]ED and . To construct the smooth function v, : UEO] — K
inductively for 7 > 1, we need three steps:

e In order to satisfy (]ED in the end, we define a map

7 TS = K, Fi(@) = k) - Filz) - ky(a) for x € T,

1<J
If z is an element of both U,%il] and Ug;l] for ¢/ < i < j, condition (a)) for
j — 1 and the cocycle condition assert that the so-defined values for 7(x)
agree.

e This definition of 7}, along with properties (&), () and (B.3)) assert that

pj(x) = Fj(x) - () = kjie) - Fi(x) - kg () - yy(2)
= kji(x) - 3i(w) - i) ™" k() € W
—_———

ews

1

holds for all z € U
7 < m, we have

i < 7 and « in IN. Furthermore, (3.7) ensures that if

ija )

i (@) = kji(x) - Fi(z) - vix) ™" k() € W
—_— ——

eEwpCw/!
for x € U[j_l} and all 7 < 7. So we may apply Lemma |3.3.1] to
A= UK] U[] Yand B = Ui<j UEZ._Q/?)] to fade out ¢; to a continuous map

®; on M := Uj . Then ®; coincides with ¢; on B, maps Ugji into W and
if 7 < m also UEJ_H into W;.

e Accordingly, ®; - v, is an element of the open neighbourhood

0y m ([0 [P

(¢S

U[J 2/3]'

1<J

M .= A= UE»O], U:=M\U UZ-; 1/3,0]-, and to f := @, - v;, then we ob-

tain a smooth map 7; : UE-O] — K.

of 7; and is smooth on |J, If we apply Proposition |3.2.8| to

1<j
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The map 7; satisfies @, because so does 77, with which it coincides on Uic i UZ].
Moreover, (]ED and are satisfied due to the choice of O;. This concludes the
construction. ]

In combination with the fact that C*°(P, K)¥ is dense in C'(P, K)¥, the fol-
lowing fact will provide the isomorphism ,(C>®(P, K)¥) = x,,(C(P, K)¥), which
we are aiming for.

Lemma 3.2.12. Let P be a smooth principal K-bundle over the compact base
M, having the property SUB with respect to the smooth closed trivialising sys-

.....

chart of K (cf. Definition - Af (Vi)iz1,..n € G5(P) represents an element
of C°(P,K)X (cf. Remark |3.1.6]), which is close to identity, in the sense that

vi(V;) CW, then (7;)i=1...n is homotopic to the constant map (x — €)1, n.

.....

Proof. Since the map

0. U= Gyp(P)N][C* (Vi W) = 8(P), (W)iz1,.n = (90 ))izt,. s

=1

is a chart of Gy;(P) (cf. Proposition [3.1.8]) and ¢.(U) C gy(P) is convex, the map

0,1] >t SO*_l(t -0 (Vi)i=1,..., n)) € Gy(P)

defines the desired homotopy. [

We finally obtain the main theorem of this section.

Theorem 3.2.13 (Weak homotopy equivalence for Gau(P)). Let P be a
smooth principal K-bundle over the compact manifold M (possibly with corners).
If P has the property SUB, then the natural inclusion ¢ : Gau(P) — Gau.(P) of
smooth into continuous gauge transformations is a weak homotopy equivalence, i.e.,
the induced mappings m,(Gau(P)) — m, (Gau.(P)) are isomorphisms of groups for
n e IN().

Proof. We identify Gau(P) with C*(P, K)¥ and Gau.(P) with C(P, K)¥. To
see that m,(¢) is surjective, consider the continuous principal K-bundle pr*(P)
obtained form P by pulling it back along the projection pr:$" x M — M.
Then pr*(P) is isomorphic to (K,id xm,$" x P,$" x M), where K acts triv-
ially on the first factor of $" x P. We have with respect to this action
C(pr*(P), K)X 2 C($" x P,K)%X and C>®(pr*(P))X = C>~($" x P, K)X. The
isomorphism C(S", Gy) = C.(S", Gp) x Gy = Ci(5",G) x Gy, where C,(5",G)
denotes the space of base-point-preserving maps from $" to G, yields
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Tn(G) = m(Ck(8™, G)) = mo(C(S™, Gy)) for any topological group G. We thus get

a map

T (C(P, K)") = mo(C.(S", C%(P, K)*)) =
71-()(61(8717 COO(PJ K)I%)) - 7TO(C(SHJ C(P7 K)KO))a

where 7 is induced by the inclusion C®(P, K)¥ — C(P, K)¥.

If feC(S" x P,K) represents an element [F| € m(C($", C(P, K)X)) (re-
call C(P, K)* =2 G.v(P) C [[i-, C(V;, K) and C(S",C(Vi, K)) 2 C(S" x V;, K)),
then there exists fE C>=(8" x P, K)X which is contained in the same connected
component of C($" x P, K)X as f (cf. Proposition . Since f is in par-
ticular smooth in the second argument, it follows that f represents an element
F e C(8",C>(P,K)¥X). Since the connected components and the arc components
of C($™ x P, K)¥X coincide (since it is a Lie group, cf. Remark , there exists
a path

7:00,1] — C(8" x P, K)%,

such that ¢+ 7(¢)-f is a path connecting f and f. Since $" is con-
nected it follows that C(S" x P, K), = C(8",C(P, K)*), C C(S",C(P, K)%).

Thus 7 represents a path in C($",C(P, K)X)) connecting F and F whence

[F] = [F] € mo(C(S",C(P, K)%))). That 7,(¢) is injective follows with Lemma
3.2.12| as in [Ne02a, Theorem A.3.7]. n

This theorem makes the homotopy groups of gauge groups accessible in terms
of constructions for continuous mappings. This will be done in Chapter [4

3.3 Equivalences of principal bundles

This sections presents the results of a joint work with Christoph Miiller [MWO6].
It develops further the techniques from Section and demonstrates the close
interplay of bundle theory and topology from a more elementary point of view
than homotopy theory, which can be used to obtain the results of this section
in the finite-dimensional case (cf. Proposition for a collection of well-known
facts or [Grh8], [To67] and [Gu02] for the case of analytic principal bundles).

The importance of this section is that it shows precisely that there is no dif-
ference between continuous and smooth principal bundles, as long as one is only
interested in equivalence classes (as one usually is). It thus provides the philosoph-
ical background to the interplay between Lie theory and topology encountered in
this thesis.

In order to speak of smooth principal bundles one has to consider bundles
over manifolds (possibly with corners), whose structure group is a Lie group.
The idea of this section is to consider bundles described by transition functions,
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which are in particular functions with values in Lie groups. Then an appropriate
smoothing process, involving the smoothing techniques from Section will
produce smooth transition functions out of continuous ones and smooth function
describing bundle equivalences (or coboundaries) out of continuous ones.

During the mentioned construction process we shall need several technical facts
which we provide at first.

Lemma 3.3.1. Let M be a finite-dimensional paracompact manifold with corners,
A and B be closed subsets satisfying B C A°, ¢ : W — (W) be a convex centred
chart of a Lie group K modelled on a locally convex space and f: A — W be a
continuous function. Then there is a continuous function F': M — W C K with
F|p = f and F|yp a0 = e. Moreover, if W' C W is another p-convex set containing
e, then f(x) € W' implies F(x) € W' for each x € A.

Proof. Since M is paracompact, it is also normal (c.f., Remark . The
closed sets M\ A’ and B are disjoint by assumption, so the Urysohn Lemma
as in [Br93, Theorem 1.10.2] yields a continuous function A : M — [0, 1] such that
Alp =1 and AJypna0 = 0. Since (W) is a convex zero neighbourhood in Y, we
have [0,1] - (W) C o(W). We use this to define the continuous function

frA—W, a2 e (M) e (f()).

that satisfies, by the choice of \, fy|p = f|z and fy|sa = e because 0A C M \ A°.
So we may extend f) to the continuous function

fHx), ifzeA

R P vy

that satisfies all requirements. n

Lemma 3.3.2. Let W be an open neighbourhood of a point x in R% (cf. Definition
and C C W be a compact set containing x. Then there exists an open set
V' satisfying x € C CV CV CW whose closure V' is a compact manifold with
corners.

Proof. For every x = (x1,...,24) € C, there is an £, > 0 such that
B(w,€) == [1) — €4, 71 + €4) X -+ X [Tg — &4, Tq + 2] NRE (3.8)

is contained in W. The interiors V, := B(z,e,)" in R% form an open cover of
the compact set C, of which we may choose a finite sub collection (V,)i=1.. m
covering C'. The union V := J;-, V4, satisfies all requirements. In particular, Vis
a compact manifold with corners, because it is a finite union of cubes whose sides

are orthogonal to the coordinate axes. [
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Proposition 3.3.3. Let M be a finite-dimensional paracompact manifold with
corners and (U;)jcs be an open cover of M. Then there exist countable open
covers (Ui[oo])ie]N and (Ui[O])ielN of M such that UEOO] = U™ and T = U are
compact manifolds with corners, UEOO} - Ui[o} for all v € IN, and such that even the
cover (UEO})@N of M by compact sets is locally finite and subordinate to (U;) e .
In this situation, let L be any countable subset of the open interval (0,00). Then

of M by open

sets whose closures are compact manifolds with corners such that UE/\] - UZ»[“ ! holds
whenever 0 < u < A < o0.

: .

for every A\ € L, there exists a countable, locally finite cover (UZW)Z.E]N

Proof. For every x € M, we have x € Uj, for some j(x) € J. Let (U,,p,) be
a chart of M around x such that U, C Uj(,). We can even find an open neigh-
bourhood V, of x whose closure V, is compact and contained in U,. Since M
is paracompact, the open cover (Vgﬁ)me s has a locally finite subordinated cover
(Vi)ier, where V; C V, and V; C V, C U, for suitable z = 2(i). Since M is also
Lindelof, we may assume that [ = IN.

To find suitable covers Ui[oo] and Ui[o], we are going to enlarge the sets V; so
carefully in two steps that the resulting covers remain locally finite. More precisely,
Ui[oo] and UZ-[O} will be defined inductively so that even the family (V{)ren with

Vi— UES] for k <73
k= :
Vi for k > 1

is still a locally finite cover of M for every ¢ € Ng. We already know this for ¢ = 0,
because V) =V, for all k € N. For ¢ > 0, we proceed by induction.

For every point y € V;, there is an open neighbourhood Viy of y inside Uy
whose intersection with just finitely many V}Z_l is non-empty. Under the chart
©a(i), this neighbourhood V;, is mapped to an open neighbourhood of ¢.¢;)(y) in
the modelling space RZ of M. There exist real numbers £¢(y) > £oo(y) > 0 such
that the cubes B(y, e (y)) and B(y, o(y)) introduced in are compact neigh-
bourhoods of ¢, (y) contained in ¢, ;(Vi,). Since V; is compact, it is covered by
finitely many sets V;,, say by (V;J/)yey for a finite subset Y of V;. We define the
open sets

Ul = U eily (Bew)”) and U= [ gy (Bly,20()°)

yey yey

whose closures are compact manifolds with corners, because they are a finite union
of cubes under the chart ¢,(;). On the one hand, the construction guarantees

v,cu et cuf T ¢ | Vg S Vs

yey
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On the other hand, the cover (Vk?) re 18 locally finite, because it differs from the

locally finite cover (V") e 1 the single set Vi= UZ[-O].

For a proof of the second claim, we fix an enumeration A, Ay,... of L for an
inductive construction of the covers. Then for any n > 1 and ¢ € IN, we apply
Lemma [3.3.2/ to C' := ¢, (UEA]) and W = goi(Uim), where \ (respectively )) is the
smallest (respectively, largest) element of Aq,...,\,_1 larger than (respectively,

smaller than) A, for n > 1 and oo (respectively, 0) for n = 1. We get open sets Ui[’\"]

such that the condition UEA] - Ui[“ ! holds whenever 0 <u< A< oo are elements
in {\1,...,\,}, and eventually in L. This completes the proof. m

In order to make the technical constructions more readable we introduce the
following abbreviation.

Remark 3.3.4. In the remaining section, multiple lower indices on subsets of M
always indicate intersections, namely U;.... ;== U; N ... N U,. [

The following two theorems require to construct principal bundles and/or
equivalences between them, by constructing inductively cocycles and represen-
tatives of equivalences. In these constructions, every new transition function (re-
spectively, every new local representative of an equivalence)

e is already determined by cocycle conditions (respectively, by compatibility
conditions) on a subset of its domain,

e from which it will be “faded out” to a continuous function on the whole
domain

e and smoothed, if necessary.

In each such step, we need a safety margin to modify the functions without compro-
mising previous achievements too much, and these safety margins are the nested
open covers provided by Proposition [3.3.3] In order to “fade out” appropriately,
we need to make sure that the values of the corresponding functions stay in certain
unit neighbourhoods of the structure group. This is achieved with the data from
Lemma [3.2.700

During the construction we will violate the cocycle and compatibility condition
kij = kip - knj and f; = kij - f; - kj;. But we will alway assure that these conditions
are still satisfied on the open cover (Ui[oo])iem. This suffices to determine smooth
cocycles and smooth bundle equivalences completely.

Theorem 3.3.5 (Smoothing continuous principal bundles). Let K be a Lie
group modelled on a locally convex space, M be a finite-dimensional paracompact
manifold (possibly with corners) and P be a continuous principal K-bundle over
M. Then there exists a smooth principal K-bundle P over M and a continuous
bundle equivalence 2 : P — P.
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Proof. We assume that the continuous bundle P is given by Py as in Remark
B.1.7, where (U;) e, is a locally trivial cover of M and k;; : U;; — K are continuous
transition functions that satisfy the cocycle condition k;; - kj, = ki, pointwise on
Uijn-

Proposition |3.3.3| yields open covers (U -[m})i N and (Ui[o})l. N of M subordinate

(2

to (U;)jes with UEOO] C Ui[o] for alli € IN. For every i € IN, we denote by U; an open
set of the cover (U;),es that contains Ui[o] and observe that (U;);en is still a locally
trivial open cover of M. In our construction, we need open covers not only for pairs
(j,m) € N x IN with j < n, but also for pairs (j — 1/3,n), (j — 2/3,n) in-between
and (n,n) to enable continuous extensions and smoothing. The function

n(n —1)

1
/\:{(j7n>€§IN0XINij§n}—>[O,OO)7 A(jvn):T—‘_j,

is tailored to map the pairs (0,1), (1,1),(1,2),(2,2), (1,3),(2,3),(3,3), (1,4),...
to the integers 0, 1, 2, ..., respectively, and the other pairs in-between. If we apply
the second part of Proposition to the countable subset L := (im \) \ {0} of
(0, 00), we get open sets Ui[jn] = U 7] for all pairs (j,n) in the domain of A such
that (T7"),_ Ic
sense of implies UZ[J " b,

Let ¢ : W — (W) be an arbitrary convex centred chart of K and consider the

are again locally finite covers. We note that (j,n) < (5/,n’) in the

countable compact cover (U[O}) of M and the restrictions /{:Z]| [0] of the contin-

uous transition functions to the correspondlng intersections. Then Lemma [3.2.10
yields open ¢-convex unit neighbourhoods W and Wi with the corresponding
properties.

Our first goal is the construction of smooth maps %ij : Uﬁg] — K that satisfy the

cocycle condition on the open cover (Ui[oo])i N of M, which uniquely determines a
smooth principal K-bundle P = 7% by Remarks |B.1.7| and |B.1.12|. These maps Eij
will be constructed step-by-step in increasing order with respect to (3.5]), starting
with the minimal index (1,2). At all times during the construction, the conditions

(a) k:jn = kﬂ Ky pointwise on UWL for i < j <nin N and

(b) (Ejnk )(U[JR)CW“ for all j <mn and a in N,

jna
will be satisfied whenever all kw involved have already been constructed. We are
now gomg to construct the smooth maps kjn for indices j < n in IN (and implicitly
kny as kn]( ) = k;]n( )~1), assuming that this has already been done for pairs of
indices smaller than (j,n).

e To satisfy all relevant cocycle conditions, we start with

T S K, (2) = Ele) - k() for @ € TH, M

ijn ijn
1<j
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This smooth function is well-defined, because the cocycle conditions @
for lower indices assert that for any indices ' <i < j and any point

EU] L) U[] , we have

i'jn ign

because U EJWL "'is contained in both T Ezﬁ and Ul[“;l

m]

Next, we want to extend the smooth map E’ onlJ,_.U; TV to a continuous

. i<j Yign
map kj, on Ug,l
do this, we consider the function ,, := Egnkm tUie; TV L K. For all

ijn
1 <j,ac€Nandzx € UZna conditions (b)) above and (3.4) of Lemma/|3.2.10
imply
~ 1
(@) = (Kjkng) (@) = Kjo() - ((ig - kyi) (@) )™ - (Rin - ko) (2) -hig ()
ewg ewp,

€ kji(x) - (W)™ - W - kyy(z) C WS

jn
n]

without compromising the cocycle conditions too much. To

in

because U Ejna is contained in both U Efi and U ina- Oince the values of

@jn are contained in particular in the unit neighbourhood W, we may
apply Lemma |3.3.1] to M := U;O} and its subsets A:=J,_;U Zznm] and
B:=;,;U P]nz R yields a continuous function ®;, : U E(:z — W that co-
incides with ¢;, on B, is the identity outside A, and satisfies ®;,,(v) € W§,
for all x € Ugjnal ™ We define K, UEJ — K by ki, == ®;,kj, and note that

K, coincides with the smooth functlon kjn on B and with k;, outside A.

e We finally get the smooth map Ejn U[O} — K that we are looking for if we

apply Proposition [3.2.8| to the function £}, on M := A:=U En, to the open
complement U of | J,_ ;U 5711/3 i M , and to the neighbourhood
lin a
Ojn = (ﬂ LUJHQ’W J) < Kjn
acN

of both kj, and kj,,, where £/, € O;, follows from firstly ®; ( ) € W5, and
secondly k7, (7) = @, () - kjn(z) € W5, - kjn(z) for all x € Ujm Note that

Ojn is really open, because Remark[3.2.3]asserts that just finitely many of the

sets T2 ina " for fixed o € IN are non-empty and may influence the intersection.

By the choice of U, the result kjn coincides with both £, and k;n on
Uic i T 5o it satisfies the cocycle conditions (a]). It also satisfies (b)) by

ign )

the choice of Ojy,.
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This concludes the construction of the smooth principal K-bundle P. We use the
same covers of M and unit neighbourhoods in K for the construction of continuous

functions f; : UEO] — K such that
(c) fu= Enj - f; - kjn pointwise on U " for j<mnin N and
(d) fn(UESL) C W for a,n € IN.

Then Remark [B.1.9|tells us that the restriction of the maps f; to the sets UZ-[OO] of
the open cover is the local description of a bundle equivalence €2 : P — P that we

n]

are looking for. Indeed, all the sets U, " of condition (c|) contain the corresponding

sets U j[n] of the open cover.
We start with the constant function f; = e, which clearly satisfies condition
@. Then we construct f, for n > 1 inductively as follows:

e To satisfy condition , we start with

fr: T = Ko fae) = Fag(a) - £5(2) - hjale) for « € T3
j<n
This continuous function is well-defined, because the conditions (c|) for f; on
Ubn] C U”' and . for j/ < j <non U[ W guarantee that

J'in J'in

R (@) - f5(@) - Ky () = ko () - Ry () - fir () - by (2) - Kya(2)

= k(@) - [y (2) - Ky (2)

holds for all z € U3, ohn

Jgn:

e To apply Lemma . we need to know something about the values of f.

For arbitrary o € IN and relU Ejml, conditions (]ED, @, and (3.3) of Lemma
3.2.10] imply

(@) = Fng(2)  f5(2) - ju(2) = g (@) - (Bju(2) - Einj(2)) < f5(2) - Bju(2)
€ knj(x) - (W)™ - Wi kju(x) C W,

J

so that the values of f! are, altogether, contained in the unit neighbourhood
W of K. If we apply Lemma [3.3.1 to M = UE], to fl on A:=J. UE-]:]

J<n
and to the smaller set B := U]<n in ]v

fn: U[ IS W that satisfies both () and @

n

then we get a continuous function

This concludes the construction of the bundle equivalence. [



54 3. The gauge group as an infinite-dimensional Lie group

Theorem 3.3.6 (Smoothing continuous bundle equivalences). Let K be a
Lie group modelled on a locally convex space, M be a finite-dimensional para-
compact manifold (possibly with corners) and P and P’ be two smooth principal
K-bundles over M. If there exists a continuous bundle equivalence 2 : P — P',
then there exists a smooth bundle equivalence Q : P — P'.

Proof. Let (U;);es be an open cover of M that is locally trivial for both bundles
P and P’. Proposition |3.3.3| yields locally finite open covers (Uim)i oy of M for

every A € {0,00} U (1+ 3IN) such that the closures UE/\] are compact manifold
with corners and

[j+2/3]

)

F7loe]

)

C Ui[j+1/3] C U£j+1/3] C Ui[j} C Uz[O] C UEO] C U,

holds for all 4, j € IN, where U; denotes a suitable set of the cover (U;), e, for every
i € N. According to Remarks[B.1.7]and [B.1.12, we may then describe the smooth
bundles P and P’ by smooth transition functions k = (ki) jew and & = (ki; )i jew
on the open cover (U;);en, equivalently, by their restrictions to any open cover

7

alence ) can, as in Remark [B.1.9) be seen as a family f; : U; — K of continuous
maps for ¢ € IN that satisfy

(U 4[)‘])ie]N from above. In these local descriptions of the bundles, the bundle equiv-

fi(x) = k‘;z(x) - fi(z) - kij(x) for all i,j € N and = € Uj;. (3.9)
We shall inductively construct smooth maps ﬁ : UEO} — K such that
(a) f; =k i k;; pointwise on UZ[?] for all i < j in IN and
b) (Fi- )T cwe for all i,a € N

are satisfied at each step, where the W are ¢-convex unit neighbourhoods pro-

vided by Lemma|3.2.10|that we apply to the countable compact cover (UEO]) to

iEN?
the transition functions k;;, and to a convex centred chart ¢ : W — @(W) of K (we

do not need the W in this proof). These maps ﬁ describe a smooth bundle equiv-

1 7 . because @
asserts that f; = k7, - fi - ki; is satisfied on Ui[;o] for all 7+ < 7, in particular.

alence between P and P’ when restricted to the open cover (Ui[oo])

To construct the smooth function f; : U[IO] — K, we apply Proposition |3.2.8[ to

the continuous map f:= f; on M :=A:=U := U[lo] and to the open neighbour-
hood

0= () |Towe| -

aclN
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of fi, which is indeed open, since only finitely many U[lo,i are non-empty by Re-
mark [3.2.3. By construction, f; satisfies (]ED To construct the smooth function

f;- : Ujm — K inductively for j > 1, we need the usual three steps:

e In order to satisfy (]ED in the end, we define a continuous map

f; : UUZ_I] — K, f;’(az) = k() - fi(@) - kij(z) for z € UZ_H.
i<j
If z is an element of both Ug_l] and UBJ_ U for i < i < j, condition (&) for
J — 1 and the cocycle conditions of both k and &’ assert that the so-defined
values for fi(z) agree.

e This definition of fj’-, along with (3.9) and property (3.3) in Lemma |3.2.10
assert that

o) = Filw) - @)™ = Kilo) - Fla) - bgl) - £ ()
= Ko) - Fio) - filo) ™ () € W
EWe

k3

holds for all z € U; Ui

ijoo )

A=U, U[J Yand B = Uic; U; [] % to fade out ©; to a continuous map
7710l

(IDjonM.—Uj.

1 < j and « in IN. So we may apply Lemma |3.3.1| to

Then @, commdes with ¢; on B and maps Uﬂ into W2

e Accordingly, ®; - f; is an element of the open (due to Remark [3.2.3)) neigh-

bourhood
0;:= {Uﬁa, J f;

aclN

of f; and is smooth on UK] U[J 21 we apply Proposition [3.2.8| to
M .= A= UE»O], U:=M\U UJ 1/3] , Oj, and to f := @, - f;, then we ob-

tain a smooth map f] : U;O] — K.

1<J

The map fj satisfies @ because so does f’ with which it coincides on J,_ ;U3 oY,

Moreover, @ is satisfied due to the choice of O;. This concludes the constructlon n

In the remaining section, we explain the relations of the preceding theorems
to classical bundle theory, non-abelian Cech cohomology and to twisted K-theory.
The following lemma on smoothing homotopies will provide the tool we need when
smoothing principal bundles, which are given in terms of classifying maps.

Lemma 3.3.7. ([KM02], [Wo06, Corollary 12]) Let M be a manifold with cor-
ners and N be a locally convexr manifold. If f: M — N is continuous, then
there ezists a continuous map F :[0,1] x M — N such that F(0,2) = f(z) and
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F(,): M — N s smooth. Furthermore, if f,g: M — N are smooth and there
exists a continuous homotopy between f and g, then there exists a smooth homo-
topy between f and g.

Lemma 3.3.8. If K is a compact Lie group, then it has a smooth universal bun-
dle EK — BK with a smooth classifying space BK, which is in general infinite-
dimensional.

Proof. Let O, C GLi(R) denote the orthogonal group. If k is sufficiently large,
then we may identify K with a subgroup of Oy, and from [St51, Theorem 19.6] we
get the following formulae:

EK =1im O, /(On_k x idgs ),
BK =1im 0, /(01 x K).

Thus EK and BK are smooth manifolds by [GI05, Theorem 3.1] as a direct limit
of finite-dimensional manifolds. Since the action of K is smooth, it follows that
EK — BK is a smooth K-principal bundle. [

Proposition 3.3.9. If P is a continuous principal K-bundle over M, K is a
finite-dimensional Lie group and M 1is a finite-dimensional manifold with corners,
then there exists a smooth principal K-bundle which is continuously equivalent to
P. Moreover, two smooth principal K-bundles over M are smoothly equivalent if
and only if they are continuously equivalent.

Proof. Let C be a maximal compact subgroup of K. Since K/C' is contractible,
there exists a C-reduction of P, i.e., we may choose a locally trivial open cover
(U,)ier with transition functions k;; that take values in C. They define a continuous
principal C-bundle which is given by a classifying map f: M — BC.

By Lemma “ 7, f is homotopic to some smooth map f M — BC' which in
turn determines a smooth principal C-bundle P over M given by smooth transition
functions kw Furthermore, since f and f are homotopic, P and P are equivalent,
and we thus have a continuous bundle equivalence given by continuous mappings
fi : Uy — C. The claim follows if we regard k;;, k;; and f; as mappings into K.

Since smooth bundles yield smooth classifying maps and smooth homotopies
of classifying maps yield smooth bundle equivalences (all the constructions in the
topological setting depend only on partitions of unity which we can assume to be
smooth here), the second claim is also immediate. [

) We now reformulate Theorem [3.3.5] and Theorem [3.3.6] in terms of non-abelian
Cech cohomology.
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Remark 3.3.10. Let M be a paracompact topological space with an open cover
U = (U,)ier and A be an abelian topological group. Then for n > 0, an n-cochain
f is a collection of continuous functions f;, .., : U ..., — A, and we denote
the set of n-cochains by C"(U, A) and set it to {0} if n < 0. We then define the
boundary operator

n

Oy : Cm(u7A) - On—H(uaA)v a(f>ioi1~-in+1 - (_1)kfi i

0-erleafnt1”
k=0

where zAk means that we omit the index i,. Then 0,11 0 9, = 0, and we define

H™(U, A) := ker(9,)/im(d,_,) and H"(M,A) := liin H™(U,A). (3.10)

The group H Y(M, A) is the n-th continuous Cech cohomology. If, in addition,
M is a smooth manifold with or without corners and A is a Lie group, then
the same construction with smooth instead of continuous functions leads to the
corresponding n-th smooth Cech cohomology.

Remark 3.3.11. (cf. [Deb3, Section 12] and [GM99, 3.2.3]) If n = 0,1, then we
can perform a similar construction as in the previous remark in the case of a not
necessarily abelian group K. The definition of an n-cochain is the same as in the
commutative case, but we run into problems when writing down the boundary
operator 0. However, we may define 0y(f);; = fi - fj_l, O1(k)iji = kij - kji - ki and
call the elements of 9, ' ({e}) 2-cocycles (or cocycles, for short).

The way to circumvent difficulties for n = 1 is the observation that even in
the non-abelian case, C}(U, K) acts on cocycles by fi.ki; = fi - kij - f;l. Thus we
define two cocycles k;; and ki; to be equivalent if ki, = f; - ki; - fj_1 on U;; for some
fi € CYU, K), and by H!(U, K) the equivalence classes (or the orbit space) of this
action. Then H LU, K) is not a group, but we may nevertheless take the direct
limit

HY M, K) := lim HNU, K)

of sets and define it to be the 1°* (non-abelian) continuous Cech cohomology of M
with coefficients in K. By its construction, H!(M, K) can also be viewed as the
set of equivalence classes of continuous principal K-bundles over M (cf. Remark
B.1.9).

Again, if M is a smooth manifold with corners and K is a Lie group, we can

adopt this construction to define the 1°t (non-abelian) smooth Cech cohomology
H! (M, K). n

Theorem 3.3.12. If M 1is a finite-dimensional paracompact manifold with corners
and K s a Lie group modelled on a locally convex space, then the canonical map

v HY (M, K) — H}(M, K)

15 a bijection.
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Proof. We identify smooth and continuous principal bundles with Cech 1-cocycles
and smooth and continuous bundle equivalences with Cech 0-cochains as in
Remark B.1.9 For each open cover U of M, we have the canonical map
HYU,K) — H}U, K). Now each cocycle k;; : Ujj — K defines a principal K-
bundle P with locally trivial cover 4. We may assume by Theorem that
P is continuously equivalent to a smooth principal bundle P, and thus that U is
also a locally trivial covering for P. This shows that the map is surjective, and
the injectivity follows from Theorem in the same way. Accordingly, the map
induced on the direct limit is a bijection. |

As a special case, we now consider principal bundles, whose structure groups
is the projective unitary group of an infinite-dimensional Hilbert space H.

Remark 3.3.13. Let H be a separable infinite-dimensional Hilbert space and
denote by U(H) the group of unitary operators. If we equip U(H) with the
norm topology, then the exponential series, restricted to skew-self-adjoint opera-
tors L(U(H)), induces a Banach-Lie group structure on U(H) (cf. [Mi84, Ex. 1.1]).
Then U(1) 2 Z(U(H)) and it can also be shown that PU(H) := U(H)/U(1) is a
Lie group modelled on L(U(H)) /iR . n

Remark 3.3.14. If X is a topological space with non-trivial n-th homotopy group
(X)) for all but one n € N, then it is called an Filenberg-MacLane space
K(n,m,(X)). Since U(1) is a K(1,7Z), the long exact homotopy sequence [Br93,
Theorem VII.6.7] shows that PU(H) is a K (2, Z), since U(H) is contractible [Ku65,
Theorem 3]. By the same argument, the classifying space B PU(H) is a K(3,Z),
since its total space E PU(H) is contractible (cf. Corollary [B.2.7). Thus

H3*(M,Z) = [M, B PU(H)] = H(M,PU(H))

by [Br93, Corollary VII.13.16]. The representing class [P] in H*(M, Z) is called the
Dizmier—Douady class of P (cf. [CCMO8], [DD63]). It describes the obstruction of
P to be the projectivisation of an (automatically trivial) principal U(H)-bundle.m

Corollary 3.3.15. If M is a paracompact manifold with corners, then
H*(M,Z) = H;(M,PU(H)) = H;(M,PU(H)). .

Bundles with PU(H) as structure group have an interesting application, be-
cause they are the key-ingredient for twisted K-theory.

Example 3.3.16 (Twisted K-theory). (cf. [Ro89, Secttion 2], [BCMT02]) The
Dixmier-Douady class of a principal PU(H)-bundle over M induces a twisting of
the K-theory of M in the following manner. For any paracompact space, the K-
theory K°(M) is defined to be the Grothendieck group of the monoid of equivalence
classes of finite-dimensional complex vector bundles over X, where addition and
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multiplication is defined by taking direct sums and tensor products of vector bun-
dles [Hu94]. Furthermore, the space of Fredholm operators Fred(H) is a represent-
ing space for K-theory, i.e., KY(M) = [M, Fred(H)], where [-, -] denotes homotopy
classes of continuous maps. Since PU(H) acts (continuously) on Fred(H) by con-
jugation, we can form the associated vector bundle Ppreqcr) := Fred(H) xpup P.
Then the homotopy classes of sections [M, Prea(r)] (or equivalently, the equiv-
ariant homotopy classes of equivariant maps [Ppyea(r), Fred(H)]PUV")) define the
twisted K -theory Kp(M). Now Theorem implies that we may assume P to
be smooth. Since the action of PU(H) on Fred(H) is locally given by conjugation,
it is smooth, whence is Prreq(). Due to Lemma|3.3.7, we may, in the computation
of Kp(M), restrict our attention to smooth sections and smooth homotopies. =

3.4 The automorphism group as an infinite-
dimensional Lie group

In this section we describe the Lie group structure on Aut(P) for a principal
K-bundle over a compact manifold M without boundary, i.e., a closed compact
manifold. We will do this using the extension of abstract groups

Gau(P) — Aut(P) ——» Diff(M)p, (3.11)

where Diff(M)p is the image of the homomorphism @ : Aut(P) — Diff(M),
F — Fy from Definition [3.1.I] We will use this extension of abstract groups
to construct a Lie group structure on Aut(P), being induced from the Lie
group structures on Gau(P) from Section and the classical one on Diff (M)
(cf. [Le67], [Mi80], [KM97, Theorem 43.1] and [GI06]). More precisely, we will
construct a Lie group structure on Aut(P) that turns into an extension of
Lie groups, i.e., into a locally trivial bundle.

We shall consider bundles over bases without boundary, i.e., our base manifolds
will always be closed compact manifolds. Throughout this section we fix one
particular given principal K-bundle P over a closed compact manifold M and we
furthermore assume that P has the property SUB.

We first clarify what we are aiming for.

Definition 3.4.1 (Extension of Lie groups). If N, G and G are Lie groups,
then an extension of groups

N—G-=>G

is called an extension of Lie groups if N is a split Lie subgroup of G That means
that (NV,q: G — () is a smooth principal N-bundle, where ¢ : G— G G/N
is the induced quotient map. We call two extensions N — G1 — G and
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N — @2 —» G equivalent if there exists a morphism of Lie groups 9 : @1 — @2
such that the diagram

N—>@1%G

ol

N—>G\2—>G

commutes. -

These extensions are treated in detail in [NeO6a], where it is shown that they are
parametrised by smooth local data arising from smooth local sections s : O — G
of ¢, where O C GG is an open unit neighbourhood. We will not use the whole
framework from [NeO6a] rather than using the idea that we need to construct a
section of () on some unit neighbourhood of Diff (M) that has certain smoothness
properties.

Throughout this section we have to work with trivialising systems that have
some nice properties in order to make the constructions work. This we collect in
the following remark.

Remark 3.4.2. Unless stated otherwise, for the rest of this section we choose and
fix one particular smooth closed trivialising system V = (V;,0;)i=1,.» of P such
that

e cach V; is a compact manifold with corners diffeomorphic to [0, 1]4m(*),
e V is a refinement of some smooth open trivialising system U = (Ui Ti)i=1,...m
and we have V; C U; and o; = Tz‘|Vi7

e cach U, is a compact manifold with corners diffeomorphic to [0, 1]4mm(3) and
7; extends to a smooth section 7; : U; — P,

o U= (Ui, T;)i=1,..n is & refinement of some smooth open trivialising system

U = (U{7 Tj)j:l,...,ma

e the values of the transition functions k;; : U; N U; — K of U' are contained in

open subsets W;; of K, which are diffeomorphic to open zero neighbourhoods
of &,

e P has the property SUB with respect to V (and thus with respect to U by

Lemma [3.1.12)).

We choose V by starting with an arbitrary smooth closed trivialising system
such that P has the property SUB with respect to this system. Note that this exists
because we assume throughout this section that P has the property SUB. Then
Lemma implies that there exists a refinement U’ = (U}, 7;);=1,...m such that
the transition functions k;; : U; NU; — K take values in open subsets W;; of K,
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which are diffeomorphic to open convex zero neighbourhoods of €. Now each x € M
has neighbourhoods V, and U, such that V, C U,, V, and U, are diffeomorphic
to [0,1]4mAD and U, C Uy, for some j(z) € {1,...,m}. Then finitely many
Vars-oo, Vi, cover M and so do Uy, ..., U,,. Furthermore, the sections 7; restrict
to smooth sections on V;, V;, U; and U,.

This choice of U in turn implies that kij|UmUj arises as the restriction of
some smooth function on M. In fact, if ¢;; : W;; — VVZ’] C ¢ is a diffeomorphism
onto a convex zero neighbourhood and f;; € C*°(M, R) is a smooth function with
fij’UimUj = 1 and supp(fi;) € U; N Uj, then

s Spi_ji(fij(m) - i (kij(m))) %f m € U NU;
vi; (0) it m¢ U NU

is a smooth function, because each m € 9(U; N U;) has a neighbourhood on which
fi; vanishes, and this function coincides with k;; on U, N Uj.

Similarly, let (y1,...,) € Gz(P) C [11., C=(U;, K) be the local description
of some v € C*(P, K)*. We will show that each vy, arises as the restriction

of a smooth map on M. In fact, take a diffeomorphism ; : U; — [0, 1]dm(),
Then V; C U; implies ¢;(V;) C (0, 1)4mM) and thus there exits an & > 0 such
that o;(V;) C (g,1 — )3 for all 4 = 1,...,n. Now let

£ [0, 18NN (2,1 — g)dmn) o] gJdim()

be a map that restricts to the identity on d[e, 1 — £]4mM) and collapses 9[0, 1]4m ()
to a single point xy. We then set

i(m) if m € Uy, gi(m) € [e, 1 — g]im@D
Vi M — K me ¢ vl (fei(m) it me Ui, pi(m) ¢ (g,1 —)m00
(7 (o)) if m ¢ U;,

and ~/ is well-defined and continuous, because f(p;(m)) = @;(m) if
wi(m) € 0le,1 — ]¥™M) and  f(p;(m)) = zo if @;(m) € 9]0,1]4™*)  Since
7! coincides with ; on the neighbourhood ¢; *((g,1 — ¢)¥™)) it thus is smooth
on this neighbourhood. Now Proposition , applied to the closed set V; and
the open set M\V; yields a smooth map 7; on M with Yily, = Jily,- n

We now give the description of a strategy for lifting special diffeomorphisms to
bundle automorphisms. This should motivate the procedure of this section.

Remark 3.4.3. Let U C M be open and trivialising with section o : U — P and
corresponding k, : 71 (U) — K, given by o(n(p)) - ks(p) = p. If g € Diff (M) is
such that supp(g) C U, then we may define a smooth bundle automorphism g by

d(p) = { ;(9 (m(p))) - k(p) eilfsf,EW_l(U)
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because each & € U has a neighbourhood on which g is the identity. Furthermore,
one easily verifies Q(g) = gy = g and g~ = g1, where Q : Aut(P) — Diff (M) is
the homomorphism from Definition [B.1.4] n

The procedure is now as follows. For a suitable identity neighbourhood
O C Diff(M) we decompose g € O into gy, ..., g, such that supp(g;) C V;. Each
g; can be lifted by the preceding remark to g; € Aut(P) and then g, o...0g; will
be the lift of g to Aut(P). In order to perform the mentioned decomposition, we
need to know some basics on the charts, turning Diff (M) into a Fréchet—Lie group
modelled on the space of vector fields V(M).

Remark 3.4.4 (Charts for Diffeomorphism Groups). Let M be a closed
compact manifold with a fixed Riemannian metric ¢ and let 7:TM — M
be its tangent bundle and Exp:TM — M be the exponential mapping of g.
Then 7 x Exp: TM — M x M, X,, — (m,Exp(X,,)) restricts to a diffeomor-
phism on an open neighbourhood U of the zero section in T'M. We set
O ={X e V(M) : X(M)CU} and define

p 0 = CF(M M), ¢ H(X)(m) = Exp(X(m))

For the following, observe that ¢~1(X)(m) = m if and only if X (m) = 0,,. After
shrinking O’ to a convex open neighbourhood in the C'-topology, one can also
ensure that o~!(X) € Diff (M) for all X € O'. Since m x Exp is bijective on U, ¢!
maps O’ bijectively to O := ¢~}(O’) C Diff(M) and thus endows O with a smooth
manifold structure. Furthermore, it can be shown that in view of Proposition
this chart actually defines a Lie group structure on Diff(M) (cf. [Le67],
[KM97, Theorem 43.1] or |GI06]). It is even possible to put Lie group structures
on Diff (M) in the case of non-compact manifolds, possibly with corners [Mi80,
Theorem 11.11], but we will not go into this generality here. [

Lemma 3.4.5. For the open cover Vi,...,V, of the closed compact manifold M
and the open identity neighbourhood O C Diff (M) from Remark there exist
smooth maps

5,:0—-0007" (3.12)
for 1 <i <mn such that supp(s;(g)) C V; and s,(g)o...0s1(9) =g.
Proof. (cf. [HT04, Proposition 1]) Let fi,..., f, be a partition of unity subordi-
nated to the open cover Vi,...,V, and let p : O — ¢(O) C V(M) be the chart of

Diff (M) form Remark [3.4.4 In particular, o= '(X)(m) = m if X(m) = 0,,. Since
©(0) is convex, we may define s; : O — Qo O™,

silg) =0 ((fat o+ 1) 0(@)) 0 (¢ ((fat - + fiar) - 0(9)) "

if i <n and s,(9) = ¢ '(fn - ©(g)), which are smooth since they are given by a
push-forward of the smooth map R x TM — TM (A, X,,) — A+ X,,. Further-
more, if f;(x) = 0, then the left and the right factor annihilate each other and thus

supp(si(g)) € Vi m
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As mentioned above, the preceding lemma enables us now to lift elements of
O C Diff(M) to elements of Aut(P).

Definition 3.4.6. If O C Diff(M) is the open identity neighbourhood from Re-
mark and s;: O — OoO~! are the smooth mappings from Lemma [3.4.5]
then we define

S:0— Awt(P), g~ S(g9) :=gno...001, (3.13)

where g; is the bundle automorphism of P from Remark [3.4.3] This defines a local
section for the homomorphism @ : Aut(P) — Diff (M), F +— F) from Definition
B.11 n

We shall frequently need an explicit description of S(g) in terms of local trivi-
alisations, i.e., how S(g)(o;(x)) can be expressed in terms of g;, o; and k;;.

Remark 3.4.7. Let z € V; C M be such that z ¢ V; for j <i and g;(z) ¢V
for j > 4. Then g;(x) =« for all j <1, g;(gi(x)) = gi(x) for all j > ¢ and thus

S(g)(oi(x)) = 0i(gi(x)) = oi(g(x)).
In general, things are more complicated. The first g, in (3.13) that could move
oi(x) is the one for the minimal j; such that x € V;,. We then have

gi(0i(z)) = gj, (04, (7)) - kjyi(z) = 0, (g5, () - kjyi(T).

The next gj, in (3.13) that could move gj, (0;(z)) in turn is the one for the minimal
J2 > j1 such that g;, () € V,,, and we then have

95295, (0i(x))) = 05, (95, © g, () - Kjoji (952 (2)) - Kjui ().
We eventually get
S(9)(oi(x)) = 05,(9()) - Kjejo_r (Gier © -0 9ju (@) - - Kjui), (3.14)
where {j1,...,J¢} € {1,...,n} is maximal such that

Gj,_ 000, (x) €U;,NU;,_, for 2<p <L and j; <... < jp.

p—1
Note that we cannot write down such a formula using all j € {1,...,n}, because
the corresponding k;;» and o; would not be defined properly.
Of course, g and x influence the choice of 71, ..., j¢, but there exist open neigh-

bourhoods O, of g and U, of x such that we may use (3.14) as a formula for
all ¢ € Oy and 2/ € U,. In fact, the action Diff(M) x M — M, g.m = g(m) is
smooth (|GI06, Proposition 7.2]), and thus in particular continuous. If

gj,0...0g;,(x) & V; for 2<p </l and j ¢ {ji,...,jp} (3.15)
gj,0...0g;(x)€U;,NU; _, for 2<p<{ and j; <...<jp (3.16)
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then this is also true for ¢’ and 2’ in some open neighbourhood of g and x. This
yields finitely many open open neighbourhoods of ¢ and x and we define their

intersections to be O, and U,. Then (3.14)) still holds for ¢ € O, and 2’ € U,, be-
cause (3.15) implies g;(g;, 0...0g;(x)) = gj, ©...0g; () and (3.16) implies that

kj,;,_, is defined and satisfies the cocycle condition. n

In order to determine a Lie group structure on Aut(P), the map
S : O — Aut(P) has to satisfy certain smoothness properties. To motivate this,
assume that Aut(P) already has a smooth structure and that S : O — Aut(P) is
smooth. Then the two maps

T : Gau(P) x O — Aut(P), (F,g)+— S(g)oFoS(g)™*
w:0 x 0 — Aut(P), (9.9") — S(g)oS(g") o S(gog)™"

are also smooth. Moreover, for each g € Diff(M)p, there exists an open identity
neighbourhood O, C O such that goOy0¢™* C O and that

wy: Oy — Aut(P), g’ FoS(¢)oF " oS(gogog )™

is smooth for any F' € Aut(P) with Fyy = g.

Now T, w and w, actually take values in Gau(P) = ker(Q), because
Q : Aut(P) — Diff(M)p is a homomorphism and QoS =idp. It thus makes
sense to require these maps to be smooth, even if we do not jet have a smooth
structure on Aut(P). However, we will see later that requiring these maps to
be smooth determines a smooth structure on Aut(P). More generally speaking,
(T, w) is (the restriction of) a smooth factor system or locally smooth 2-cocycle
for (Gau(P),Diff(M)p) in the sense of [NeO6a]. These smooth factor systems
parametrise the set of non-abelian extensions of Diff(M)p by Gau(P) [NeO6al,
Proposition IL.8].

Since we can access the smooth structure on Gau(P) only via the isomorphism
Gau(P) = C®(P, K)X we first relate the conjugation action of Aut(P) on Gau(P)
to the corresponding action of Aut(P) on C*(P, K)X.

Remark 3.4.8. If we identify the normal subgroup Gau(P) < Aut(P) with
(P, K)X via
C>(P,K)¥ — Gau(P), ~+— F,

with F,(p) = p-7(p), then the conjugation action Aut(P) x Gau(P) — Gau(P),
given by (F, F,) — F o F, o F~! changes into

c: Aut(P) x C®(P,K)* — C®(P,K)*, (F,7)+ yoF '
In fact, this follows from

(FoF, o F-Y)(p)=F(F'(p) - v(F'(p)) =p-v(F ' (p)) = Fror-1(p). m
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In the following remarks and lemmas we show the smoothness of the maps T,
w and w,, mentioned before.

Lemma 3.4.9. Let O C Diff(M) be the open identity neighbourhood from Remark

and S : O — Aut(P) be the map from Definition[3.4.6. For each F' € Aut(P)
the map C®(P, &)X — C=(P, )%, n+sno F~! is an automorphism of C*>°(P, €)X
and the map

t:C(PB" x 0 —C™(PeY, (n,g9)—noS(g)™"
18 smooth.

Proof. That n+ no FF~! is an element of Aut(C>(P,t)X) follows immediately
from the (pointwise) definition of the bracket on C*°(P, €)X and Lemma We
shall use the isomorphism C*°(P, €)% 2 g,/(P) = gy (P) = gy(P) from Proposition
B.1.4] and reduce the smoothness of ¢ to the smoothness of

C®(M,t) x Diff (M) — C>*(M,¥), (n,9) —nog™

from Lemma [2.2.25) and to the action of g; ' on C*°(V/;, £), because we have no
description of what g; ' does with U, for j #i. It clearly suffices to show that the
map

ti : C%(P,)" x Diff (M) — C*(P,&)" x Diff(M), (1,9) =~ (g, 9)

is smooth for each 1 < i < n, because then ¢t = pryot,0...0t; is smooth. This in
turn follows from the smoothness of

C=(U}, ®) x Diff(M) — C=(U;,8), (n,9) —nog; |, (3.17)

because this is the local description of ¢;. In fact, for each j # i there exists an
open subset V; with U;\U; C V] C U;\V;, because V; C U; and Uj is diffeomorphic
to (0, )4 Furthermore, we set V/ := U;. Then (V/,...,V!) is an open cover
of M, leading to a refinement V' of the trivialising system U’ and we have

t; gu/(P> X O — gV'(P)7 ((nlvvnn)ug) = (771’\/1’7"'7771'09;1 ‘/;/7"'777n|VT’L)

because supp(g;) € Vi and V/NV; =0 if j # 4. To show that (3.17) is smooth,
choose some f; € C*(M,R) with f;[;, =1 and supp(f;) C U;. Then

i C=(UL,8) = C=(M. ), 1 <m - { Jilm) -m) - ifm € U )

if m ¢ Ul

is smooth by Corollary [2.2.10, because 7 +— fi[,, - 1 is linear, continuous and thus

smooth. Now we have supp(g;) C V; C U; and thus h;(n) og[1|U‘ = nog[1|U‘ de-
pends smoothly on g and n by Corollary [2.2.8] [
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The following proofs share a common idea. We will always have to show that
certain mappings with values in C*°(P, K)¥ are smooth. This can be established
by showing that their compositions with the pull-back (o;)* of a section ¢; : V; — P
(then with values in C*°(V;, K)) are smooth for all 1 <i < n.

As described in Remark it will not be possible to write down explicit
formulas for these mappings in terms of the transition functions k;; for all x € V;
simultaneously, but we will be able to do so on some open neighbourhood U, of x.
For different z; and x5 these formulas will define the same mapping on U,, N U,,,
because there they define (¢7(S5(g))) = S(g) 0 0;. By restriction and gluing we will
thus be able to reconstruct the original mappings and then see that they depend
smoothly on their arguments.

Lemma 3.4.10. If O C Diff(M) is the open identity neighbourhood from Re-

mark and S : O — Aut(P) is the map from Definition then for each
v € C®(P,K)X the map

O3g+—y0S8(9)~' € C=(P,K)*
18 smooth.

Proof. It suffices to show that vyoS(g)~to oilyz, depends smoothly on g for
1<i<n. Let (71,...,7) € Gu(P) C [, C=(U;, K) be the local description
of 4. Fix ¢ € O and z € V;. Then Remark yields open neighbourhoods O,
of g and U, of x (w.lo.g. such that U, C V; is a manifold with corners) such that

V(89" Hoi(a)) = v(05,(9' () “Kjijo-s (g, 0 -0 g5, () - Kja(a))

(& J/

TV
=k, g (T)

= g (&) A(00 (1) R (o) = i (&)

20 (&) - o ()

=0, o (2)

for all ¢’ € O, and 2’ € U,. Since we will not vary i and g in the sequel, we
suppressed the dependence of k, (') and 0, ,(2’) on i and g. Note that each k;;
and 7; can be assumed to be defined on M (cf. Remark . Thus, for fixed =z,
the formula for 0, ;» defines a smooth function on M that depends smoothly on ¢/,
because the action of Diff (M) on C*(M, K) is smooth (cf. Proposition [2.2.27).

Furthermore, 6,, , and 6,, , coincide on U,, NU,,, because there they both
define yoS(¢')"'oo;. Now finitely many U,,,...,U,, cover V;, and since the
gluing and restriction maps from Lemma[2.2.20|and Proposition [2.2.21] are smooth
we have that

’y O S(g,)—l o0; = glue(0x17gl|ﬁzl goee ey 0$m7g/|vzm)

depends smoothly on ¢'. m
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The following two lemmas provide a smooth factor system (7,w) for
(Gau(P), Diff (M)p).

Lemma 3.4.11. Let O C Diff(M) be the open identity neighbourhood from Re-
mark and S : O — Aut(P) be the map from Definition . For each
F € Aut(P) the map cp : C=(P, K)* — C®(P, K)X, v +— vyo F~! is an automor-
phism of C*(P, K)X and the map

T:C%(P,K)¥ x O — C®(P,K)¥, (v,9)—~0S(g)~" (3.18)
18 smooth.

Proof. Since v+ vyo F~! is a group homomorphism, it suffices to show that
it is smooth on a unit neighbourhood (Lemma [A.3.3). Because the charts on
C>=(P, K)X are constructed by push-forwards (cf. Proposition this follows
immediately from the fact that the corresponding automorphism of C*°(P, €)X,
given by n — no F~! is continuous and thus smooth. For the same reason, Lemma
[3.4.9) implies that there exists a unit neighbourhood U C C*(P, K)¥ such that

UXO—)COO(P7K)K7 (779)H708(g>_1

is smooth.
Now for each 7y € C*°(P, K)* there exists an open neighbourhood U, such
that 7, ' - U,, € U. Hence

Yo S5(g) = (%" oS = (oS (') oS,

and the first factor depends smoothly on g due to Lemma [3.4.10, and the second
factor depends smoothly on v and g, because v, ' -y € U. [

Lemma 3.4.12. If O C Diff(M) is the open identity neighbourhood from Remark
and S : O — Aut(P) is the map from Definition[3.4.6, then

w:0x0—C®PK)", (9,9)—5(9)0oS(g)eS(gog) (3.19)

is smooth. Furthermore, if Q) : Aut(P) — Diff (M), F' — Fy is the homomorphism
from Definition then for each g € Q(Diff(M)) there exists an open identity
neighbourhood O, C O such that

wy: 0 = C*(P,K)*, ¢ — FoS(g)oF 'oS(gogog™ )™ (3.20)
is smooth for any F € Aut(P) with Fyy = g.

Proof. First observe that w(g,¢’) actually is an element of
C>®(P, K)%¥ =~ Gau(P) = ker(Q), because @ is a homomorphism of groups,
S is a section of () and thus

Qw(g,9") = Q(S(9) 0 Q(S(g) 0 Q(S(gog)) ™! =idy .
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To show that w is smooth, we derive an explicit formula for
w(g,g)oo; € C*(V;, K) that depends smoothly on g and ¢'.

Denote §:=gog for g,¢' € O and fix g,¢' € O, x € V;. Proceeding as in
Remark [3.4.7, we find 4y, ..., i, such that

S@) M oi, () = 06§ @)+ Kigip 1 (@) H 0w 0 (@) (@) - Kaal).

Accordingly we find i), ..., for S(¢') and iy.,...,i] for S(g). We get as in
Remark open neighbourhoods O, Oy of ¢, ¢" and U, of x (w.l.o.g. such that
U, C V, is a manifold with corners) such that for h € Oy, h € Oy and 2’ € U, we
have S(h) - S(R') - S(h-hW)" (o)) =

o

.kji// -1/ (hiz//—l O...0 h,Llll (o] h_l(q;/)) C .. kl,llzlp/ (h_l(l’,))

or1er _q

e o (h;'eul o...0 h;,l o h_l(x/)) c 'ki/lig (h_l(l'/))

Lorter 1

Fivie s ((hig )00 (i) @) - b))

oi(a’) - [k (')

Denote by kqpnp(2') € K the element in brackets on the right hand side, and note
that it defines w(h, k') o 0;(2') by Remark [3.1.2] Since we will not vary g and ¢’ in
the sequel we suppressed the dependence of k, 5 /(2') on them.

Now each k;; can be assumed to be defined on M (cf. Remark . Thus,
for fixed z, the formula for ;5 defines a smooth function on M that depends
smoothly on h and A', because the action of Diff(M) on C*°(M, K) is smooth
(cf. Proposition . Furthermore, kg, 5 5 coincides with kg, 5 on le N UIQ,
because

oi(2") - Koy e (2') = S(h) 0 S(W) 0 S(ho h') " oy(a")) = 04(a”) - Ky e (2)
for 2’ € le N Um. Now finitely many U,,, ..., U,, cover V; and we thus see that
w(h, h/) o0g; = glue(/irhh,mml sy me,h,h/|Uzm)

depends smoothly on h and A/'.

To show the smoothness of w,, we derive an explicit formula for
wy(g) oo, € C*(V;,K). Let O, C O be an open identity neighbourhood such
that go 0,097t C O and denote ¢ = gog'og™! for ¢’ € O,. Fix ¢’ and z € V.
Proceeding as in Remark we find jy, ..., 1 such that

— —1

S(g) M oi(@) = 0, (7 (@) Ko (@) o0 (F5) 7 @) - k().

Furthermore, let 71 be minimal such that

(Fiit o S@i) (@) = g™ og ™ () € Vy
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and let U, be an open neighbourhood of z (w.l.0.g. such that U, C V, is a manifold
with corners) such that ¢’ ' (U,) C Vj, and g~ o g’ *(U,) C Vj;. Since Fiy = g and

F o5 (@) € o309~ 09 (")) for o € U
we have
F~Y(o5,(g" (1)) = 0 (97 0 g "1 (2")) - kg (') for o’ € U,
for some smooth function kpg, 4 : U, — K. In fact, we have
krag () = ko, (F~(0,(9" (2)))).
After possibly shrinking U,, a construction as in Remark shows

that kgj, oFfloaje‘i extends to a smooth function on M. Thus
1 U

—1

kregly, € C (U,, K) depends smoothly on ¢’ for fixed .
Accordingly, we find js, ..., ji and a smooth function k.,
bly after shrinking U, ), depending smoothly on g such that

wy(9)(0i(2)) = 01(x) - [k g () - hijrzy, (9(2)) - Ky (9 097 (@) kpag (@)
Koy (9 (@) - ()] (3.21)

Denote the element in brackets on the right hand side by x,,. Since we
will not vary F' and g in the sequel, we suppressed the dependence of x, , on
them. By continuity (cf. Remark, we find open neighbourhoods Oy and
Ul of ¢ and = (w.l.o.g. such that U’, C V; is a manifold with corners) such that
defines w,(h')(o;(2")) for all b’ € Oy and 2’ € U,. Then ky,, g = Kgzy e O
le N Uwz, finitely many U,,, ..., U,, cover V; and since the gluing and restriction
maps from Lemma [2.2.20| and Proposition [2.2.21] are smooth,

: U, — K (possi-

wg(g/) c0; = glue("irlvgl|ﬁz1 yrro K/xm,g’|Uz,m)
shows that w,(g’) o o; depends smoothly on ¢'. [

We thus have established the smoothness of the mappings 7', w and w,. As
mentioned before, this will determine the smooth structure on Aut(P). We first
give an description of the image of Diff (M )p := Q(Aut(P)) in terms of P, without
referring to Aut(P).

Remark 3.4.13. Let @ : Aut(P) — Diff(M), F — Fy be the homomorphism
from Definition 3.1.1] If g € Diff(M)p, then there exists an F € Aut(P) that
covers g. Hence the commutative diagram

F-1

g(P) == P —— P

g*(m)
-1
M 2o M -2 M
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shows that g*(P) is equivalent to P. On the other hand, if P ~ ¢*(P), then the
commutative diagram
P " gP) L> P

Trl g (W)l ™ l

M— M M
shows that there is an F' € Aut(P) covering g. Thus Diff(M)p consists of those
diffeomorphisms preserving the equivalence class of P under pull-backs. This shows
also that Diff(M)p is open because homotopic maps yield equivalent bundles. It
thus is contained in Diff (M ),.

Note, that it is not possible to say what Diff(M)p is in general, even in the
case of bundles over M = $'. In fact, we then have m(Diff ($!)) & Zy (cf. [Mi84]),
and the component of Diff($!), which does not contain the identity, are precisely
the orientation reversing diffeomorphisms on S'. It follows from the description of
the representing elements for bundles over $!' in Remark that pulling back
the bundle along a orientation reversing diffeomorphism inverts the representing
element in K. Thus we have g*(Py) = Py-1 for g ¢ Diff(S')g. If mo(K) = Zy, then
Pj-1 and Py, are equivalent because [k] = [k™!] in mo(K) and thus g € Diff($!)p,
and Diff($')p, = Diff($'). If 7o(K) = Zs, then Pj and Py-1 are not equivalent
because [k] # [k7!] in mo(K) and thus g ¢ Diff($')p, and Diff ($!)p, = Diff(S').m

Theorem 3.4.14 (Aut(P) as an extension of Diff(M)p by Gau(P)). Let
P be a smooth principal K-bundle over the closed compact manifold M. If P has
the property SUB, then Aut(P) carries a Lie group structure such that we have
an extension of smooth Lie groups

Gau(P) — Aut(P) ——» Diff(M)p,

where Q : Aut(P) — Diff (M) is the homomorphism from Definition and
Diff (M)p is the open subgroup of Diff (M) preserving the equivalence class of P
under pull-backs.

Proof. We identify Gau(P) with C*(P, K)¥ and extend S to a (possibly non-
continuous) section S : Diff(M)p — Aut(P) of Q). Now the preceding lemmas
show that (7', w) is a smooth factor system [NeQ6a, Proposition I1.8], which yields
the assertion. However, we give an explicit description of the smooth structure
by applying Proposition [A.1.6] for which we have to check the assumptions. We
introduce a smooth manifold structure on W = C*(P, K)X - S(O) by defining

W = C®(P,K)X x0, Fw (F-S(Fy)™", Fu)

to be a diffeomorphism. Let O' C O be a symmetric open identity neighbourhood
such that O"- O’ C O and for each g € Diff(M) denote by O, the open identity
neighbourhood from (3.20]). Then multiplication in terms of ¢ is given by

(C*(P,K)*x0) 3 ((7,9), V) = ¢(¢ (1. 9)¢ (¥, d)) € C=(P,K)* xO,
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inversion in terms of ¢ is given by
CX(P,K)* x 03 (v,9) = ¢le ™ (1,9)7") € C¥(P,K)* x O
and conjugation with F' € Aut(P) is given by
C=(P,K)* x Oqury) 3 (7,9) = @(F - ¢ (v,9) - F7') € C*(P,K)" x O.

Now the smoothness of these maps follows with ¢~ '(v,g9) = F,0S(g) and

Q(S(g9)) = ¢ from Lemma [3.4.9, Lemma [3.4.12] and

(e 9) ¢ (7. 9)
=p(F,08(g)o FyoS(d))
:(F'Y oS(g) o Fy oS(g/) oS(gog/)_l,gog’)
=(Fy0S5(g)oFy08(g) 0S(g)05(g)0S(gog) " g0
~T(v.9) —u(3.9')
90(90‘1(%9)‘1)
(S(9)™" 105( N7heh)
(S(g)toS(g™) " oS(g)oF,108(g7) " g7")
=w(g~ 179)*1 =T(yv 1971
(Fogp‘l( )oF_l)
(Fop ™' (v,9) 0o F ' oS(FyogoFy)™ ' FyogoFy')
(FoF oF oFoS(g)oF—loS(FMogoFJ)—i,FMogoFﬂgl)

/ O\

cr() wry (9)

Since we have a smooth section S : O — Aut(P), the quotient map
q : Aut(P) — Aut(P)/C®(P, K)* = Diff(M)p

defines the bundle projection of a smooth principal C*°(P, K)X-bundle. n

Proposition 3.4.15. In the setting of the previous theorem, the natural action
Aut(P) x P — P, (F.p)— F(p)
s smooth.

Proof. First we note the Gau(P) = C>®(P,K)¥ acts smoothly on P by
(v,p) — p-v(p). Let O C Diff (M) be the open neighbourhood from Remark 3.4.4]
and S: O — Aut(P), g+ g,o0...0g; be the map from Definition [3.4.6, Then
Gau(P) o S(0O) is an open neighbourhood in Aut(P) and it suffices to show that
the restriction of the action to this neighbourhood is smooth due to Lemma
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Since Gau(P) acts smoothly on P, this in turn follows from the smoothness of the
map
R:0xP =P (9,p) = S(9)p) = gno...oq1(p).

In order to check the smoothness of R it suffices to check that r; : O x P — P x O,
(9.p) — (gi(p), g) is smooth, because then R = pr,or,o...or; is smooth. Now
the explicit formula

G () = { ;“g“(”(p))) ) ii 5 ZE%
shows that r; is smooth on (O x 7= 1(U;)) U (O x 7= 1(V;)¢) = O x P. ]

Remark 3.4.16. Of course, the Lie group structure on Aut(P) from Theorem
[3.4.14)depends on the choice of S and thus on the choice of the chart ¢ : O — V(M)
from Remark [3.4.4] the choice of the trivialising system from Remark and
the choice of the partition of unity chosen in the proof of Lemma |3.4.5|

However, different choices lead to isomorphic Lie group structures on Aut(P)
and, moreover to equivalent extensions. To show this we show that idayup) is
smooth when choosing two different trivialising systems V = (Vi,al-)izl

/

V = (Vj,Tj)jzl m-

.....

.....

Denote by S : O — Aut(P) and S': O — Aut(P) the corresponding sections
of ). Since
Gau(P) o S(0) = Q 1(0) = Gau(P) o S'(0O)

is an open unit neighbourhood and idap) is an isomorphism of abstract groups,
it suffices to show that the restriction of idaup) to Q(O) is smooth. Now the
smooth structure on Q~(O) induced from S and S’ is given by requiring

Q YO) 3F  (FoS(Fy)™, Fuy) € Gau(P) x Diff (M)
Q YO) 3F + (FoS'(Fy) ™, Fy) € Gau(P) x Diff (M)
to be diffeomorphisms and we thus have to show that

O3>gr S(g)oS(9)" € Gau(P)

is smooth. By deriving explicit formulae for S(g)o.S’(g)~"(oi(x)) on a neighbour-
hood U, of z € V;, and Oy of g € O this follows exactly as in Lemma [3.4.12, =

Remark 3.4.17. A Lie group structure on Aut(P) has been considered in
[ACMMS9] in the convenient setting, and the interest in Aut(P) as a symme-
try group coupling the gauge symmetry of Yang-Mills theories and the Diff (M)-
invariance of general relativity is emphasised. Moreover, it is also shown that
Gau(P) is a split Lie subgroup of Aut(P), that

Gau(P) — Aut(P) — Diff(M)p
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is an exact sequence of Lie groups and that the action Aut(P) x P — P is smooth.
However, the Lie group structure is constructed out of quite general arguments
allowing to give the space Hom(P,P) of bundle morphisms a smooth structure
and then to consider Aut(P) as an open subset of Hom(P, P).

The approach taken in this section is somehow different, since the Lie group
structure on Aut(P) is constructed by foot and the construction provides explicit
charts given by charts of Gau(P) and Diff(M). "

Remark 3.4.18. The approach to the Lie group structure in this section used
detailed knowledge on the chart ¢ : O — V(M) of the Lie group Diff(M) from
Remark [3.4.4 'We used this when decomposing a diffeomorphism into a product
of diffeomorphisms with support in some trivialising subset of M. The fact that we
needed was that for a diffeomorphism g € O we have g(m) = m if the vector field
©(g) vanishes in m. This should also be true for the charts on Diff (M) for compact
manifolds with corners and thus the procedure of this section should carry over to
bundles over manifolds with corners. ]

Remark 3.4.19. In some special cases, the extension
Gau(P) — Aut(P) — Diff(M)p from Theorem splits. This is the case
for trivial bundles and for bundles with abelian structure group K, but also for
frame bundles, since we then have a natural homomorphism Diff (M) — Gau(P),
g — dg. However, it would be desirable to have a characterisation of the bundles,
for which this extension splits. [

Problem 3.4.20. Find a characterisation of those principal K-bundles P for
which the extension Gau(P) — Aut(P) — Diff (M)p splits on the group level. =






Chapter 4

Calculating homotopy groups of
gauge groups

As indicated in Appendix [A] and Section [5.2] a good understanding of the low-
dimensional homotopy groups of an infinite-dimensional Lie group is an important
key to their Lie theory. In particular, the first and second (rational) homotopy
groups are important when considering central extensions of connected Lie groups.

In this chapter we illustrate how one can access the (rational) homotopy groups
of gauge groups. Due to the weak homotopy equivalence

mo(Gau(P)) = m,(Gau.(P))

from Theorem we may restrict our attention to continuous gauge groups.
This makes life easier since continuous functions are much more flexible than
smooth functions. The main tool will be the evaluation fibration and the resulting
long exact homotopy sequence introduced in the first section.

Of particular interest will be principal bundles over spheres and compact,
closed surfaces, because they are the the easiest non-trivial examples but already
cover many interesting cases. In particular, the case of bundles over $' will become
important in Chapter [} Note that bundles over orientable, but non-compact
or non-closed surfaces with connected structure group are always trivial (cf.

Proposition |B.2.10)).

Throughout this chapter we will consider continuous principal bundles and
identify the continuous gauge group Gau.(P) with the space of K-equivariant
continuous mappings C(P, K)X.  To avoid confusion with the homotopy
groups, we furthermore denote the bundle projection of the principal bundle
P = (K,n: P — M) with n instead of 7.

5



76 4. Calculating homotopy groups of gauge groups

4.1 The evaluation fibration

Let P be a continuous principal bundle. In this section we study the evaluation
fibration
ev:C(P,K)" — K, v (),

where py is the base-point of P. Under some mild restrictions it will turn out to be

a Serre fibration and thus leads to a long exact sequence for the homotopy groups
of C(P, K)K.

Definition 4.1.1 (Evaluation fibration). If P is a continuous principal K-
bundle and py € P denotes the base-point, then the map ev:C(P, K)¥ — K,
v +— v(po) is called the evaluation fibration. The kernel

C.(P, K)X :=ker(ev) = {y € C®(P,K)* : y(p) = ¢}

is called the pointed gauge group. Note that each v € C,(P, K)X vanishes on the
whole fibre po - K through pg, because we have y(po - k) = k™ - y(po) - k™' =e. =

Lemma 4.1.2. If K is a locally contractible topological —group and
P=(K,n:P— M) is a continuous principal K-bundle over the finite-
dimensional manifold with corners M, then the evaluation fibration from
Definition [{.1.1] defines an extension of topological groups

ev

C.(P,K)¥ < (P, K)¥ — K,

which has continuous local sections. In particular, it is a Serre fibration in the
sense of [Br93, Chapter VII.6] and induces a long exact homotopy sequence

...... s T () 2 1 (CL(PEOYE) ™Y (0P, KK

T, e (K) 2 m (CU(P KR — L (41)

Proof. If suffices to construct a continuous local section o : W — C(P, K)¥ of
ev for some open unit neighbourhood W C K, since then ev: C(P, K)X — K
is a locally trivial bundle and thus a locally trivial fibration (cf. [Br93, Corol-
lary VII.6.12]). Since K is locally contractible, there exist open unit neighbour-
hoods W, W’ and a continuous map F':[0,1] x W — W’ such that F(0,k) = e,
F(1,k) =k for all ke W and F(t,e) =e for all t € [0,1]. For k € W, we set
7, := F(-, k), which is a continuous path and satisfies 7,(0) = e and 7(1) = k.

Now let mg be the base-point in M and let U C M be an open neighbourhood
of mg such that there exists a chart

p:U—=pU) CRY =R"" xR
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with ¢(mg) = 0 and a continuous section ¢ : U — P with k, : n7'(U) — K, de-
termined by o(n(p)) - k,(p) = p. Then there exists an € > 0 such that

RY" N B(0) :={z e RY" : ||z|| < e} C ()
and

R @)1= e o)) - ka(p) i p € (pon) - (B.(0))
lp) = { ¢ it p ¢ (o) (B.0))

defines an element of C'(P, K)¥, because 71,(0) = e for all k € W and thus v;(p) = ¢
if p€ d((pon) ' (B.(0))). Furthermore, 7, depends continuously on k by the
exponential law and so does 7. Eventually,

W2k cCP K~
defines a continuous section of ev. m

The idea of this chapter is to consider bundles for which the homotopy groups
of the pointed gauge group 7, (C.(P, K)X) are well accessible. Then the previ-
ous Lemma leads to a long exact homotopy sequence that one can use to get
information on 7, (C(P, K)®). In particular, this will turn out to be the case for
bundles over spheres and compact, closed and orientable surfaces. In these cases,
7, (Cu(P, K)X) can be expressed in terms of the homotopy groups 7, (K) and,
moreover, one can also calculate the connecting homomorphisms. To motivate
this idea we first consider the case of trivial bundles over spheres and recall some
facts on 7, (K) for finite-dimensional K.

Lemma 4.1.3. If P = 5" x K is the trivial bundle over $™ and n > 1, then
7Tn<C(P7 K)K) = 7Tn+m(K) D Wn(K)

Proof. For trivial bundles we have a globally defined continuous section and thus
Remark[3.2.1]yields C(P, K)X = C(S™, K). Now C(S™, K) = C.($™, K) x K and
thus

To(C(P, K)®) 2 m,(C(S™, K)) = 1,(C,(S™, K)) & 7, ().

Now the assertion follows from

Tn(Cu(8™, K)) = mo(Ch(S", C. (8™, K)))
>~ 70(CL(S" AS™, K)) 2 7mo(Co(S"™, K)) X Ty (K). =

Remark 4.1.4. We recall some facts on the homotopy groups of a finite-
dimensional Lie group K. One important fact is that mo(K) always vanishes
[Mi95] Theorem 3.7]. Furthermore, we have m3(K) = Z if K has a compact Lie
algebra [Mi95, Theorem 3.8|, because then K is compact [DKO0Q, Corollary 3.6.3]
and we have m3(K) = m3(Kp). Furthermore, in [Mi95] one finds a table with
mn(K) up to n =15, showing in particular m4(SUy(C)) = 75(SU(C)) = Zy and
WG(SU2<C)) = Zlg. |
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We want to reduce the determination of 7, (C.(P, K)¥) to the determination of
7, (C(M, K)). We will first observe that we have ,(C,(P, K)¥) = 7,,(C.(M, K))
if one considers bundles with the property that the restriction to the complement
of the base-point is trivial and to functions not only vanishing in base-points but
also on a whole neighbourhood of them. This covers the cases of bundles that we
are aiming for, and it will show up later that the mapping spaces are homotopically
equivalent if the neighbourhood of the base-point is chosen appropriately.

Definition 4.1.5. If (X, z,) and (Y,y,) are pointed topological spaces and
A C X, is a subset containing xo, then we denote by

Ca(X,Y) = {f € CIX,Y) : f(4) = {}} € CLX,Y)
the space of continuous functions mapping A to the base point in Y. [

Lemma 4.1.6. If P is a continuous principal K-bundle over the reqular space
X, xqy is the base point of X such that X\{xo} is trivialising, then for each open
netghbourhood U C X of xq there is an isomorphism of topological groups

Co (P K) = Cp(X,K), fr foo,

where o : X\{zo} — P is a continuous section and f oo is the continuous exten-
sion of foo to X by e in xy.

Proof. Let (Uy, 01, Us0,) be an continuous open trivialising system with U; C U,
Uy = X\{zo} and k12 : Uy N Us — K be the corresponding transition function (cf.

Remark [B.1.7)). Then Remark yields
C(P7 K)K = GU(P) = {(71772> < C<U17K> X C<U27K> :
Y (x) = kia(x) - y2(x) - koy(z) for all x € Uy NU,Y,

where the isomorphism is given by f + (f ooy, fooy). This isomorphism in turn
induces

Crr@) (P, K)K =~ Gu(P) = {(n,7%2) € Gu(P) i1 =eand |y, = e},

because o1(U;) € 7~ H(U) implies f(o1(x)) = e and o9(z) € n7(U) & 2 € UN Uy,
Now

Oﬁ(Xv K) - GU,U(P)’ f e (f|U1 ) f|U2) (42)
is an isomorphism of abstract groups which is continuous. To construct the inverse
isomorphism we note that if (y1,72) € Gy(P) and v, = e, then we can extend 7,
to Yo : M — K by 7,(zo) = e, because 7, vanishes on the neighbourhood U; of x.
Since X is assumed to be regular, there exists a closed subset C' C U with xq € C,
and a direct verification in the compact-open topology shows that the map

Gup(P) = Cp(X, K),  (71,72) — 72
is continuous. Since it is the inverse to (4.2, this establishes the assertion. [
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According to the previous Lemma, we now want to replace C,(P, K)X by a
homotopically equivalent space of gauge transformations vanishing on a suitable
neighbourhood of 771 (xy). To make this precise we shall need a concept to “lo-
calise” homotopy equivalences, obtained from collapsing subspaces, that become
constant outside some neighbourhood of the subspace. This motivates the follow-
ing definition.

Definition 4.1.7. Let X be a topological space, xy be its base-point, and
Uy, Ui be open neighbourhoods of z, with Uy C U;. Then a continuous map
R:[0,1] x X — X is called a strong retraction of Ug to o relative to X\U; if
R(0,) =idx, R(t,Uy) C Uy, R(t,Uy) C Uy, R(1,Uq) = {wo} and R(t,z) = x for
all t € [0,1] and x ¢ U;. This is a homotopy from the identity R(0,-) to a map
R(1,-), which collapses Uj to ¢ and is the identity on the larger set X\Uj. n

Note that the previous definition is slightly different from the requirements
that U, is contractible and Uy — X is a cofibration. These requirements would
only yield the homotopy R without the requirement that R(t, ) is the identity on
some larger set. This property will become important in the sequel, because it
enables us to lift these homotopies to equivariant homotopies on the bundles.

Lemma 4.1.8. If M is a finite-dimensional manifold with corners and myq s its
base-point, then for each open neighbourhood V-C M of myg, there exist neighbour-
hoods Uy, Uy C V., such that there exists a strong retraction R of Uy to my relative
to M\Uy.

In particular, if M = S™ and Ug, xg and xxn are as in Remark[B.2.9, then we
can choose Uy and U, such that Uy = Ug and U, C $™\{xn}.

Proof. Let ¢ : U — ¢(U) C R% be a chart around mg and let Uy and U; be open
neighbourhoods of mg in VN U such that Uy C U; and ¢(Uy) and o(U;) are
convex. Furthermore, let A : M — [0, 1] be smooth with supp(A) C U; and A =1
on a neighbourhood of U,. Set

R:[0,1]xM — M, (t,;,;)H{ fl((l —t-Mx))e(x) +t- M) - p(mg)) ii ; g

Then supp(A) € Uy C U, implies that R is continuous and R(t,z) =z if x ¢ Uy,
Furthermore, we have R(0,-) = idy and Az = 1 implies R(1,Uy) = {myg}. Since
Uy and U, are convex, we also have R(t,U,) C Uy and R(t,U,) C U,. n

As indicated before, the group of gauge transformations, vanishing on a suitable
neighbourhood of the fibre through pg, is homotopy equivalent to the pointed
gauge group C,(P, K)X. We first consider the case of trivial bundles, where we
have C(P, K)X =~ C(M, K).
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Lemma 4.1.9. If XY are topological spaces, X s locally compact and
R:[0,1] x X — X is a strong retraction of Uy to xq relative to X\Uy, then the
inclusion

Cp, (X,Y) = CL(X,Y)

18 a homotopy equivalence.

Proof. Since R(0,-) =idx, we may write ¢ as the pull-back R(0,-)*. Since
R(1,-)(Uo) = {wo}, we get a continuous map R(1,:)*: C.(X,Y) — Cy (X,Y).
Since R(1,-) is homotopic to R(0, ), we have

R(O, )* o R(l, )* >~ R(O, )* 9] R(O, )* = idC*(X7y),

R(l, )* 9] R(O, )* >~ R(O, >* o R(O, )* = idCﬁO(X,Y%

and thus R(1,-)* is a homotopy inverse to R(0,-)*. ]

Proposition 4.1.10. Let P = (K,n: P — M) be a continuous principal K-
bundle over the finite-dimensional manifold with corners M, and let V be a trivi-
alising open neighbourhood of the base-point mg. If R : [0,1] x X — X is a strong
retraction ofﬁo to mg relative to X\U; and U, CV, then the inclusion

Cn’l(ﬁo)(P7 K)K — Cu(P, K)K
s 18 a homotopy equivalence.

Proof. Let o:V — P be a continuous section, defining k, : n71(V) — K by
p=0c(n(p)) - ks(p). Then

Rp:[0,1]x P — P, (tp)— { ;(R(t,n(p))) - ko (p) i Zg% ;%1

is well-defined, because R(t,m) = m if m ¢ U;. Thus the map Rp is continuous
and Rp(t,-) is K-equivariant, because for n(p) € V' we have

Rp(t,p- k) =o(R(t,n(p))) - ko(p- k) = o(R(t,n(p))) - ko(p) - k = Rp(t,p) - k,

since ky(p-k)=k,(p)-k if n(p) eV. Furthermore, Rp(0,-) =idp and
thus the inclusion may be written as the push-forward Rp(0,-)*.  Now
Rp(1,n7 Y (Uy)) €~ Yxo) and thus f(Rp(1,:)) vanishes on n~1(Ug) if
feC.(P,K)X. Since

Rp(1,)* o Rp(0,-)* =~ Rp(0,-)* o Rp(0,-)" = idcn_l(ﬁo)(pJ()K

and
Rp(0,-)" o Rp(L,-)" 2= Rp(0,-)" o Rp(0, )" = ide, (pxyx.

we have that Rp(1,-)* is a homotopy inverse to Rp (0, -)* and thus that the inclusion
is a homotopy equivalence. [
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We collect the information we have so far for bundles over spheres in the fol-
lowing proposition. We will throughout this section use the notation for spheres

introduced in Remark [B.2.9]

Proposition 4.1.11. Let P = (K,n: P —S8™) be a continuous principal K-
bundle and K be locally contractible. Then there exists a strong retraction of Ug
to xg relative to to $™\U; for some Uy 2 Us with ¢ U,. Furthermore, we have
the homotopy equivalences

Cu(P, K)K = Cnfl(Us)(Pa K)K = CUS(Sm> K) =~ C.(5", K)
from Proposition Lemma and Lemma inducing
T (Co (P, K)) 2 7, (CL(S™, K)) & T (K.

With respect to this isomorphism, the long exact homotopy sequence of the evalu-

ation fibration (4.1)) becomes

s 7Tn+1(K) (;n—ﬂ) 7Tn+m(K) - Wn(C(Pv K)K) - Wn(K) 2, 7Tn+m—1(K) o
(4.3)

In order to perform a similar construction for bundles over compact, closed and
orientable surfaces we need more information on the algebraic topology of these
surfaces and the corresponding mapping groups.

Remark 4.1.12. Recall the notation for closed, compact and orientable surfaces
from Remark The identification Ay, = 9B? shows in particular that if X
is an arbitrary topological space, then a map f : Ay, — X extends to a continuous
map f : 3 — X if and only if it extends to int(BB?) an thus is zero-homotopic. This
can be expressed by the property that m(f) : m1(Agy) — m1(X) annihilates the
commutator in Remark and hence factors through a homomorphism
m(X) 2 729 — 1 (X).

Furthermore, if such a homomorphism 7 (X) — 7 (X) is given, then we lift it to
a homomorphism 7 (As,) — 71 (X), which can be represented by a map Ay, — X.
Since this map extends to >, we have shown that

C.(%, X) — Hom(m (%), m(X)), [ m(f)

is surjective.

Now, consider for fixed j < 2g the homomorphism Z?2? — Z, given on the gen-
erators by d;;. If we take X = S', then the preceding implies that we obtain
continuous maps x; : & — $' such that m;(x;)([ei]) = d;;. We can even arrange

such that ]
X;j 00y = { 1 if i £ (4.4)
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if we start with the continuous map x9 : Ay — $" which is on $} the identification
with $' and constantly e otherwise. Clearly, 7 (x;) annihilates the commutator in

(B.7) and thus extends to X.

Remark 4.1.13. We recall that if X is a space and A C X, then there is a bi-
jection between the continuous functions on X/A and the continuous functions on
X that are constant (cf. [Bo89al §1.3.4]). For any other space Y this bijection
is given by the continuous map ¢* : C.(X/A,Y) — Ca(X,Y), f+— fogq, where
q: X — X/A is the quotient map. Moreover, if A is closed, then a direct verifi-
cation in the compact-open topology shows that this map is also open and thus
C(X/A,Y) and Cy(X,Y) are also homeomorphic.

In particular, if ¥ is a compact, closed and orientable surface and K is a
topological group, then

Ca,, (B, K) = C.($% K),

and furthermore we have

ﬂ-n(OA2g(E7 K)) = WN(C*(S27K)) = 7Tn+2(K)' u

We now show that these information lead to a precise description of the pointed
mapping group C,(X, K) in terms of C.($% K) and C,(S', K). Note that this
is exactly what we are aiming for, because C,(X, K) is homotopy equivalent to
C.(P, K)¥, and we thus obtain a precise description of C,(P, K)¥ in terms of the
homotopy groups of K.

Lemma 4.1.14. Let ¥ be a compact closed and orientable surface and K be a
topological group and consider

r:Cu(E,K) — Cu(S, K)¥, fr(foay,...,foay).

This map has Ca,, (3, K) = C.(5%, K) as kernel, and with respect to this identifi-
cation the exact sequence

C.(82, K) — C (S, K) —» C.(8', K)%¥ (4.5)

has a globally defined continuous (but non-homomorphic) section. In particular,
C.(2, K) is homeomorphic to C.($%, K) x C,($', K)%* .

Proof. The kernel of r is in fact C4,, (X, K), because foq; vanishes if and only
if f vanishes on S} and Ay, =J;S;. Furthermore, Cy, (5, K) = C.($* K) by
Remark A.1.13]

A continuous inverse to r can be constructed as follows. Let y; : ¥ — $! be
the continuous maps constructed in Remark [£.1.12] Then we define

Cu(S' K)* — C.(S,K), (fi,-- fag) = [ [ fion

=7
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This is in fact a section of r, because (4.4)) implies

29

H(fOonai)(m) = foxioa;(m) = f(m) for m € §".

Jj=1

Now the existence of a continuous section implies that C.(X, K) is a trivial prin-
cipal C,($%, K)-bundle over C,($!, K)*, and thus C,(¥, K) is isomorphic as a
C. (82, K)-space to C,($?%, K) x C.($', K)%. n

For bundles over compact, closed and orientable surfaces with connected struc-
ture group, the above considerations now lead to a similar long exact sequence for

7,(C(P, K)X) as in the case of bundles over spheres in Proposition [4.1.11}

Proposition 4.1.15. Let P = (K,n: P — M) be a continuous principal K-
bundle over a compact, closed and orientable surface ¥ and let K be connected
and locally contractible. Furthermore, set Uy, := E\B%(O) (where we identify
with a quotient of B% as in Remark .

Then there exists a strong retraction of Uy to the base-point xo of Ayy C %
relative to to X\U; for some Uy, Uy C X with U, C Us,. Furthermore, we have the
homotopy equivalences

Co(P,K) >~ C gy (P KN = O (5, K) ~ Cu(3, K) ~ C.(8?, K) x Cu(8', K)*

from Proposition Lemma Lemma and Lemma inducing
forn>1

Tn(Cu (P, K)K) 2, (Cu(E, K)) = g (K) © 7Tn+1(K>2g'

With respect to this isomorphism, the long exact homotopy sequence of the evalu-

ation fibration (4.1)) becomes

o M1 (K) 2 40 (K) @ s (K)? — 1 (C(P,K))
— T (K) 2 o1 (K) @ 1y (K)* — -+ (4.6)

The information we have so far on m,(C(P, K)¥) is quite poor, since we have
no knowledge on the connecting homomorphisms 4, yet. We merely get that
C(P, K)¥ is simply connected in the case of a principal K-bundle over $! with
simply connected finite-dimensional K. Thus a further treatment of the connecting
homomorphisms will be necessary in order to get more crucial information on

7, (C(P, K)X).

Remark 4.1.16. A quite general theorem of SINGER [Si78, Theorem 5] states
that the weak homotopy type of C.(P, K)¥ is the one of the pointed mapping group
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C«(M, K) if M is a closed manifold of dimension of at most 4 and K = SU,(C).
The method in the proof is the same that we used in this paragraph. However, our
explicit constructions need no assumptions on the homotopy type of K and are
aiming for a general treatment of gauge groups with arbitrary structure groups.
So the theorem of SINGER is of a different flavour. n

Remark 4.1.17. Similar considerations for the pointed gauge group have been
made in [Te05], especially for rational homotopy and rational cohomology. The ap-
proach taken there focuses on bundles with simply connected semi-simple structure
group over simply connected 4-manifolds and uses the Whitehead-Milnor Theorem
to obtain an explicit description of the homotopy type of the base. In combination
with [Si78, Theorem 5], the weak homotopy type of the pointed gauge group is
reduced to the one of the pointed mapping group on the base, and this result is
used to do computations in terms of mapping groups. We are aiming for more
general cases and thus take a more general and direct approach by using more
explicit constructions. u

Remark 4.1.18. The explicit description of 7, (C.(P, K)X) in terms of the ho-
motopy groups of K in Proposition and Proposition is the key in
our approach to the determination of the homotopy groups of the gauge group
7,(C(P, K)X). As illustrated, this works well for bundles over spheres and com-
pact, closed and orientable surfaces. Furthermore, this approach extends to all
classes of bundles for which a good description of 7, (C.(M, K)) is available.
Although this will not lead to a systematic understanding of 7, (C(P, K)¥)
without knowledge on the connecting homomorphisms, the pointed gauge group is
an object of its own interest, because is acts freely on the space of connections of P
[MM92l, Section 6.4] and thus is often treated as the symmetry group of quantum
field theories. Furthermore, a precise knowledge of 7, (C.(P, K)¥) is also desirable,
because the non-vanishing of these groups can be seen as a measure for the failure
for the existing of global gauges, which is also known as the Gribov Ambiguity
[MMO92, Section 6.5]. m

Problem 4.1.19. For which manifolds M do we have a description of
mn(Cy(M, K)) in terms of the homotopy groups of K? ]

4.2 The connecting homomorphisms

This section is devoted to the calculation of the connecting homomorphism in the
exact homotopy sequences and induced by the evaluation fibration.
We will not solve this problem in general, but reduce it to a more familiar prob-
lem in homotopy theory, i.e., the calculation of Samelson and Whitehead products.

Before starting the calculation of the connecting homomorphisms we give a
construction principle for them.
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Remark 4.2.1. (|Br93, Theorem VIL.6.7]) Let p: Y — B be a Serre fibration
with fibre ' = p~*({xo}). The examples of these fibrations that we will encounter
in this chapter are locally trivial bundles [Br93|, Corollary VII.6.12]. The fibration
yields a long exact homotopy sequence
o e (B) 225 () 2 ry) 2 (B) = e (F) >

and the construction of the connecting homomorphisms 9§, is as follows: Let
a € C,(B", B) represent an element of m,(B), i.e., &|yg. = xo. Then a can be
lifted to a base-point preserving map A : B" — Y with qo A = «, because ¢ is a
Serre fibration. Then A takes 9B™ = $"~! into ¢ *(z9) = A, and A|,p. represents
5([e). .

For bundles over compact, closed and orientable surfaces, the connecting ho-
momorphism turns out to be given in terms of the connecting homomorphism for

bundles $2.

Proposition 4.2.2. Let K be a connected topological group and Ps2 be a contin-
uous principal K-bundle over $%, represented by

bem(K)=[$? BK], = Bun($? K).

(cf. Proposition [B.2.8). Denote by 6,52 : my(K) — myy1(K) the n-th connecting
homomorphism from the corresponding long exact homotopy sequence for the eval-
uation fibration (4.3). Furthermore, let Ps be a continuous principal K-bundle
over the compact, closed and orientable surface ¥ of genus g, represented by the
same

bem(K)= (3 BKl, = Bun(x, K)
(cf. Proposition|B.2.1(}). Then the n-th connecting homomorphism

ns  Tp(K) — 71 (K) @ mo(K)*

from the long exact homotopy sequence for the corresponding evaluation fibration

[8) is given by b, 5(a) = (8,5(a), 0).
Proof. Let ¢: ¥ — B? be the quotient map identifying A,, with the base-point

in $? (cf. Remark [B.2.11)). For every principal K-bundle Pg2 over $2, we have the
corresponding pull-back bundle Py, given by

Py —2 P

o |

y 2, 92
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and Ps; and Ps2 have the same representing elements in m; (K)(cf. Remark [B.2.12).
Denote by evg: : C(Pys2, K)X — K and by evy, : C(Px, K)¥ — K the correspond-
ing evaluation fibrations in compatible base-points of Ps; and Ps2, and observe that
evg: = evy o (¥, where

Q*:O(PS27K)K_)C(PE7K)K7 f&—)fOQ

is the corresponding pull-back. This implies that if A : B® — C(Ps2, K)¥ is a lift
of a: B" — K for evgz, then Q%o A is a lift of « for evy.

Now, let a € 7,(K) be represented by o : B" — K with a(9B"™) = {e} and let
A B" — C(Ps2, K)X be a lift of a for evge. Then Q*o A is a lift of « for evy,
and it thus suffices to show that the restriction of the two lifts A and Q* o A to
OB™, taking values in C,(Ps2, K)X and C,(Pg, K)¥, describe the same elements in
Tnt1(K) = mpp1(K) @ 0 with respect to the homotopy equivalences in Proposition
and Proposition [4.1.15]

In order to do so, note that a section oy, : ¥\{xo} — Ps determines uniquely a
section og2 : $*\{ws} — Ps2 by os2(q(z)) = Q(ox(x)), because d|5\ 4,, is a home-
omorphism onto $?\{zs}. Thus for each y € IB™ we have

A)(Qos(x))) = Aly)(os:(q())),

implying
Q*(A(y))(oxn(x)) = A(y)(os(¢(x))).

The homotopy equivalence from Proposition and replaces Ay, by
a mapping with values in Cn,l(g)(P, K)X for some appropriately chosen neigh-
bourhood U of the corresponding base-points. Then the representative of d,, g2 (a)
(resp. 0px(a)) is determined by pulling back Al p. (resp. Q*(A|yp.)) along oge
(resp. along oy) and extending g, (A(y)) (resp. o5(Q*(A(y)))) continuously by e
for each y € 9B" (cf. Proposition and Proposition [4.1.15]). Since Q*(A(y))

vanishes on 75’ (¢7*(U)), the continuous extension of o%(Q*(A(y))) vanishes on
¢ H(U) 2 Agg.

We eventually see that the m,(K)-component of J,x(a) vanishes. Since
the 7,1 (K)-component is determined by identifying elements in C,($?, K) with
Ca,,(3, K) via g, this also yields that the 7, (K )-component is dg2(a). ]

The connecting homomorphism for bundles over spheres will be given in terms
of the Samelson product, which we introduce now.

Definition 4.2.3 (Samelson Product). If K is a topological group, a € m,(K)
is represented by a € C,.(S", K) and b € 7,,(K) is represented by g € C.(S™, K),
then the commutator map

a3 8" x 8" — K, (z,y) — a(z)B(y)alz) " Bly)
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maps 3"V S™ to e. Hence it may be viewed as an element of C,(S" A S™, K)
and thus determines an element (a,b)s := [a# 0] € mo(Ci($"T", K)) = Tpym(K).
Furthermore, it can be shown that [a#(] only depends on the homotopy classes
of a and 3, and we thus get a map

(K % T(K) = s (), (a,b) — (a,b)s

This map is bi-additive [Wh78, Theorem X.5.1] and is called the Samelson product
(cf. [WhT8, Section X.5]). =

As indicated before, the connecting homomorphism for bundles over spheres is
given in terms of the Samelson product.

Theorem 4.2.4 (Connecting homomorphism is the Samelson product).
If P s a continuous principal K-bundle over S™, K is locally contractible and

bem,_1(K)=[$" BK], = Bun($™, K)
represents P (cf. Proposition , then the connecting homomorphisms
Ot T (K) = Tpam—1(K)
in the long exact homotopy sequence
= Tt (K) 25 T (K) = m(Gane(P)) — w1y (K) 2 w1 (K) = -

from Proposition mduced by the evaluation fibration, is given by
on(a) = —(b,a)g, where (-,-)s denotes the Samelson product.

Proof. We set B" := {x € R" : ||z]| < 1} and $" := {x € R" : ||z|| = 1} and use
throughout this proof the identification

(10, 1] x $"H)/({0} x ") S B, (t,p) —t- ¢ (4.7)
as topological spaces without base-points. We denote by Uy and Ug
the closed mnorthern and southern hemispheres.  Then there are sections

on: Uy —>_P arld o0g:Ug — P such that the corresponding transition func-
tion kp:UyNUgs =8 — K represents P (cf. Remark B.2.9).  Since
Uy =2 B™ 2 Ug, we may identify Gau.(P) = C(P, K)¥ with

Gy(P) :={(f1, f2) € C(B™, K)*: fi(z) = kp(z)- f2(x)-kp(x)~" for all = € OB™}

by the isomorphism f +— (fooy, foos) (cf. Remark . With respect to this
identification, the evaluation fibration is given by ev(fi, f2) = f2(0).

Each ae€m,(K) is represented by «:[0,1]x$"!'— K  with
a({0,1} x ') ={e}, then we may assume that « even vanishes on
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{0,1} x 8" U[0,1] x {xp}, because S$" is homotopy equivalent to the re-
duced suspension [0,1] x $*71/({0,1} x $"~1 U [0,1] X {zo}). We shall construct
an explicit lift of a to Gy (P).

Since Uy = B™ and «(0) = 0, we may use the identification to define

Ay B x Ty = K, (nt-9) e k(9)-olta) k(p) (48)
As :B"xUg — K, (z,y) a(l,1)

Then A : B" — C(B™, K)?, x — (An(z, ), As(z, -)) defines a continuous map with
values in Gy(P), because t = 1 if t - p € OU 5y and thus

An(z,t- @) = k(p) - alt,z) - k()™ = k() - As(z,t- @) - k(p)™".

Furthermore, A defines a lift of a, because ev(A(x)) = Az(x,0) = a(x).

Since the homotopy equivalence in Proposition 4.1.11] is given by identi-
fying Ug with the base-point in $™ = B™/0B™ we thus have that d,(a) is
given by [An|ygnypm] in the set of homotopy classes [0B" A 8™, K|.. Consider
A:B"x B™ — K, (z,y) — Ay(z,y) - a(z)"!. Then A

e vanishes on 0B" x JB™,

e vanishes on {zo} x B™, where 27 € JB™ is the base-point, because « vanishes
on {IO} X [07 ]-]7

e vanishes on B" x {yo}, where yo € OB™ is the base-point, because then t = 1
and v(p) =,
e coincides with Ay on 0B™ x IB™, because « vanishes there,

e coincides with kp#a on B" x 0B, because then t = 1.

We take the coproduct

grtm=l =~ §(B™ x B™) = (0B" x B™) U (B" x OB™) —
((OB™ xB™)/(0B" x 0B™ U{zo} x B™)) U ((B" x 9B™)/(0B" x 9B™ UB" x {yo}))
oY (Snfl A Sm) U (Sn A Smfl) _ Sn+m71 v Snerfl

to define the (unique) group structure on 7, m—1(K) (cf. [Sp66, Theorem 1.6.8]).
We thus have

* ~

T (x)
(.a)s = —lotto] = (4] 194 J=4.)
where (k) follows from [Sp66, Theorem 1.6.8], because A is a continuous map on

B" x B™ and thus [,Z‘ ] =0. .
(B xB™)
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As we mentioned before, there is a close interplay between the Samelson and
the Whitehead product, which we shall define now.

Definition 4.2.5. Let X be a topological space and a € m,(X) and b € 71,,(X)
be represented by a € Cypn(B™, X) and 3 € Cypn(B™, X). We identify §"Tm1
with 9B"™ = (0B" x B™) U (B™ x 0B") and set

. qntm— a(x) if (z,y) € B" x 9B™
(oz<>ﬁ).$+ L X, (x,y)H{ﬁ(y) if () € OB" x B

Note that this is well-defined, since a(0B"™) = {x} = B(9B™). Clearly, the homo-
topy class of ¢ 3 depends only on the homotopy classes of a and 3 and thus
determines an element (a,b)wy = [ ¢ (] € Ty1m—1(X), and the map

Tn(X) X (X)) 2 (a,b) — (a,b)wr € Tpiym-1(X)

is called the Whitehead product (cf. [Wh78| Section X.5]). "

According to [BJS60], the first appearance of the Samelson product seems to
be in [Sa53|, where it occurs as an explicit formula for the Whitehead product for
loop spaces, to make these products more accessible. The general relation between
the Samelson and the Whitehead product is the following.

Proposition 4.2.6. ([BJS60, Section 1]) If P = (K,n: P — X) is a continuous
principal K-bundle and 0, : m,(X) — m,_1(K) is the n-th connecting homomor-
phism of the corresponding long exact homotopy sequence for n > 1, then we have

Ontm—1({@, O)wir) = (9n(a), om(m))s (4.10)
fora € m,(X) and b € m,(X) and n,m > 1. "

Remark 4.2.7. For a continuous principal K-bundle P over $™, the sequence

= st (K) 255 T (K) = 10 (Co(PLK)S) = () 25y () — -
(4.11)
with the connecting homomorphisms from Theorem can also be obtained
as follows. Let Py = (K,nk : EK — BK) be a universal bundle for K, ie., a
continuous principal K-bundle such that 7, (£ K) vanishes for n € Ny (cf. Theorem
and Theorem . Furthermore, let v : 5™ — BK be a classifying map
for P and denote by I' : P — E'K the corresponding bundle map, and denote by
C(P, EK)¥ the space of bundle maps from P to EK.
Now each f € C(P, EK)¥ induces a map fgm : $™ — BK, and the map

C(P,EK)Y 3 f v+ fsm € C(S™, BK), (4.12)
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is a fibration [GoT72), Proposition 3.1], where C'(P, EK)¥ (respectively C(B, BK).)
denotes the connected component of I' (respectively ), and we have a homeomor-
phism

F={feCP,EK) : fsn =7} =2 C(P,K)"

[GoT2, Proposition 4.3]. Since ,(C(P, EK)E) vanishes [Go72, Theorem 5.2], the
long exact homotopy sequence of the fibration (4.12) leads to

T (C(P,K)E) = m,(C(S™, BK),)

(cf. [Ts85, Theorem 1.5] and [AB83] Proposition 2.4]). We now consider the evalu-
ation fibration ev : C(8™, BK)., — BK, f — f(xg). This map is in fact a fibration
[Br93, Theorem VII.6.13] with fibre ev!(zg) =: C.($™, BK),, and we thus get a
long exact homotopy sequence

= T (BE) 5 7, (CL(S™, BK),) — m,(C(S™, BE),)
— mu(BK) 25 71, 1 (C(S™, BK),) — ... (4.13)

necting homomorphism in this sequence is given by 0,.1(a) = —(a, b)wy, where

If we identify 7, (Cy(S™, BK),) with m, 1, (BK) (cf. [Wh46, 2.10]), then the con-
{
. [Wh46, Theo-

b=[y] € mn(BK) and (-, -)wu denotes the Whitehead product (c
rem 3.2] and [Wh53| 3.1]).

Since T (EK) vanishes, each connecting homomorphism
Op : Tp(BK) — m,—1(K) from the long exact homotopy sequence for Pk is
an isomorphism, and with respect to this identification, the exact sequence from
becomes ({.11). Since, under this identification, the Whitehead product
becomes the Samelson product (cf. ), the connecting homomorphism is then
given by the Samelson product as in Theorem [4.2.4] [

Remark 4.2.8. For bundles over spheres and over compact closed and orientable
surfaces the connecting homomorphisms are given in terms of the Samelson or the
Whitehead product. In the case of bundles over surfaces, the reduction of the
connecting homomorphisms to the ones for bundles over spheres relies on the fact
that these bundles arise from clutching two trivial bundles over a closed 2-cell and
the complement of its interior together along a single characteristic map. Now
this construction produces more general bundles over more general manifolds (i.e.,
simply-connected 4-manifolds by the Milnor-Whitehead Theorem, cf. [Te05]), and
should lead to more systematic information on ., (C'(P, K)¥). ]

Problem 4.2.9. Find more explicit descriptions of principal bundles arising as
simply clutched bundles, i.e., as bundles over manifolds of dimension n, whose
bases possess a trivialising cover consisting of a closed n-cell and the complement
of its interior. n
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4.3 Formulae for the homotopy groups

In this section we describe how known results on the Samelson and White-
head products lead to explicit formulae for the (rational) homotopy groups
of the gauge group. This depends on the amount of known results for these
products. We are mainly interested in the low-dimensional homotopy groups
(ie., m(C(P, K)X) and my(C(P, K)X)), which causes some problems, because
these products are mostly considered in higher dimensions (cf. [Bo60]). However,
at least for some examples and in the rational case, these products are well-known.

One example, in which we can use the results of the previous section is the
quaterionic Hopf fibration.

Example 4.3.1 (The quaterionic Hopf fibration). Consider the quaternion
skew-field H & R* with the euclidean norm \/q1q; + - - . + ¢nGn = ||q|| on H™ = R*"
and

s 1= {ge H" : g = 1.

Furthermore,  consider the projective spaces PH"':=H"/~ with
q~¢q = qg=X¢ for some \e€S83  Then $3=SU,(C) acts on $'"! by
(q1,---,qn) - k= (q1k, ..., quk), and the orbit map composed with the quotient
map yields a surjection 1’ : $%*~! — PH"~!. This defines a continuous principal
SU,(C)-bundle (SUL(C),n’ : $*"~! — PH"!), provided by the trivialisations

0N Uk) D (quy -5 an) = [(q1s - -5 an)]s lar] " ar € Uy x SUL(C),

where Uy, := {[¢] € PH" ! : ¢, # 0}. Now PH!' = $*, since both spaces are home-
omorphic to the one-point compactification of H, and thus we get a continuous
principal SUy(C)-bundle H := (SUy(C),n : $7 — $%), called the quaterionic Hopf
fibration.

A characteristic map (cf. Remark 7 : SU,(C) — SU,(C) for this bundle
can obtained as follows. We view $* as the quotient of {g € H: ||q|| < 1} by its
boundary. Then the homeomorphism from $* to the one-point compactification of
H is given by

- if gl <1
. g4 T—[lgf !
@08 = HUtoo}, qH{oo it gl = 1.

Composing gz3|||q||<1 with the section

1
o H—-98, ¢g— —-(1,9)
(L)l
yields a map o, which we may continuously extend to |[¢]| =1 by setting
o(q) = (0,q) in this case. This results in a map o satisfying noo = ¢, where
q is the quotient map defining $*. We thus may take v = idgu,(c) as the map
representing the equivalence class of H. [
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More generally, principal SUy(C)-bundles over $* are classified by their so
called Chern number k € Z = m3(SU2(C)) (cf. [Na97, Theorem 6.4.2]), and the
quaterionic Hopf fibration has Chern number 1. We denote by Pj the principal
SU,(C)-bundle over $* with Chern number k.

As mentioned before, the crucial Samelson product in this example is well-
known and now leads to an explicit description of 71 (C'(P, K)*) and mo(C(P, K)¥)
for SU,(C)-bundles over $%.

Proposition 4.3.2. If P, is a principal SUy(C)-bundle over $* of Chern number
k € Z, then m(C(Py, K)*) = Zy and wo(C(Py, K)*) & Zgeaka2)- In particular, if
Py denotes the quaterionic Hopf fibration, then mwo(C(Py, K)X) vanishes.

Proof. (cf. [Ko91, Lemma 1.3]) Recall the homotopy groups of SU,(C) from Re-
mark [4.1.4] First we note that we have 7, (C'(P, K)X) = Z, by the exact sequence

m(SU2(C)) — m5(8U2(C)) — mi(C (P, K)*) — m(SUs(C))

7. =0

from Proposition 4.1.11] Since Py is classified by the Chern number
k € Z = 13(SUy(C)), Theorem provides an exact sequence
5§ o (i

73(SU2(C)) 2 76(SU2(C)) 2 ma(C(Pr, )X — ma(SUs(C)),
where 0% : m3(SUy(C)) — m6(SUx(C)) is given by a+— —(k,a)s. Since
73(SU2(C)) 2 Z, 76(SU2(C)) = Zy2 and (1,1)s generates 7s(SU(C)) [P1i04,
Corollary 6.2], we may assume that 65 : Z — Zj, is the map Z > z — —[kz] € Zy
due to the bi-additivity of (-,-)g. Since m(SUs(C)) is trivial, we have that (1)
is surjective and

1m(7r2(2)) = Zlg/ ker(ﬂg(i)) = Zlg/ 1m(5§) = Zlg/(k’zlg) = chd(k,12)- ]

Systematical results on the Samelson product in low dimensions seem not to
be available in the literature. This is different for the rational Samelson products,
which we will consider now.

Remark 4.3.3. As explained in Section in infinite-dimensional Lie the-
ory one often considers (period-) homomorphisms ¢ : m,(G) — V for an infinite-
dimensional Lie group G and an R-vector space V', which we consider here as a
Q-vector space. If n > 1, then m,(G) is abelian and this homomorphism factors
through the canonical map 9 : m,(G) — m,(G) ® Q, a — a ® 1, and

F:m(@)2Q =V, a®a 1 p(a),

It thus suffices for many interesting questions arising from infinite-dimensional Lie
theory to consider the rational homotopy groups n&(G) := 7,(G) ® Q for n > 1.
Furthermore, the functor ®(@) in the category of abelian groups, sending A to
A =A@ Qand p: A— BtopQ:=p®idg: A®Q — B® Q, preserves exact
sequences, since @ is torsion free and hence flat (cf. [Br93, Section V.6]). m
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Lemma 4.3.4. If K is a finite-dimensional Lie group and n,m > 1, then the
rational Samelson product

()8 THK) x 1&(K) = 4, (K), a@z,b@y— (a,b)s®xy
vanishes.

Proof. We first consider the case where K is connected. If a € m,(K) and
b € mm(K), then (a,b)s is an element of the torsion subgroup of 7,4, (K) [Ja59],
and the assertion follows from the fact that tensoring with @Q kills the torsion
subgroup.

If K is not connected, then a € m,(K) = 7,(Ky) is represented by a map
a: 3" — Ky and b € m,(K) is represented by a map [ :5" — Kj, because $"
and S™ are arcwise connected for n,m > 1. Then a#f (cf. Definition also
takes values in Ky, as well as (a#3)* for each £ € N. Now ([a], [3],)s is a torsion
element if and only if there exists an integer £, such that (a#3)% is null-homotopic,
i.e., extends to B™*" 1. Thus (y([a], [3]) = 0, for [a] € m,(Ky) and 8 € 7, (Kp)
if and only if ¢y([a], [5]) =0, for o] € m,(K) and [ € 7,,(K), and the assertion
follows from the case where K is connected. ]

Theorem 4.3.5 (Rational homotopy groups of gauge groups). Let K be a
finite-dimensional Lie group and P be a continuous principal K-bundle over X,
and let 32 be a compact orientable surface of genus g. If X = S™, then

i (Gau(P)) & ml ., (K) © md(K)

n+m

forn>1. If X =% and K is connected, then
m(Gau(P)) & ml o (K) @ md, (K)* @ md(K)
forn >1.

Proof. First note, that in the case on a non-closed surface each bundle with
connected structure group is trivial (Proposition, which yields the assertion
in this case. In the other cases, we obtain with Remark an exact rational
homotopy sequence from the exact sequence for the evaluation fibration from
Proposition and from Proposition . Then the preceding lemma
implies that the connecting homomorphisms in these sequences vanish, because the
connecting homomorphisms for the homotopy sequences are given in terms of the
Samelson product by Proposition [4.2.2] and Theorem [4.2.4] Thus the long exact
rational sequence splits into short ones. Furthermore, these short exact sequences
split linearly, since each of them involves vector spaces. [

Remark 4.3.6. The rational homotopy groups of finite-dimensional Lie groups
are those of products of odd-dimensional spheres [FHTO0I, Section 15.f], which
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are well known [FHTOI, Example 15.d.1]. Thus Theorem gives a detailed
description of the rational homotopy groups for the gauge group of bundles over
spheres and compact, closed and orientable surfaces.

Although this knowledge is sufficient for many questions in infinite-dimensional
Lie theory, it would be desirable to have more explicit descriptions of 7, (C'(P, K)¥)
for larger classes of bundles. As illustrated in Proposition [4.3.2] a detailed knowl-
edge of Samelson- and Whitehead Products would lead to more of these descrip-
tions but this knowledge is not available in low dimensions. [

Problem 4.3.7. Which explicit formulae for the Samelson- or Whitehead product
lead to more explicit descriptions of 7, (C(P, K)¥) for larger classes of bundles? m



Chapter 5

Central extensions of gauge
groups

In this chapter we construct a central extension of the identity component Gau(P)
of the gauge group and an action of the automorphism group Aut(P) on it. The
procedure is motivated by ideas from [PS86], [LMNS95] and [MNO3].

The general idea for constructing central extensions of infinite-dimensional Lie
groups is to construct central extensions of the corresponding Lie algebras and
then check whether they are induced by corresponding central extensions of their
groups. The tools we use here are provided in [Ne02al.

We shall consider bundles over bases without boundary, i.e., our base manifolds
will always be closed compact manifolds. Throughout this section we fix one
particular given smooth principal K-bundle P over a closed compact manifold M.
We furthermore assume K to be locally exponential. This ensures, in particular,
that all bundles occurring in this section have the property SUB with respect to
each smooth closed trivialising system (cf. Lemma [3.1.13).

5.1 A central extension of the gauge algebra

The first step is to construct central extensions of the gauge algebra. In the case
of trivial bundles we have gau(P) = C*°(M, £) and from [MNO3| the cocycle

Co=(M, ) x C(M,8) 3 (n, 1) > [, dps)] € D (M,Y)/dC=(M,Y),  (5.1)
where x : € X £ — Y is a continuous, symmetric, ¢-invariant bilinear map. In this
section we shall illustrate how this cocycle generalises to arbitrary smooth bundles

by replacing the ordinary differential with a covariant derivative (cf. [LMNS95]).

We first introduce the notation we use throughout this chapter.

95
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Definition 5.1.1. If P is a smooth principal K-bundle and Ad(P) is its adjoint
bundle, then we have the isomorphisms

gau(P) = C*(P,&)* = S(ad(P)) = Q°(M, ad(P))

from Proposition [3.1.4] Let Y be a locally convex space, and consider the trivial
action A : K x Y — Y. Then the associated bundle A(P) is trivial, and we thus
have QY (M, A\(P)) = QYM,Y). If k : £ x £ — Y is a continuous K-invariant bilin-
ear form, then it is in particular K-equivariant with respect to Ad and \, and we
get from Lemma a continuous linear map

Kyt gau(P) x Q)

bas

(P, &))" — QY(M,Y),

when identifying gau(P) with Q°(M, Ad(P)) and Q} (P, €)X with QY(M, Ad(P))

as in Remark and QY(M, \(P)) with Q' (M,Y). -

Remark 5.1.2. If M is a closed finite-dimensional manifold and Y is a Fréchet
space, then we define

Since dC*°(M,Y') is the annihilator of the continuous linear maps
A i QX (MY) =Y, w— [ aw, (5.2)
g1

for a € C(8', M), it follows that dC>°(M,Y) is in particular closed in Q'(M,Y)
so that we obtain a locally convex Hausdorff vector topology on 3,,(Y). Fur-
thermore, since 35,(Y) is a quotient of the Fréchet space Q'(M,Y") by the closed
subspace dC*°(M,Y’), it is again a Fréchet space. Note that Y is in particular
sequentially complete, ensuring the existence of the integral in ([5.2]). [

As indicated before, we substitute the ordinary differential in (5.1]) by a covari-
ant derivative to obtain the cocycle describing the central extension of gau(P).

Lemma 5.1.3. Let P be a smooth principal K-bundle over the closed finite-
dimensional manifold M, A € Q' (P,¥) be a connection 1-form and

d* : gau(P) — Qb (P, Ad(P))X.

be the induced covariant derivative from Lemma[B.3.7] If Y is a locally convex
space and k : € X € — Y 1is continuous, bilinear, symmetric and K-invariant, then

weoa t gau(P) x gau(P) — 5 (Y), (0, p) = [Ka(n, d* )] (5.3)

is a continuous cocycle on gau(P).
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Furthermore, if A, A" € QY(P,€) are two connection 1-forms of P, then
Wk A — Wk 15 a coboundary, i.e., there exists a continuous linear map
A gauw(P) — 3m(Y) such that we have

wn,A(nv :u) - wn,A’(nv :u) = )‘([777 M]) (54)
form, u € gau(P).

Proof. The continuity follows directly from Lemma [B.3.11) because wy 4 is
then only a composition of continuous maps. Let & be the trivial vector
bundle M x Y over M. With the identifications Q°(M,Ey) = C>*(M,Y) and
QY M, Ey) = QN (M,Y), the covariant derivative on £y induced from A is f +— df

(cf. Lemma [B.3.7)).

That wy 4 is alternating, i.e., wya(n, p) = —wx a(p,n) follows with Lemma

B.3.13] from

i (n, 1) = k(d g, p) + K, d* 1) = 5., d*n) + Ko(n, d* 1)
The cocycle condition is
’%*([n>ﬂ]7dA y) + K’*([l/? U]»dA :u) + K*([ﬂa V]7dA 77) € dCOO(Ma Y)
for all n, u, v € gau(P). With Lemma |B.3.13] we get
di([n, p), v) = £ (d* [0, pl, v) + 5[, pl, & v) = w([dh 0, ), v) + k([0 d ), v)
+ “*([777 :U’]7 dA V) = H*([u? U]? dA 7]) + K*([”? 77]7 dA :U’) _'_ “*([77, :u]a dA I/)u

because « is K-invariant and thus x([x,y], z) = k(z, [y, z]) for all z,y,z € .
To show that w, 4 — wy 4’ is a coboundary, we observe that we get from Lemma

dp—d¥ p=1[A" — A, p], and thus
WA (0 1) = Wear (0, 1) = (), [A" = A, p]) = w5 (A= A [, ).
Hence A : gau(P) — 30 (Y), v — [ka(A — A’ v)] satisfies ((5.4]). "

Definition 5.1.4. The continuous cocycle w,, 4 from the preceding lemma is called
covariant cocycle.

Remark 5.1.5. Lemma implies that the class [wy 4] € H2(gau(P),3m(Y))
is independent of the choice of the connection 1-form A. Thus, the equivalence
class of the central extension

—

gauw(P),, , = 3m(Y) Su, 4 gau(P) with [(z,n), (y, u)] = (wr,a(n, ), [0, p])
(cf. Remark |A.2.2)) does not depend on the choice of A but only on the bundle P

and on k. n
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Now the question arises how exhaustive the constructed central extension of
gau(P) is, i.e., for which spaces it is universal.

Remark 5.1.6. It has been shown in [Ma02] that the central extension of gau(P)
from Remark is universal in the case of a trivial bundle, finite-dimensional
and semisimple ¢ and the universal invariant bilinear form € x £ — V/(#), since then
gau(P) = C°°(M, ) and the cocycle is universal.

For non-trivial bundles it is not know to the author whether the central exten-
sion of the gauge algebra is universal. The arguments from [Ma02] do not carry
over directly, because they use heavily the fact that £ embeds as a subalgebra into
C>(M,¥). This is not true for C*°(P, €)X and causes the main problem. m

Problem 5.1.7. For which bundles (beside trivial ones) and for which locally
convex spaces is the central extension of Remark universal? n

5.2 Integrating the central extension of the
gauge algebra

In this and the following section we check the integrability condition for the central

extension of gau(P) from Remark [5.1.5, The background on central extensions of
Lie groups, Lie algebras and their relation is provided in Section [A.2]

Unless stated otherwise, throughout this section, we fix one smooth principal
K-bundle P over M for a locally exponential Lie group K and a closed compact
manifold M. Furthermore, k: & x £ — Y is always a continuous, symmetric and
K-invariant bilinear form and a cocycle w, 4 representing [wy, 4] from Remark [5.1.5]
for an arbitrary connection 1-form A as in Lemma [5.1.3]

Note that we are not assuming K to be connected, because this would cause
principal bundles over $! to become trivial and thus would exclude twisted affine
Kac-Moody groups. To this particular class of examples we turn in Section [5.4]

We first motivate the procedure in this section by collecting some results from
[Ne02a] and [MNO3]. The most important thing that we will have to consider is
the period homomorphism associated to a continuous cocycle.

Definition 5.2.1. Let G be a connected Lie group. Then [Ne(O2al, Section A.3]
implies that each class [3] € (@) = mo(C.(S?, G)) can be represented by a smooth
map 3 € C($%,G). If g denotes the Lie algebra of G, 3 is a sequentially complete
locally convex (or shortly s.c.l.c.) space and w : g X g — 3 is a continuous cocycle,
then we define the period homomorphism

per, : m2(G) — 3, [0] H/ﬁQ’
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where € is the left invariant closed -valued 2-form on G with Q(e) =w. Of
course, one has to show that this definition does not depend on the choice of the
representative 3. This is done in [Ne02a, Section 5], where we refer to for the
details. There it is also shown that per, in fact defines a homomorphism from the
abelian group m5(G) into the additive group of 3. m

The period homomorphism encodes a crucial part of the information on the
integrability of the cocycle w.

Remark 5.2.2. Let G be a connected Lie group with Lie algebra g and 3 be a
s.c.l.c. space. Let I C 3 be a discrete subgroup and Z := 3/T" be the corresponding
quotient Lie group. Then we define

I: H?(g,3) — Hom(m(G), Z) x Hom(7(G), Lin(g, 3))

as follows. For the first component we take I1([w]) := qz o per,,, where ¢z : 3 — Z
is the quotient map and per,, : m(G) — 3 is the period map of w. To define I ([w]),
for each = € g, we write X,. for the right invariant vector field on G with X, (e) = x
and Q for the left invariant 3-valued closed 2-from on G with Q(e) = w. Then
ix,(€) is a closed 3-valued 1-from ([Ne02al Lemma 3.11]) to which we associate a
homomorphism 7 (G) — 3 via

L)) = [ ix.(@)
for a smooth representative a € C>°($', K). We refer to [Ne(2al, Section 7] for
arguments showing that I is well-defined, i.e., that the right hand side depends
only on the cohomology class of w and the homotopy class of «. ]

Theorem 5.2.3. ([Ne02d, Theorem 7.12]) Let G be a connected Lie group, 3 be
a s.c.l.c. space, T C 3 be a discrete subgroup and w € Z*(g,3) be a continuous Lie
algebra cocycle. Then the central extension of Lie algebras 3 — g :=3®, g — ¢

integrates, in the sense of Remark to a central extension of Lie groups
Z — G — G with Z, = 3/T, if and only if I([w]) = 0. "

As we will see later on, the hard part is to check whether [; vanishes. By
choosing Z appropriately this can always be achieved as long as the image of the
period homomorphism is discrete.

Proposition 5.2.4. Let G be a connected Lie group, 3 be a s.c.l.c. space and
w € Z2(9,3). If per, : ma(G) — 3 is the associated period homomorphism and the
period group IL, := im(per,,) is discrete, then I;([w]) from Remark[5.2.4 vanishes
if we take I' =11,,.

Proof. In this case, ker(qz) = im(per,) and thus I;([w]) = gz o per,, vanishes. =
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In the case that the period group is discrete, one still has to check that I
vanishes in order to show that the central extension, determined by w, integrates.
This is always the case if G is simply connected, but in general, the condition that
15 vanishes seems to be as hard to check as the vanishing of I;. However, there
is an equivalent condition, which makes life easier (at least in the case that we
consider here).

Proposition 5.2.5. ([Ne02d, Proposition 7.6]) Let G be a connected Lie group,
be a s.c.l.c. space and w € Z>(g,3). Then the adjoint action of g on 3 Do, @, given
by

(z,(2,9)) = (w(z,y), [z,9]),

integrates to a smooth action of G if and only if Is([w]) = 0. [

We now return to our particular cocycle w;a.  The invariant forms
k:Ext—Y that we will mostly work with are the universal ones, which we
introduce now.

Definition 5.2.6. If £ is a locally convex Lie algebra and Y is a locally convex
space, then a continuous, symmetric and ¢-invariant bilinear form k:¢x ¢ —= Y
is called wuniversal if for each t-invariant symmetric bilinear map f:¢x ¢ — Z
factors through a unique continuous linear map f : Y — Z satisfying f = fok.m

We collect some facts on universal forms that we use in the sequel. In particular,
if £ is finite-dimensional and simple, then the universal form coincides with the
well-known Cartan—Killing form.

Remark 5.2.7. If ¢ is finite-dimensional, then a universal, continuous, symmetric
t-invariant bilinear form can be obtained as follows. Denote by V' (¢) the quotient
S2(€)/6.5%(k), where S?(£) is the universal symmetric product, where £ acts on by
z.(yVz)—|r,y]Vz+yV|z, z]. Then

K:Exe—=V(®), (x,y)— [zVyl,

is universal. We shall frequently denote by x : € x € — V() the universal form of
t and consider V' as a covariant functor form the category of (finite-dimensional)
Lie algebras to (finite-dimensional) vector spaces.

We collect some facts the universal form «: € x &€ — V(¢) = R™. The facts
used below can be found in the standard literature on (semi-) simple complex and
real Lie algebras, e.g., [Ja62], [He78|, [WaOl] or [On04]. Note that n > 1 if £ is
semi-simple, because then the Cartan—Killing form

kg 1 Ext— R, (z,y)— tr(ad(z)oad(y))

is a symmetric and invariant bilinear form which is non-degenerate by Cartan’s
Criterion.
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Furthermore, since kcgx is non-degenerate, for each other R-valued in-
variant symmetric bilinear form x’ we find a unique A € End(€) such that
ko (A, y) = k(x,y) for all z,y € €. Moreover, we have

ke (Alx,yl, 2) = K ([x,y], 2) = K (2, [y, 2]) = ko (A, [y, 2]) = ke ([A.x, )], 2)

for all z,y, z € ¢, which implies A.[x,y] = [A.x, y]. Taking € as a module over itself,
this implies that A is a module map, i.e., A € Ende(€). Thus

k(z,y) = (kex(A1.2,9), . .. kog (A2, y))

for A; € Ende(8) and we see that V' (#) = Endg() for uniqueness reasons.

If € is semi-simple with the simple factors €, ..., ¢,, then « is clearly the direct
sum of Ki,..., Ky, where k; : €& x & — V() is the universal form of ¢;. This re-
duces the determination of k to the case where £ is simple, so let € be a real simple
Lie algebra from now on. From the classification of simple real Lie algebras, it fol-
lows that ¢ is either the restriction of a complex simple Lie algebra to real scalars,
or ¢ is a real form of a simple complex Lie algebra. In the first case we have that
the complexification £ := £ ®i C is not simple as a complex Lie algebra and in
the second case that £€ is simple as a complex Lie algebra. We shall treat these
cases separately.

If ¢ is the restriction of a complex simple Lie algebra to real scalars, then
the module maps which are also complex linear, are precisely End(¢) = C - 1 by
Schur’s Lemma. If € Endg(#) is complex anti-linear, then we deduce from

ile, Ag) = Ad(ila, y]) = —iA([e,y)) = ~ilz, Ay]

that it vanishes. By decomposing each A € Ende(f) in its complex linear and
complex anti-linear part we see that this implies V' (¢) = C, and the two components
of the universal from x are the real and imaginary part of the Cartan—Killing form
of €€.

If €€ is simple as a complex Lie algebra, then we have Endg(€°) 2 End,(8) @ C
and by the same argument as above

1 - C = Endc(£°) = End,(£°) = (End(8)) ®g C,

which implies V(£) = Ende(€) = R. In this case, ko is the universal invariant
bilinear form. This is particular the case if € is a compact Lie algebra, i.e., if
Kok is negative definite or, equivalently, if each Lie group K with L(K) = ¢ is
compact. ]

In the case of a finite-dimensional trivial principal K-bundle over $* and uni-
versal k, the image of the period homomorphism is known to be discrete. As we
will see later on, this is the generic case for all finite-dimensional bundles.
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Proposition 5.2.8. If K is a finite-dimensional Lie group, Pk s the trivial bun-
dle over 81 with canonical connection 1-form A, k : € x € — V(¥) is universal and
Wi = w4 € Z2(gau(Px), 351 (Y)) is the cocycle from Remark[5.1.5, then the as-
sociated period group im(per, ) =: I, is discrete.

Proof. We have Gau(P) = C*(M, K) and gau(P) = C*(M, ), because P is
trivial. Then Ad(P) is also trivial and f + df is the covariant derivative induced
by the canonical connection 1-form on P. Therefore, wx coincides with the cocycle
(f,9) — [k(f,dg)] in [MNO3 Theorem II1.9], where K is assumed to be connected.
Since mo(K) = ma(Ky) is trivial,

m(C(S', K)) = ma(C (8, K)) = my(C(S', Ko)) = ma(C™(S, Ko))

and L(C™(S', K)) = C=(S',¢) = L(C>(8', Ko)), the image of per,, is not af-
fected by the missing assumption on K of being connected and [MNO3, Theorem
I1.9] yields the assertion. n

We now turn to the computation of the image of the period homomorphism in
the non-trivial case. As indicated before, bundles over $! play a key role in this
computation, because we can reduce the situation for arbitrary bundles to the case
of bundles over $! by choosing appropriate curves o : $! — M and pull back the
bundles along «.

One of the fundamental ideas in bundle theory is that pulling back bundles
along homotopic maps does not change the (equivalence class of) the pull-back
bundles. We shall adopt this idea and will show that pulling back bundles along
homotopic maps ay, s : $' — M will not change the (image of) the period homo-
morphism of the pull-back bundles. This will be the crucial observation to make
the whole reduction process to bundles over $! work.

Remark 5.2.9. For the entire section we fix a system of representatives (k;)icn,(x)
for the group my(K) := K/Kj of connected components of K with ki = e. For
a € C(8Y, M), we get from Remark[B.2.9that o*(P) is equivalent to P, for some
k € K and that [k| € mo(K) depends only on the homotopy class of a. We thus
obtain a homomorphism ¢ : m (M) — my(K) (which is the connecting homomor-
phism in the long exact homotopy sequence of P), which satisfies a*(P) = Py,_ .,
and we set Py} := Py, (o). Furthermore, for each [a] € (M) this yields a bundle
map ap : P, — P covering a.

The connection 1-form A on P induces a connection 1-form A, on Py by
pulling back A to a connection 1-form o (A) on Ppy. Then the induced covariant
derivative d* satisfies

d*(noap).X, = d*n.Tap(X,) (5.5)

for n € C®(Py,€)" and X, € T,P,. We denote the corresponding cocycle by
Wya. Furthermore, if a and ' are homotopic, then af(A) and o/5(A) are two
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different connection 1-forms on Pj,) and thus w, o — wy o is a coboundary. Since
the period homomorphism of a coboundary vanishes (cf. [Ne02a, Remark 5.9]) and

per,, ., —Dper, . =Dper, . . ., = 0,

Wk, Wy,

this implies that per,, :m(Gau(Py)) — 3m(Y) depends only on the homotopy

class of @ and we thus denote it per,, ol ]

We now take the mappings between the gauge groups into account that we get
from pulling back bundles.

Remark 5.2.10. If P is a smooth principal K-bundle over the compact man-
ifold M (possibly with corners) and f: N — M is smooth, then the induced
bundle map fp : f*(P) — P induces in turn a map fga, : Gau(P) — Gau(f*(P)),
given by v — o fp if we identify Gau(P) with C>*(P, K)¥ and Gau(f*(P)) with
C(f+(P), K)*.

Correspondingly, we have a homomorphism fgu, : gau(P) — gau(f*(P)),
1 — no fp, which is a morphism of topological Lie algebras by Lemma [2.2.24
It follows that fga, is a morphism of Lie groups, because Gau(P) is locally expo-
nential if K is so, and fg., makes the following diagram commutative

Gau(P) L% Gau(f*(P))

exp T exp T

gau(P) — gau(f*(P)) .

We are now able to describe what happens to the period homomorphism when
pulling bundles back along smooth curves. The formula derived in the next lemma
will be the crucial one to make the reduction to bundles over S work.

Lemma 5.2.11. If a € C®(S', M) and )\, denotes the linear map from Remark
then

Aa 0o per,, = A © per,, o To(QGau ), (5.6)

where agay is the induced map Gau(P) — Gau(Pyy) from Remark [5.2.10,

Proof. We identify Gau(P) and Gau(Py,)) with C*(P, K)* and C>(P), K)¥.
Then agay is given by f+ foap, where ap: P, — P is the induced bundle
map.

Denote by Qp and €, the left invariant closed 2-forms on Gau(P) and
Gau(a*(P)) with Qp(e) = wx, and Q,(€) = wy . Then A, 0 Qp is also left in-
variant, as well as ag,,,(£2,) since

)‘:(&Eau(ga)) = (aGau © )\’Y>*<Qa)

= (Aaca(m © @can) (L) = AGau(Aag,u ) () = AGan(a)-
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Thus «af,,(Q.) is determined by its values on T, Gau(P) = gau(P), where it is
given by

(1, 1) = [Kx(rgaule)-n, d* agau(€)-p1)] = [Ks(n 0 ap, dA(NJ oap))].

Since g, © ad,,(q) is also left invariant, we have Agi 0 ag,,(Q2a) = Ao 0 Qp, be-
cause

/(aéau(Qa))(e)(n,V)z/ fix(110 ap, d*(p 0 ap)(dy))dt
g1 g1

D[ (o, d* 1) (da(t).0,)dt = / e d* 1) = / Qp(e)(n 1) (5.7)

St o o

for n, u € gau(P), where 7) holds due to (5.5). For 5 € C~($% Gau(P)) we thus
have

Nags (per, . (m2(aca) (1)) = Aag (per., ([aGan © B]))

= Aidg: (/aGauoﬂ Qa) = Aidg (/ﬂa*Gau(Qa)> = /ﬁAidSl 0 AGan($2a)

= [ Mot =2 [ 0r) = datpers, (50).

We are now quite close to our aim of showing that pulling back bundles along
homotopic maps aq, as : $' — M does not change the image of the period group.
In view of , it remains to show that ma(1 Gan) = m2(@2,Gan), Which follows
from the next lemma.

Lemma 5.2.12. If oy, a9 : 8t — M are homotopic, then Piay] = Play) =: Plq) and
the induced bundle maps ayp : Py — P and agp : Po) — P are also homotopic.

Proof. Recall from Remark that a representative k € K for a bundle
over $' may be obtained as follows. We identify $!' with [0,1]/{0,1} and de-
note by ¢ :[0,1] — $! the corresponding quotient map. Then there exists a lift
Q@ :[0,1] — P with Q(0) = Q(1) - k and k is a representative of the bundle.

Now identify [0, 1] x $* with the quotient [0,1]?/ ~ with

NS r = if y,y' €{0,1}
(z,y) ~ (¢,y) & { v andy —y eslo
and denote by ¢ :[0,1]> — [0,1] x $* the corresponding quotient map. Let
F:[0,1] x 8 - M be a homotopy with F(0,-) =a; and F(1,-) = as. Then
there exists a lift Q' : [0,1]> — P of ¢/, because [0, 1]? is contractible, and we have
Q'(t,0) = Q'(t,1) - k(t) for some k : [0,1] — K. Furthermore, k; := k(t) represents
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F(t,-)*(P) by its construction, i.e., Py, = F(t,-)*(P). Finally, k; depends contin-
uously on ¢, because

k(t) = ko (Q'(t, 1)) - ko(Q'(t,0))

for an arbitrary section o : U — P for a trivialising neighbourhood U of F'(t,{0,1})

(cf. Remark |B.1.5)).
From the identification Py, = F(t,-)*(P) we get bundle maps (F})p : P, — P.

Furthermore, let R : [0,1]* — K be such that R|g j, 1 = ko) and R|, ;) = k.
This induces continuous maps (R;)p : Py, — P, and

[0,1] x Py, — P, (t,p) = (F)p((Re)p(p))

is a homotopy between «; » and ag p. [

In order to perform the reduction, we have to know how ma( fgau) looks in two
very special cases.

Lemma 5.2.13. For a € C*°(8', M), let Py be the bundle over S' represented
by ky(ja)) € K as in Remark . If f € C>=(S',8Y) is homotopic to the identity,
then Pla) = Plaoy and

To( faan) 7T2(Gau(7)[a})) - 7T2(Gau(7)[a0f])> = 7T2(GaU(P[04))

15 the identity map.
On the other hand, if K is finite-dimensional and f € C*(S$*,$') is homotopic
to a constant map, then P 51 = Pjg is the trivial bundle and

T2( faan) : T2(Gau(Pl))) — mo(Gau(Pyof)) = m2(Gau(Py))
vanishes.

Proof. Lemma tells us that homotopic maps between the base spaces in-
duce homotopic maps between the gauge groups since they are given by pull-backs
of the corresponding bundle maps. If f is homotopic to idg: we may thus assume
that f =idg:, and then mo(fgau) is the identity, because fgau is so. Accordingly,
in the case that f is homotopic to the constant map, we may assume that f = my
and thus Pj, s) = Pjg. In this case fp has values in one single fibre and thus

faan : Gau(Pj)) — Gau(Py) = C*(M, K)
takes values in K < C*(M, K) and since mo(K') vanishes so does ma( fgau)- n

One crucial step in the reduction is to show that the image of the period
homomorphism is contained in the subspace Hiz(M,Y") of 33,(Y), which is well
accessible.
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Remark 5.2.14. Let M be a closed finite-dimensional manifold and Y be a
Fréchet space. Since an element 3 € Q'(M,Y) is an exact form if and only if all
integrals faﬂ vanish for a € C*(8', M), the linear maps )\, separate the points
of 31 (Y).

A 1-form 3 € Q'(M,Y) is closed if and only if for all pairs of homotopic paths
o, we have [ 3= [, (. Therefore, the subspace Hig(M,Y) C Q'(M,Y) is the
annihilator of the linear maps A\, — Ay for [a] = [¢/] in 7 (M). In particular,
Hlz(M,Y) is a closed subspace of 35/(Y"). Moreover, we have for [3] € 3,,(Y) that
(8] € Hig(M,Y) if and only if A\,([5]) only depends on the homotopy class of c.m

We still have to choose our curves a : $' — M in a way that the image of
the period homomorphism of the pull-back bundles carries all information on the
image of the period homomorphism on P. This choice is the last thing we have
to do before we can prove the Reduction Theorem. This choice makes the space
Hix(M,Y) accessible.

Remark 5.2.15. If M is a closed finite-dimensional manifold and Y is a Fréchet
space, then the de Rham isomorphism and the Universal Coefficient Theorem (cf.
[Br93, Theorem V.7.2]) yield

Hix(M,Y)= H'(M,Y) = Hom(H,(M),Y),

because Hy(M) is free. If M is compact, denote by r the rank of the finitely
generated free abelian group

H(M)/tor(H(M))

and consider a basis given by the smooth representatives [a], . .. [a,]. Since Ho(M)
is free, the Universal Coefficient Theorem and Huber’s Theorem (cf. [Hu61] or
[Br93|, Corollary VII.13.16]) imply

Hom(m (M), 7Z) = Hom(my (M) /[m (M), 7 (M)], Z)
=~ Hom(H,(M),7Z) = H' (M, Z) = [M, $"].

In particular,  there exist maps fi,...,f, € C®°(M,S) such that
[fi o a;] = d;; € m1(Sh), and, in virtue of [Ne02a, Theorem A.3.7], we can assume
the f; to be smooth. Since we chose the «; to build a basis of H;(M)/ tor(H(M))
and each homomorphism from tor(H;(M)) to Y vanishes, we eventually obtain
an isomorphism

O HY(M,Y) = Hom(H,(M),Y) — Y, [f] — (/ 6>i:1 L6

a; 7=

whose inverse is given by @~ (y1,...,y,) — > i [6'(fi) - vil. ]
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Theorem 5.2.16 (Reduction Theorem). The period group Ilp ,; := im(per,, )
is contained in the subspace Hiz(M,Y) of 3m(Y). If K is finite-dimensional,
r denotes the rank of Hy(M)/tor(H,(M)) and ay,...,a, € C®(S$', M) and
fiyoo o fr € C®(M,S$Y) are chosen as in Remark then

Up, = @ [0'(f:)] Aiast oper, )= @HP[%],K~ (5.9)
i=1

In particular, Ilp . is discrete if and only iof lp,_ . . is discrete fori=1,...,r.

[evs]>
Proof. Remark Lemma [5.2.11] and Lemma [5.2.12] imply that for
a € C=(S M)

Aa(per,, (191) = A, (per.,_ ([acau o A1) € 514(Y)

depends only on the homotopy class of . Consequently, per,,  ([3]) is an element
of H;(M,Y) by Remark [5.2.14] establishing the first assertion.

In order to show (5.9)), we evaluate A, on per,, , (m2(fcau)) for a € C>($', M)
and f € C>°(M,S'):

o 7T2(aGau> o 7"-Q(fGau)

= Aiag ©per,, . © ma((@o f)gau)-

Aaoper,, , 0m(faan) = Ny oPer,,

We thus obtain with Lemma [5.2.13]
Ao, oper,, 0 Ta(fjcan) = 0ij - Mag oper,, - (5.10)
Applying ®~! to (5.10]), we thus obtain
i (per,,_, oma(fucan)) = ()] - im(huag, oper,, )

and hence

HPRD@(;I fz ( 1d1oper ])g@npl%]w.
i=1

On the other hand, A,, o per,, , = Asioper, o) © Ta( i Gau) implies directly

H'pnc@él fz ( 1d10per a])g@np[ai]ﬁ'
=1

In the case of a connected structure group, the pull-back bundles over $! are
trivial and we thus have the discreteness of the period group that we are aiming
for.
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Corollary 5.2.17. If K is finite-dimensional and connected, then the period group
Ip, = im(perwmA) is discrete if and only if Ilp, . = Ils1 ,, is discrete for the trivial
bundle P over S'. Moreover, if k: € x & — V() is universal, then Il = g .
15 discrete.

Proof. Since principal bundles over $! are trivial for connected structure groups
(cf. Proposition , each P|,,] in the preceding theorem is in fact trivial and
the first assertion follows. Since inner automorphisms induce the identity on V'(€)
by its construction, K = K acts trivially on V'(£), because it is generated exp(£).
Thus k is K-invariant and the second is assertion follows from Proposition [5.2.8m

At first glance it does not seem to be a hard restriction to require K to be
connected. But since only trivial bundles over $! arise in this way, one needs
to consider also bundles with non-connected structure groups in order to obtain
interesting generalisations of loop groups, e.g., twisted affine Kac—-Moody groups

(cf. Section [5.4).

Proposition 5.2.18. If K is finite-dimensional, k € K, and Pj is the smooth
principal K-bundle over $' from Remark then the period group
p, x = im(perwmAk) equals the period group Ilg , = im(perwm%) of the trivial
bundle, where Ay and A. are the canonical connection 1-forms. Furthermore, if
K:8xt— V(8 is universal and K -invariant, then Ilp, . is discrete.

Proof. We identify Gau(Pj) with the twisted loop group
CPSLK)={feC*°R,K): f(x+1)=k""- f(x)-k forall 2 € R},

and consider the evaluation fibration ev, : C°($', K) — K, f — f(0). Then we
have homotopy equivalences

ker(evy,) ={f € C°(S', K

( Z) = {¢}}
~{f e (8", K

(

(

f(
f(Z 4 [—¢,€]) = {e}} = CRL(SY, K)
f(Z + [—¢,¢]) = {e}} = C2(SY, K)
f(Z) = {e}} = ker(ev,) (5.11)

for 0 < e < 1. Here the isomorphism 1 : CY2($", K) — C22(S!, K) is given by first
restricting f € Cp2 (S, K) to [0, 1] and then extend flio to f:R — K by defining
fto be constant of the Z-translates of z € [0, 1]. This implies in particular

fA‘[O’l] f’[O,l} an fZHiE’E] f‘ZJr[—s,s]

~(f e C2(8\ K

) :
) :
) :
~{f e C®(S! K)

and thus that ]?is smooth. Now these homotopy equivalences induce an isomor-
phism W : my(ker(evy)) — m(ker(ev,))
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Now we have that the inclusions ¢ : ker(evy,) — C°($!, K) induce surjective
maps ma(tx), because mo(K) = 0.

We abbreviate wy, 1= wy 4, and we := wy, 4., where A, is the canonical connec-
tion on P, and Ay, is the canonical connection on Py, (cf. Lemma . We then
have the following diagram

o (ker(evy)) RICON T (CR (8 K)) =5 30 (V) —— YV
5.12
d | e

Aidg g

my(ker(eve)) U my(C(SY K)) 2T (V) — Y,

which we claim to be commutative. If 8 € C°($?, (ker(evy))), then we may as-
sume w.l.o.g. that [ takes values in C,?fs(Sl, K), due to the homotopy equivalences
(5.11). This implies that the restriction of per,([5]) to [0,1] coincides with the
restriction of per,(¥([5])) to [0, 1], because ¥ (f)| = fljp- Since the compu-
tation of g, (pery([d])) and A, (per,([5])) involves only the values on [0, 1], we
deduce that is commutative.

Thus Ilp, . equals Ilg: ., because m5(¢y) and ma(te) are surjective. If we choose
k:€xt— V(E) to be universal, then g1, = Ilp, , is discrete by Proposition

b23 n

The following corollary we will need later on when discussing Kac—-Moody
groups. There we will also encounter examples of interesting forms x, which are
t-invariant, but not K-invariant and give an outline of possible generalisations.

Corollary 5.2.19. If K is finite-dimensional, Ky is compact and € is simple over
R and k : € x € — R is the Cartan-Killing form, then A, (Ilp, ) = Z.

Proof. First note that by Remark the Cartan—Killing form is universal if £
is simple and compact. Since )\idé(l_[pm) = Aidg; (s x) by Proposition , this
follows from the explicit description of Ilg: , in [MNO3, Remark I1.10] (where the
period group is identified with a subset of Y by ® from (/5.8])). [

Note that the previous corollary does not generalise to simple €, because then
the universal form need not be K-invariant (cf. Example [5.4.13)).

5.3 Actions of the automorphism group

In this section we will construct a smooth action of the automorphism group

o —

Aut(P) on the central extension Gau(P)y from Theorem |5.3.8. This will in par-
ticular finish integration of the central extension of gau(P), which we began in the
previous chapter.
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Unless stated otherwise, throughout this section we fix a finite-dimensional
smooth principal K-bundle P over a closed compact manifold M. Throughout this
section we will assume the bundles to be finite-dimensional, because this makes
severals smoothness arguments for actions easier.

In order to make things not too complicated, we assume our bundles through-
out this sections to be finite-dimensional.

We start with the construction of various actions of Aut(P).

Remark 5.3.1. If P is a principal K-bundle and A : K x Y — Y is a smooth
action, then we have a canonical action of Aut(P) on C*°(P,Y)?, given by

Aut(P) x C=°(P,Y)* — C=(P,Y)*, Fnp=noF~ " (5.13)

Furthermore, each F € Aut(P) induces a diffeomorphism Fj; on M and thus
Aut(P) acts on C*(M,Y) and Q'(M,Y) by

Aut(P) x C*(M,Y) — C*(M,Y), Fn= noFJ\}1 = (FA?)*W
and
Aut(P) x QYM,Y) — QY(M,Y), Fuw=woTF ' = (Fi)w.

Furthermore, these actions are smooth, because F' +— Fj; is smooth and Diff (M)

acts smoothly on C°°(M,Y) and Q'(M,Y’) by Lemma [2.2.25| and Lemma [2.2.26]
Since this action preserves the subspace dC®(M,Y)C QY(M,Y), it factors

through a smooth action

Aut(P) x 3(Y) — 3m(Y), F.w] = [Fw]. (5.14)

Lemma 5.3.2. If A = Ad is the adjoint action, then the action (5.13) of Aut(P)
on C(P, &)X is smooth and automorphic.

Proof. In view of Remark |3.4.8 this is simply the adjoint action of Aut(P), re-
stricted to the ideal L(Gau(P)) = C>(P, £)*, which is smooth and automorphic.m

We now collect several properties of the pull-back action of Aut(P) on Q!(P,¥).
This action will be the one that relates the actions of Aut(P) on gau(P) and on
30(Y) to give an action of Aut(7P) on the central extension 35/(Y) @, , gau(P). In
other words, this action will yield a cocycle for the action on this central extension

(cf. Remark |A.3.5).

Remark 5.3.3. If P is a smooth principal K-bundle, A € Q!(P,£) is a connection
1-form and F' € Aut(P), then F*A := AoTF is also a connection 1-form. In fact,
we have

pr)(k) = F(p) -k = F(p- k) = Fop,(k),
Trp) () = Tprp)(e).x = TFoTpy(e).x
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thus

AoTFoTp, =AoT(ppoF)=Ad(k™).(AcTF),
A(TF(mp(2))) = A(TF(p)(I)) =

and F*A is again a connection 1-from. This gives us an action
Aut(P) x Conn(P) — Conn(P), F.A=(F 1A
of Aut(P) on the affine space Conn(P) of connection 1-forms on P. =

Lemma 5.3.4. If P is a finite-dimensional smooth principal K-bundle over the
closed compact manifold M, then the action

r: Aut(P) x QY(PE) — QYPE), Frs A— (F 1A,
18 smooth.

Proof. As in Proposition it can bee seen that the canonical action
Aut(P) x TP — TP, F.X, =TF(X,) is smooth. Since P is finite-dimensional
and the topology on Q!(P, ) is the induced topology from C*(T'P,¥), the asser-
tion now follows from Lemma [2.2.25] =

We shall only need a special case of the previous lemma, where we fix a con-
nection 1-from A and then let Aut(P) act on A.

Remark 5.3.5. Let P be a principal K-bundle, A be a connection 1-from on
P and F € Aut(P). Then F*A is again a connection 1-from and the difference
A — F* A vanishes on each vertical tangent space V,,, because each X, € V,, can be
written as 7,(x) for x € £ and we have

A(X,) — A(TF(X,)) = A(ry(a)) — A(TF(r,(a))) = ¢ — ¢ =0,

Thus A — F*A € Ql_ (P, &)X = QY(M,Ad(P)) and we get a map

ra: Aut(P) — QY (M, Ad(P)), Fw— A— (F)*A (5.15)

Furthermore, 74 is a 1-cocycle, i.e., we have ro(F - F') = ra(F) + F.ora(F'). Here,
the action of Aut(P) on Q'(M, Ad(P)) is given by the canonical action

Aut(P) x QY(P &) — QYP ), (F A) — (F )4
which leaves the subspace Qf (P, €)" invariant, and is compatible with the iso-
morphism Q (P, €)% = QY (M, Ad(P)). =

bas
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Lemma 5.3.6. If A € QY(P, €)X is a connection 1-form, then the cocycle

ra Aut(P) — QL (PO =2 QY (M, Ad(P)), F— A—(F ')A

bas

is smooth. Furthermore, for n € gau(P) we have dra(e).n = —d*n.

Proof. We only have to show dra(e).n = —d*n. In order to do so, we first
derive a formula for A — (F~1)*A. Identifying Gau(P) with C>*(P, K)X by
v +— F, =po(idp xy) o A (cf. Remark [3.1.2)) we have for X, € T,P
(F;1)"A(Xp) = Ao TFy (X))
= AoTp(X), TV_I(XP))
= Ao Tp(Xp,05-1()) + Ao Tp(0,, Ty~ (X))
=Ao prfl(p) (Xp) —+ A OTpp(T’)/_l(Xp))

= Ad(Y)(AX,) A0 Tpp-10n(8' (771)(X,))
= Ad(Y(P)(AX,)  + Ao (0 (X))
= Ad(v(P)(AX,)  +8(HX).

This yields the well-known transformation formula for connections (cf. [NaQ0),
Section 1.4])

(F;1)"A=Ad(y).A+ Sy = Ad(y). A+ y.dy~".

Now [MNO3, Lemma II1.2] shows that d(6')(e).n = dn (cf. also [GNQOT7a]) and
we thus obtain

(Arate)m)(X,) = | raten(t-m)(5) = G| (ra)esplt- n(x,)
= G| (el ), AC%) + dexnit- m))(X,)
= (ad(A(X,), (p) — dn(X,) = — d*(X,). .

As we said before, the cocylce 74 now yields a cocycle for an action of Aut(P)
on the central extension 35,(Y) &, gau(P).

Proposition 5.3.7. Let P be a finite-dimensional smooth principal K -bundle over
the closed compact manifold M and A be a connection 1-form on P. IfY is a
Fréchet space, k: ¢ x t — Y is K-invariant, symmetric, bilinear and continuous
and wy 4 s the continuous cocycle from Lemma then Aut(P) acts smoothly

and automorphically on g@) =3u(Y) @o, , gau(P) by
F.Az,n) = (F.z+ Ra(F,n), F.n), (5.16)

where F acts on gau(P) = C=(P, &) by (5.13), on 3y (M) by and
Ry Aut(P) x gaw(P) — 3 (Y),  (F,n) = [m(Fon, ra(F))].
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Proof. First we check that (5.16]) in fact defines an action of abstract groups.
Since r4 is a 1-cocycle, we have
F'.(F.(z,n))
=F'.(F.z+ Ra(F,n), F.n)
:((F/ ’ F)Z + F/-RA(F7 77) + RA(F/7F'77)7 (F/ ’ F)77)
=((F"- F).z, (F'- F).n)
(P ke Fn ralF)] + [ (F - ) ra(F)], (F' - F).n)
=((F"- F).z, (F"- F).n)
(18P Fon, Fra(F)] 4 [, ((F - F)nra(F)] (F' - F).n)
=((F'- F).z+ [k ((F - F).p,ra(F' - F))], (F' - F).n)
—((F'- F).+ R(F'- F,), (F' - F).7))
=(F"- F).(z,m).
That Aut(P) acts by Lie algebra automorphisms follows from the description
of automorphisms of central extensions in Lemma because we have
RA(F" - F,n) = [ke(F' - Emyra(F' - F))] = [ (F" - Fyra(F') + F'or4(F))]
= [ke(F' - Eyra(F)] + F' [k (Fyra(F))] = R(F', F.n) + F'.Ra(F,n)

Finally, the action is smooth because Aut(P) acts smoothly on 3y (M) and
gau(P) and because r4 is smooth. n

We are now ready to prove the two main results of this chapter.

Theorem 5.3.8 (Integrating the the central extension of gau(P)). Let P
be a finite-dimensional smooth principal K-bundle over the closed compact man-
ifold M and k:¥xt— V(8 be universal. Furthermore, set 3 :=3u(V (),
g := gauw(P) and G := Gau(P)o. If A is a connection 1-form on P, d* its co-
variant derivative and
W= weat8X 83, (1) [m(n,d" p)]
is the cocycle from Lemma |B.3.11), then I([w]) = 0, where
I+ HZ(g,5) — Hom(my(G),3/IL,) x Hom(m (G), Lin(g,3)).

1s the map from Remark and I, is the period group I, = im(per,) of w.
Thus the central extension

3= 009 (5.17)
of Lie algebras integrates to an extension of Lie groups

7G> G,



114 5. Central extensions of gauge groups

Proof. First we note that I1,, is discrete by Theorem[5.2.16]and Proposition[5.2.18]
and thus 3 /11, is in fact a Lie group. Since the central extension integrates
if and only if I([w]) vanishes (cf. Theorem and I ([w]) vanishes by its con-
struction, have to check that I»([w]) = 0.

Recall that we defined R, : Aut(P) x g — 3, (EF,n) — [k(Fm,74(F))]. Re-

stricting the action
Aut(P) x 3 Bu g — 3 w8, Fl(z,n) = (Fz+ Ra(F.n), Fn)

from (5.16)) to G, we get a smooth action A of G on g, by F.(z,n) = (Ra(F,n), F.n),
because Fy; = idy, if F' € Gau(P). We calculate the derived action of g. First
observe that for n, u € g we have

dRa(e, p).(n,0) = [dr.(p1,0)(ad(n, 1), drale).n))
= [k (p dra(e).n)] + [dr.(0,ad)] = [k.(p, —d* )],

since dra(e).n = —d*n by Lemma [5.3.6, Thus

An)-(z, 1) = dA(e, (2,1)).(n, (0,0)) = (dRa(e, p).n, d Ad(e, ). (1, 0)
= ([k«(p, —d* )], [n, 1)) = (w(n, 1), [, 1))

implies that the derived action of g on @, is the adjoint action of g on g. By
Proposition [5.2.5 this is the case if and only if I5([w]) vanishes. This establishes
the assertion. [

Theorem 5.3.9 (Integrating the Aut(P)-action on g@?”)). Let P be a fi-
nite-dimensional smooth principal K-bundle over the closed compact manifold M
and Kk : € x ¥ =Y be continuous, bilinear and K-invariant. If w, 4 is the cocycle

from Lemma |B.3.11}, the period group llp , = im(peer’A) is discrete and

Z < Gau(P)y — Gau(P)
is a central extension of Gau(P)y with Zy = 30(Y)/Ilp ., then the smooth action of

Aut(P) on g@) from Proposition|5.3.7 integrates to a smooth action of Aut(P)
on Gau(P)o.

Proof. We abbreviate G = Gau(P),. The construction of G in [Ne02a, Lemma
7.11] shows that we have

Z H -, @G
[
Z G —1- G,
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where H is the central extension of the universal covering group G determined
by w (note that L(G) = L(G) = gau(P)) and G = H/FE for a discrete subgroup
E=m(G) of H.

Using [MNO03, Lemma V.5], we lift the conjugation of Aut(P) on G to a smooth
action of Aut(P) on G, having the same induced action on gau(P). Furthermore,
the action of Aut(P) on 3,(Y) preserves II,, and thus Aut(P) acts also on Zj, in-
ducing the canonical action on 3,,(Y). Then the Lifting Theorem [MNO3], Theorem
V.9] yields the assertion. n

As in the end of Section 5.1}, the question arises how exhaustive the constructed
central extension of Gau(P)y is, i.e., for which spaces it is universal. Furthermore,
one would like to know whether this central extension can be enlarged to a central
extension of the whole gauge group Gau(P).

Remark 5.3.10. In [MNO03, Section IV] it is shown that the central extension

o —

Gau(P)o from Theorem [5.2.3|is universal for a large class of groups in the case of
a trivial bundle (where Gau(P) = C*°(M, K)) and finite-dimensional and semisim-

ple €. The proof given there would carry over to show universality of Gau(P), as

—

well, if we knew that the central extension gau(P) was universal. We thus see once
more the importance of Problem

The question whether the central extension of Gau(P)q can be enlarged to a
central extension of Gau(P) has not been considered so far. ]

Problem 5.3.11. We abbreviate Gau(P) := . When does the central extension
7 Gy —— Gy

from Theorem extend to a central extension of G, i.e., when does there exist
a central extension .
Z—G—(G

and a homomorphism ¢ : é\o — G such that the diagram

Z Go 2 G,
[ T
Z G - @
commutes? [

5.4 Kac—Moody groups

In this section we describe the relation of gauge groups to (affine, topological)
Kac-Moody groups. As indicated in the beginning of Section [5.2] these groups
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arise as central extensions of gauge groups for bundles over $!', where the twisted
affine Kac—-Moody groups arise as gauge groups for non-trivial bundles, i.e., for
non-connected structure group (cf. Proposition .

Trivial bundles form one particular equivalence class of bundles. From this
point of view, generalisations of affine Kac-Moody groups are at hand, e.g., by
considering (central extensions) of gauge groups over flat bundles or by considering
more general structure groups (cf. Remark . We thus see bundle theory as
the natural framework for a unified treatment of Kac—Moody groups and their
various generalisations.

Since there are many different flavours of Kac-Moody groups we first fix our
setting.

Definition 5.4.1. If K is a Lie group, then for k € K we define the twisted loop
group

CE(SY K) ={y€ C®°(R,K) :y(x+n) =k ~y(x) -k forall x € R,n € Z}.
and the twisted loop algebra
C(Sh8) == {n € C*°R,¥) : n(z +n) = Ad(k) "n(z) for all x € R,n € Z}.
]
Lemma 5.4.2. Let K be a flat principal K-bundle over M, given by
P, =M x K/ ~ with (i, k) ~ (- d,o(d)~" - k)
for a homomorphism ¢ : m(M) — K (cf. Remark[B.5.15). Then
Gau(P) = C*(M, Ky = {f € C*(M,K) : f(in-d) = p(d)™" - f(in) - (d)}
and
gau(P) = C(M, &)™) = {f € C=(M,¥) : f(n - d) = Ad(p(d))"".f (M) }.

In particular, if Py, is a principal K-bundle over $', given by some k € K (cf.
Remark [B.2.9), then Gau(Py) = C°($t, K) and gau(Py) = C5°(S', ).

Proof. The isomorphism for that gauge group is provided by
Co(M, K™ 5 f o ([, k)] v k- f (1) - k) € OF(Py, K.

That the map on the right-hand-side is well-defined follows from the my(M)-
equivariance of f and that it is K-equivariant follows directly from the definition
of the K-action on F,. The isomorphism for the gauge algebra is given by

Co(M, 8™ M) 5 f s ([(, k)] — Ad(E) . f (7)) € C=(P,, K)¥. -
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Remark 5.4.3. Note that C°($!, K) is isomorphic to the loop group C*=($!, K)
if ke Ky. In fact, then we can find a curve 7€ C®(R,K) satisfying
7(x+n)=71(z) k" for x € R, n € Z and then v — 7 -7 77! provides such an
isomorphism. Thus we recover the fact from the classification of bundles over $1,
that they are classified up to equivalence by my(K). "

We now endow C°($', K') with a topology turning the above isomorphism into
isomorphism of topological groups.

Remark 5.4.4. We endow C°($!, K) with the subspace topology from the C'*-
topology on C*°(R, K) and the construction in Lemma m shows that it is also

isomorphic to Gau(Py) as a topological group. Consequently, it is a Lie group
modelled on C{°(S? €). u

In order to make our definition of a Kac—Moody group precise, we first collect
some material on central extensions of twisted loop algebras and groups.

Remark 5.4.5. Let K be a (not necessarily connected) finite-dimensional Lie
group such that ¢ is a compact real simple Lie algebra. If x:t¢xt— R
is the Cartan—Killing form, then &k is in particular K-invariant, since
k(z,y) = tr(ad(z) oad(y)) is invariant under Aut(€). It furthermore is universal
(cf. Remark [5.2.7).

If Py, is a smooth principal K-bundle over $!, then we have a canonical connec-
tion 1-form on it inducing the covariant derivative f +— df, if we identify gau(P)
with C°($,€) (cf. Lemma [B.3.14). We thus have a canonical cocycle

w:CR(8',8) x C°(S',8) = 351 (R) X R, (n,p) — [ }H(n,u’)
0,1

if we identify 351 (R) with R as in Remark [5.2.14] This defines a central extension
R — R @, CX(S',8) — CX(Sh8), (5.18)

which is equivalent to the central extension of gau(Pg) by 3s:(R) from Remark
5.1.5. Furthermore, by Theorem this central extension integrates to a central
extension

—

Z — CX(8, K)g — C(S', K)g (5.19)

of C (S, K)o with Zy = R/II,, where II, = im(per,) is the image of the pe-
riod homomorphism per,, : m(C° (S, K)) — 351(R) 2 R. We assume from now
on that Kj is simply connected. Then the exact sequence

71 (K) = mo(C (8!, K)) 2% iy (K)

from the evaluation fibration shows that C{°($', K) maps injectively into mo(K).
Since $! is connected, the image of my(ev) are precisely the components K* of K
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mapped onto themselves by conjugation with &, i.e., im(m(ev)) = Fixy, ) ([k])-
Thus we have C°($t, K) = C°(S!, K) N C*°($!, K*). Furthermore, the exact se-
quence

m(K) — m(CE(S' K)) — m(K)

from the evaluation fibration shows that m(C°($!, K)) vanishes, because
m(K) = m(Ky) and mo(K) = ma(Kp). Thus the exact sequence

m(CR (8T, K)) — mo(Z) — mo(CR7(S, K))

from the long exact homotopy sequence of the locally trivial bundle shows
that Z is also connected. Furthermore, if Ky is compact, which is equivalent to €
being the compact real from of a simple complex Lie algebra (cf. [He78, Proposition
X.1.5] and [DK00, Corollary 3.6.3]), then Corollary [5.2.19 shows that II,, = Z and
we thus have in fact a central extension

—

T o CFELK) - G (81, K), (5.20)
which is unique (up to equivalence), because 71 (C°($!, K)) is simply connected.m

The following definition seems implicitly to be contained in the literature, but
the author was not able to find a precise reference for it. One reference often used
is [PS86], but there the meaning of a Kac-Moody group in the twisted case (i.e.,
the case of non-connected K) is not made precise.

According to the algebraic definition of a Kac-Moody group (cf. [PK83]), it
should be a group which “integrates” the central extension . Thus the fol-
lowing definition seems to be appropriate.

Definition 5.4.6. If K is a finite-dimensional Lie group with simple real Lie al-

- —

gebra £, then we call the central extension gj := C°(S',¢) from (5.18) an affine
Kac—Moody algebra. 1f, moreover, Ky is compact and simply-connected, then
the central extension Gy := Cp°(St, K) from (5.20)) is called an affine Kac—Moody
group. n

In the compact case, g and G can be seen as unitary real forms of complex
Kac—Moody algebras and groups.

Remark 5.4.7. Note that the equivalence class of the central extensions g, and
Gy, only depends on [k] € mo(K), because the equivalence class of the bundle Py
does so and equivalent bundles lead to equivalent extensions. [

Let’s see which topological information on G, we have.

Proposition 5.4.8. For the affine Kac-Moody group G and the twisted loop
group C°(8', K) we have that m(Gy), m(C2(SY, K)) and 7a(Gy) vanish and
mo(CR(SY, K)) 2 Z. Forn > 3 we have m,(G},) = m,(C2(S!, K)).
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Proof. Since Tisa K(1,7Z) (i.e., m,(T) vanishes except for n = 1 and m (T) = Z),
the long exact homotopy sequence of the locally trivial fibration immediately
yields the cases n > 3 and furthermore leads to

7o(T) —73(G) = ma(CE(SY, K )o) 2 m1(T) — w1 (G) — w1 (C3(SY, K )o) — mo(T)
— = =

=1
(5.21)
Since the connecting homomorphism §; is precisely — per, [Ne02al, Proposition
5.11], it is in particular surjective, because T = R/im(per,). From the exact
sequence

m3(K) — m (O (S, K)) — mo(K) — mo(K) — 71 (C2(SY K)) — m(K) (5.22)
~—— —~— = ——
=7, =0 =0 =0
induced by the evaluation fibration, we get immediately that 7 (C°(S!, K)) van-
ishes. This implies in turn that m(Gy) vanishes, because d; = — per,, is surjective
and thus implies that 7;(Gy) maps invectively into 7 (C°($!, K)). Thus
7T1(Gk) = 7T1(C]?O<81,K>> =0.
Furthermore, implies that mo(C°($!, K)) is a quotient of m3(K) = Z
and hence cyclic. Since d; is surjective, mo(C°(S!, K)) must be infinite and thus
is isomorphic to Z. Since §; is surjective, ((5.21]) now implies mo(Gy) = 0. n

Note that 71 (Gy) = 0 justifies the the terminology “affine Kac-Moody group”,
because it allows continuous representations of g, to be lifted to smooth actions of
Gy, at least in the case of continuous representations on Banach spaces (cf. [PK83]
and [NeO6b, Theorem IV.1.19.]).

Often, Kac-Moody algebras are introduced as central extensions of twisted
loop algebras, given in terms of finite order automorphisms of . This we relate
now to our notion of twisted loop algebra.

Remark 5.4.9. If £ is a finite-dimensional simple real Lie algebra and ¢ € Aut(¥)
is of finite order r, then we set

C(S'8) == {n € CF(R,¥) : n(z +n) = ¢"(n(x))}.

If ¢ is an inner automorphism, then the twisted loop algebra is isomorphic to
the untwisted loop algebra, since then ¢ can be connected with ide in Aut(€) by
a smooth path, which yields an isomorphism (cf. Remark [5.4.3). We will thus
assume from now on thatNgo is an outer automorphism.

In this situation, if K is a finite-dimensional simply connected Lie group
with Lie algebra £, then ¢ integrates to a uniquely determined automorphism
¢ : K — K, which has also order . Then Z, acts on K by [m].g = ®"(g) and we
set K := Z, x¢ K. Then the Lie algebra of K is also £, and unwinding the defini-
tions we get Ad(1, e) = . Furthermore, K is non-connected, because my(K) = Z,..



120 5. Central extensions of gauge groups

Thus (1,e) determines a non-trivial principal K-bundle P, := P ) over $' and
we have

CF(81,8) = C2(S, v). .

After having related the constructed central extension of gauge groups to affine
Kac-Moody groups, we turn to an application of the construction of the Lie group
structure on Aut(Py), which turns out to be the automorphism group of C£° (S, €).

Example 5.4.10 (Aut(Cg°(S',€))). Let K be a finite-dimensional Lie group,
Ky be compact and simply connected and P, be a smooth principal K-bundle
over $'. From Lemma we get a smooth action of Aut(Py) on C(Sh)8),
which also lifts to an action on Cp°($!,€). Various results (cf. [Le80, Theorem 16])
assert that each automorphism of C£°($, €) arises in this way and we thus have a
geometric description of Aut(Cge(Sh,€)) = Aut(Py). Furthermore, this also leads
to topological information on Aut(C°($!,€)), since we get a long exact homotopy
sequence

.. — 1 (DIfE(SY) 255 71, (C(SY, K)) — mo(Aut(Py))
— 1 (DIF(SY) 2 11 (C0(SY, K)) — ... (5.23)

induced by the locally trivial bundle Gau(Py) — Aut(Py) LN Diff($)p,
from Theorem and the isomorphisms Gau(P;) = C°(S', K) and
Aut(Pg) = Aut(Ce(Sh €)). E.g., in combination with

m(Diff($)) =< Z  ifn=1 (5.24)
0 ifn>2

(cf. [Mi84]), one obtains information on 7, (Aut(Px)). In fact, consider the exact
sequence

0 — m(CR($Y, K)) — mi(Aut(Py)) — mi(Diff(M)) — mo(Co (S, K))

———
=7

— mo(Aut(Py)) 2, o (DifE($1)p, )

induced by and (5.24). Since m(Cp°(S',K)) vanishes, this implies
m (Aut(Py)) 2 Z. A generator of 7 (Diff ($')) is idg:, which lifts to a generator
of m(Aut(Py)). Thus the connecting homomorphism §; vanishes. The argument
from Remark[3.4.13|shows precisely that mo(Diff ($!)p, ) = Z if and only if k* € K,
and that mo(q) is surjective. We thus end up with an exact sequence

. 7o ifk?®e K,
Fixe,x)([k]) — mo(Aut(Py)) — { ]12 else. i

Since (5.24) implies that Diff($')y is a K(1,Z), we also have for n > 2
T (Aut(Py)) = 7, (C2 (S, K)). n
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Remark 5.4.11. The description of Aut(Cg°(S',€)) in Example [5.4.10 should
arise out of a general principle, describing the automorphism group for gauge
algebras of (flat) bundles, i.e., of bundles of the form

P, = M x K/ ~ where (m,k) ~ (m-d, o "(d) - k).

Here ¢ : m (M) — K is a homomorphism and M is the simply connected cover of
M, on which (M) acts canonically (cf. Remark [B.3.15)). Then

gau(P) 22 CX(M,€) := {n € C=(M,¥) : n(m - d) = Ad(p(d)) " n(m)}.

and this description should allow to reconstruct gauge transformations and diffeo-
morphisms out of the ideals of C°(M,€) (cf. [LeS0]). "

Problem 5.4.12. Let P, be a (flat) principal K-bundle over the closed compact
manifold M. Determine the automorphism group Aut(gau(P)). In which cases
does it coincide with Aut(P) (the main point here is the surjectivity of the canon-

ical map Aut(P) — Aut(gau(P))). n

The central extension of gau(P) from Remark corresponds to the cocycle
(n, p) — [k(n,dwp)] on C°(M,t) from [MNO3| in the case of trivial bundles. An
interesting generalisation of the cocycle for gau(P), that one does not see in the
case of mapping algebras (or trivial bundles) is the following.

We first give an example of a finite-dimensional Lie group, for which the uni-
versal form k : € x £ — V() is not K-invariant.

Example 5.4.13 (Non K-invariant universal form). Take ¢ =s[(C) as a
real simple Lie algebra. Then complex conjugation induces an automorphism of
sly(C), which leaves invariant the real part of the Cartan—Killing form kcg and
changes the sign of the imaginary part of kog. Since Kok is the universal form
of sly(C), this shows that in general the universal form is not invariant under all
automorphisms. More precisely, the universal form ko is not invariant under the
adjoint action of K := SLy(C) X Zs, where Zy acts on SLy(C) by complex conju-
gation. It is equivariant with respect to the action of K on V(¢) = C, induced by
the Zs action on C by complex conjugation. [

The previous example motivates the following generalisation of the cocycle

(n, 1) — [Ks(n,d* )] from Lemma[5.1.3]

Remark 5.4.14. Let P be a finite-dimensional principal K-bundle over some
closed manifold M, Y be a Frechet space, A: K x Y — Y be a smooth action
and A(P) be the associated vector bundle. If  : € x € — Y is continuous, bilinear,
symmetric and K-equivariant and A is a connection 1-from on P, then we set

su(AY) = QUM \(P))/ d* Q°(M, \(P)) and

Do 2 gau(P) x gau(P) — (A, Y),  (n,p) = [ra(n, d* p)]
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is cocycle with values in the bundle-valued 1-forms on A(P) (modulo exact 1-
forms). That this defines in fact a cocycle is shown exactly as in the case where
is K-invariant in Lemma [5.1.3] where the cocycle has values in Y-valued 1-forms
on the base (modulo exact 1-forms). In order to make the target space 3p(A,Y)
accessible, we have to identify it with some de Rham cohomology space as in
Section [5.2] The problem occurring now is that

QM AP)) L5 ot aP)) L

is no differential complex since the curvature (d4)? of A vanishes only if A\(P) is
a flat vector bundle. One way around this is to consider cocycles taking values in
the twisted cohomology of some flat vector bundle.

In particular, if we take Y = V' (¢) and x : € x £ — V() to be universal, then K
acts on V(¥) in the following way. Since k is universal, for each ¢ € Aut(t) there
exists a linear isomorphism V' (¢) : V(£) — V() such that ko (p x ¢) = V(¢) o k.
Since V() is unique we have V(pot) = V(p) o V(¢) for ¢, € Aut(€). Thus K
acts on V(&) by

V(A) : K x V(&) — V(#), (k,v)— V(Ad(K)).v.

and  is K-equivariant by the construction of the action of K on V(¢). Further-
more, Ky acts trivially on V(€), because k is ¢-invariant. In fact, for x € £ we
have

% r(Ad(exp(tz)).v, Ad(exp(tz).w)) = k(ad(z,v), w) + (v, ad(z,w)) = 0,
t=0

because k is t-invariant, and thus x(Ad(exp(z)).v, Ad(exp(x)).w) = k(v,w) by

the uniqueness of solutions of ordinary differential equations.  Since K,

is generated by exp(®), this implies x(Ad(k).v,Ad(k).w) = k(v,w) if ke K

and thus ko (Ad(k) x Ad(k)) = k. Then the uniqueness of V(Ad(k)) implies

V(Ad(k)) = V(ide) = idy e if k € Ky, and hence we get an action

N mo(K) x V(8) — V(¥), [klv=Ad(k).v.

In addition P induces a my( K )-bundle Py over M, by composing the transition
functions k;; : U;NU; — K of a cocycle describing P with the quotient homo-
morphism ¢ : K — K/Ky = m(K) to obtain a cocycle describing the principal
To(K)-bundle Py over M (cf. Remark [B.1.7). This principal bundle is a covering,
since the structure group my(K) is discrete and thus it is in particular flat.

Now the my(K)-action )¢ induces an associated vector bundle \o(P). Since
this bundle is flat we have a natural covariant derivative and thus a differential
complex

L= QM A(P)) L QMM A (P)) — ..
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We call the resulting cohomology spaces H"(M, \g(P)) the Ao(P)-valued twisted
cohomology of M (cf. [BT82l §1.7]).

By Definition [B.3.10, we get a map
Ky 2 QU (M, Ad(P)) x QY (M, Ad(P)) — QY(M, \o(P))
and thus
Or,a : gau(P) x gau(P) — Q1 (M, Ao(P))/Q°(M, Ao(P)), (1, ) = [, d* p)).

Now the whole procedure of Section can start over again by substituting
the ordinary de Rham cohomology H'(M,V (€)) with the twisted de Rham co-
homology H'(M, \o(P)), which is accessible in terms of the group cohomology
H'(m (M), V(€)). This leads to further sources of central extensions of gauge
groups, which one does not see for trivial bundles. [

Problem 5.4.15. When does the central extension of gau(P), given by the co-
cycle @y 4 from Remark [5.4.14] integrate to a central extension of Gau(P), and
how does the corresponding period group look like. Furthermore, if K is not con-
nected, is the central extension of gau(P) equivalent to the central extension given

in Remark B.1.517 n






Appendix A

Notions Of infinite-dimensional
Lie theory

A.1 Differential calculus in locally convex spaces

In this section we provide the elementary notions of differential calculus on locally
convex spaces and the corresponding notions of infinite-dimensional Lie theory.

We use the same notion for differentiability on open sets and locally convex
manifolds as introduced in Section 2.11

Remark A.1.1 (Some history of differential calculus). The notion of dif-
ferential calculus that we use dates back to the work of ARISTOTLE DEMETRIUS
MicHAL and ANDREE BASTIANI in [Mi38], [Mi40] and [Ba64] and is called the
MiCHAL-BASTIANT CALCULUS. According to [Ke74], where smooth maps in the
MICHAL-BASTIANI sense are called C'>°-maps, this notion is the most natural one
on locally convex spaces, because it does not involve any assumptions on conver-
gence structures on spaces of linear mappings. Basic results on this calculus can be
found in [Mi80] and in |[Ha82]. Its first application to infinite-dimensional infinite-
dimensional Lie theory has been done by JOHN WILLARD MILNOR in [Mi84],
along with many general results and examples. This area is still intensively stud-
ied, cf. [Ne06bh], [GNO7a] and [GNO7h]. It has also been extended to arbitrary
non-discrete base-fields in [BGN04] and [GI04]. n

Remark A.1.2 (Convenient Calculus). We briefly recall the basic definitions
underlying the convenient calculus from [KM97]. Let E and F' be locally convex
spaces. A curve f : R — FE is called smooth if it is smooth in the sense of Definition
2.1.2l Then the ¢*-topology on F is the final topology induced from all smooth
curves f € C*(R, E). If E is a Fréchet space, then the ¢®-topology is again a
locally convex vector topology which coincides with the original topology [KM97,
Theorem 4.11]. If U C E is ¢®-open then f: U — F is said to be C* or smooth
if
[ (C*(R,U)) C C*(R, F),

125
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e.g., if f maps smooth curves to smooth curves. Remark implies that each
smooth map in the sense of Definition is smooth in the convenient sense. On
the other hand [KM97, Theorem 12.8] implies that on a Fréchet space a smooth
map in the convenient sense is smooth in the sense of Definition 2.1.2] Hence for
Fréchet spaces the two notions coincide. [

Definition A.1.3 (Locally convex Lie group). A locally convex Lie group (or
shortly a Lie group) is a group G which is a locally convex manifold such that the
multiplication map mg : G X G — G an the inversion map ¢ : G — G is smooth.
A morphism of locally convex Lie groups is a smooth group homomorphism. m

Definition A.1.4 (Centred Chart, Convex Subset). Let G be a Lie group
modelled on a locally convex topological vector space Y. A chart
o: W — (W) CY with e € W and p(e) = 0 is called a centred chart. A subset
L of W is called p-convex if ¢(L) is a convex subset of Y. If W itself is ¢-convex,
we speak of a conver centred chart. [

Remark A.1.5 (Existence of centred charts). It is clear that every open unit
neighbourhood in G contains a (p-convex open neighbourhood for each centred
chart ¢, because we can pull back any convex open neighbourhood that is small
enough from the underlying locally convex vector space along ¢ to a p-convex unit
neighbourhood.

Typical centred charts arise from the (inverse of the) exponential function for
a locally exponential Lie group G (cf. Definition [A.1.10)). n

Proposition A.1.6 (Local description of Lie groups). Let G be a group with
a locally convexr manifold structure on some subset U C G with e € U. Further-
more, assume that there exists V C U open such thate € V, VV C U, V =V"!
and

i) VxV —=U, (g,h) — gh is smooth,

1

ii) V-V, g g is smooth,

iii) for all g € G, there exists an open unit neighbourhood W C U such that
g *Wgqg CU and the map W — U, h s g~ *hg is smooth.

Then there exists a unique locally convex manifold structure on G which turns G
into a Lie group, such that' V' is an open submanifold of G.

Proof. The proof of [Bo89bl, Proposition I11.1.9.18] carries over without changes.m
Definition A.1.7 (Locally convex Lie algebra). A locally convex Lie algebra

is a locally convex vector space g together with a continuous bilinear alternating
map |[-,+] : g X g — g satisfying the Jacobi Identity
[z, y), 2] + [[y, 2], 2] + [[z, 2], y] = 0

for all x,y,z € g. [
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Lemma A.1.8 (Tangent bundle of a Lie group is trivial). If G is a locally
convex Lie group, then the tangent bundle TG of G s trivial, i.e., there
15 an isomorphism of locally conver manifolds © : TG — G x T.G such that
@\TQG : T,G — {g} x T.G is a linear isomorphism for each g € G.

Proof. Clearly, © : TG — G x T.G, X, (9,T)\;'.X,) defines such a global

trivialisation. n

Remark A.1.9 (The Lie algebra of a locally convex Lie group). A vector
field X on a locally convex Lie group G is called left invariant if

Xodg=TN\0oX

as mappings G — TG, where \; := mg(g,-) : G — G. Clearly, X — X(e) is an
isomorphism between the vector space V(G)! of left invariant vector fields on G
and T,G. This endows V(G)! with a locally convex vector topology. If X and
X" are vector fields on G, then there exists a unique vector filed [X, X'] € V(G)
determined by the condition that

X, X').f = X.(X".f) — X'.(X.f)

for each open subset U C G and all f € C*°(U, R) and U C M open. Moreover, if
X and X' are left invariant, then [X, X'] is so. We thus have a bilinear alternating
map

[ ] V(G) x V(G) = VI(G),

which induces a bilinear alternating map on 7.(G). Furthermore, this map is
continuous and satisfies the Jacobi identity and thus is a continuous Lie bracket
on T.G. It thus turns T,G into a locally convex Lie algebras, which we denote by

g. ]

Definition A.1.10 (Exponential function, locally exponential Lie group).
Let G be a locally convex Lie group. The group G is said to have an exponential
function if for each x € g the initial value problem

1(0) =€ A () =Thw(e)x
has a solution v, € C*°(R, G) and the function
expg 8 — G, v — 7,(1)

is smooth. Furthermore, if there exists a zero neighbourhood W C g such that
expgly, is a diffeomorphism onto some open unit neighbourhood of G, then G is
said to be locally exponential. [
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Remark A.1.11 (Banach—Lie groups are locally exponential). The Fun-
damental Theorem of Calculus for locally convex spaces (cf. [GI02a, Theorem
1.5]) yields that a locally convex Lie group G can have at most one exponential
function (cf. [NeO6b, Lemma I1.3.5]). If G is a Banach-Lie group (i.e., g is a Ba-
nach space) , then G is locally exponential due to the existence of solutions of
differential equations, their smooth dependence on initial values [La99, Chapter
IV] and the Inverse Mapping Theorem for Banach spaces [La99, Theorem 1.5.2].
In particular, each finite-dimensional Lie group is locally exponential. [

Lemma A.1.12 (Locally exponential Lie groups and homomorphisms).
If G and G’ are locally convex Lie groups with exponential function, then for each
morphism « : G — G of Lie groups and the induced morphism da(e) : g — ¢ of
Lie algebras, the diagram

G 25 @

Texpc Texpcx

da(e) g/
commutes.
Proof. For x € g consider the curve
7:R— G, tr expg(te).

Then v :=ao7 is a curve such that v(0) = e and (1) = a(expg(z)) with left
logarithmic derivate §'(v) = da(e).z. ]

Remark A.1.13 (Infinite-dimensional Lie theory). Since smooth maps are
continuous, each locally convex Lie group G is in particular a topological group.
This is one of the main advantages of this approach to infinite-dimensional Lie
groups, because it permits the combination of geometric properties from G as
a manifold, topological properties from G as a topological space and algebraic
properties from the Lie algebra g of GG in order to develop an infinite-dimensional
Lie theory for locally convex Lie groups (cf. [NeO6bD]).

One very important fact for this theory is the Fundamental Theorem Of Cal-
culus for locally convex spaces [Gl02al Theorem 1.5], because is implies that a
function is (up to a constant) determined by its derivative. ]

Remark A.1.14 (Complex Lie groups and algebras). If X and Y are com-
plex locally convex spaces and U C X is open, then f is called holomorphic if
it is C* and the map df(z) : X — Y is complex linear for all z € U (cf. [Mi&4,
p.1027]). In this case, f is automatically smooth if Y is sequentially complete
[NeOl, Proposition I1.10]. From this notion it is clear what the notion of a complex
locally convex Lie group (or shortly a complex Lie group) is, i.e., a locally convex
Lie group, which is in particular smooth, that is modelled on a complex locally
convex space such that the group operation are holomorphic in local coordinates.m
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A.2 Central extensions of locally convex Lie al-
gebras and groups

In this section we recall the concept of central extensions for topological Lie alge-
bras and locally convex Lie groups.

Definition A.2.1 (Central extensions of Lie algebras). If g is a locally con-
vex Lie algebra and 3 is a locally convex vector space, then a central extension of
g by 3 is a short exact sequence

~ 4
d—9—89

that splits linearly, i.e., there exists a continuous linear section « : g — g. This
extension is said to be trivial if & can be chosen to be a morphism of topological Lie
algebras. Two central extensions g; and g, of g by 3 are said to be equivalent central
extensions if there exists an isomorphism of topological Lie algebras ¢ : gs — g
such that the diagram

-~ q1
3 o8] g,
idl Lpl idgl
-~ q1
3 g1 [

commutes, where ¢4 : g — g is the map induced by ¢ on the quotients. Note that
a central extension is trivial if and only if it is equivalent to the trivial central
extension g =3 ® g. n

Remark A.2.2 (Central extensions of Lie algebras and cocycles). If g is
a locally convex Lie algebra, 3 is a locally convex space 3 — g —» g is a central
extension, then the linear section a determines a continuous bilinear alternating

mapping
wi:gxg—3 (z,y)— [alx),aly)] —allr,y]), (A1)

which satisfies the cocycle condition
wy(lz, 9], 2) + wg(ly, 2], @) + wy([2, 2], y) = 0. (A.2)

On the other hand, for a 3-valued cocycle on g, i.e., a continuous bilinear alternating
map w : g X g — 3 satisfying (A.2)), we define a continuous Lie bracket on 3 & g by

(2, 2), (¢, )] = (w(z, "), [z,27]). (A.3)
We denote by 3 @, g the topological Lie algebra determined by (A.3)), which in
turn defines a central extension

pro

3 —53DPug—9



130 A. Appendix: Notions of infinite-dimensional Lie theory

which we will refer to as g, . If wg is the cocycle from (A.1), then g, and g
are equivalent, because we have the equivalence (z,z)+— z+ a(z). Thus each
central extension g is equivalent to some g, for a cocycle w. Furthermore,
implies that two central extensions g, and g, are equivalent if and only if the
corresponding cocycles satisfy

wlz,2') = (z,2') + B[z, 2']) (A.4)

for some continuous linear map (3 : g — 3. Thus the second continuous Lie algebra
cohomology
H*(g,3) = {w:gxg—3:wisacocycle }/ ~

with w ~ w’ if there exists some continuous linear map [ : g — 3 satisfying (A.4]),
parametrises the equivalence classes of central extensions of g by 3. [

Lemma A.2.3 (Automorphisms of central extensions of Lie algebras).
Let g be a topological Lie algebra, 3 be a locally convex space and w € Z*(g,3). If
Vg € Aut(g), 7; € Lin(3) and o € Lin(g, 3), then

P 309300 (31) = (3(2) + alz), (7))
defines an element of Aut(3 @, @) if and only if
w(7g(2), 74(2")) = v(w(z, 7)) + o[z, 27])

holds for all x,2" € g.

Proof. Unwinding the definitions we get

((w(z,2) + o[z, 2'1), v, 2T)) = p((w(z,2'), [z, 2]) = ¢([(z, 7), (', 2)])

= [p(2,2), (2, 2")] = [(%3(2) + (@), 74(2)), (%;(2") + a(2'), 74(2))]
= (W), va(2); [va(2), Y(2)]) = (W(Va(®), va(2)); Vo[, 2T))

and the assertion is immediate. n

Definition A.2.4 (Central extensions of locally convex Lie groups). Let
3 be a locally convex space, I' C 3 be a discrete subgroup and G be a connected
locally convex Lie group. A central extension of G by Z is a short exact sequence

7 GG (A.5)

such that ¢ has local smooth sections (i.e., (A.5) defines a principal Z-bundle over
(). This extension is said to be trivial if there exists a global smooth section of

q that is a morphism Lie groups. Two central extensions @1 and 62 of G by Z
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are said to be equivalent if there exists an isomorphism of Lie groups ¢ : @2 — @2
such that the diagram

Z G, - @q,

N

Z G - a
commutes. Note that a central extension is trivial if and only if it is equivalent to
the trivial central extension G = Z x G. ]

Remark A.2.5 (Central extensions of Lie groups and cocycles). If

Z — G — G is a central extension, then there exists a section S : G — G with
S(eg) = eg which is smooth on a unit neighbourhood (take a local sooth section
and extend it to a global, not necessarily continuous section). Then S defines a

mapping
fa:GxG—2Z, (9,9)—S(g)-S(g) Sg-g)",
which is smooth on a unit neighbourhood (because S is so) and satisfies
falg.e) = fale,g) =€ and  [fa(g9.9)+ fa(9-9.9") = falg,g"-9") + fald, 9").
(A.6)
On the other hand, for a Z-valued cocycle on G, i.e., amap f:G x G — Z that
is smooth on a unit neighbourhood and satisfies ({A.6)), we define a multiplication

(ZxG)x(ZxG) = (ZxG), ((29),(,9) = (z+2"+1(9,9).9-9), (AT)

which turns Z x G into a locally convex Lie group. In fact, defines a group
multiplication because of and then Proposition provides a locally con-
vex Lie group structure on Z x G, where condition iii) there is satisfied, because
G is assumed to be connected. We then denote by Z X G the locally convex Lie
group determined by , which in turn defines a central extension

7 7 x;G——%G,

which we call G s- If fa is the cocycle from (A.G), then Zx ;. and G are equivalent,
because we have the equivalence (z, g) — (z + 5(g),9). Thus, each central exten-

sion G is equivalent to some G I for a cocycle f. Furthermore, (A.7)) implies that

two central extensions G ¢ and G ¢ are equivalent if and only if the corresponding
cocycles satisfy

flg,9") = f'(9,9") = h(g) +h(g) —n(g-d) (A.8)

for a map h: G — Z that is smooth on a unit neighbourhood in G. Thus the
second smooth Lie group cohomology

HYG,Z):={f:GxG— Z: fisacocycle}/ ~

with f ~ f" if there exists a map h: G — Z satisfying (A.8), parametrises the
equivalence classes of central extensions of G by Z. [
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Remark A.2.6 (From Lie group extensions to Lie algebra extensions).
Let 3 be a locally convex space,I" C 3 be a discrete subgroup and G be a connected
locally convex Lie group. Furthermore, let

Z =3/l - Zx;G—-»G

be a central extension, which is given by a cocycle f : G x G — Z that is smooth on
a unit neighbourhood and let g be the Lie algebra of Z x ; G. Because the quotient
map 3 — Z has smooth local sections we can lift f to a map f; : G x G — 3 that
is still smooth on a unit neighbourhood. We thus have

Df:gxg—3 (v,2)— dfi(z,y) — df;(y, x)

if we identify g with T.G. Furthermore, Df is a Lie algebra cocycle and we have
that g is equivalent to 3 @pr g as central extension [Ne02a, Lemma 4.6]. Since
equivalent Lie group extensions lead to equivalent Lie algebra extensions we thus
have a well-defined map

D:H}G,Z)— H(g.3), [f]—[Df].

If [w] in H?(g,3) is in the image of D, i.e., if there exists a central extension of Lie
groups such that the corresponding central extension of Lie algebras is equivalent
to g., then we say that the central extension g, integrates to a central extension
of Lie groups. n

A.3 Actions of locally convex Lie groups

In this section we provide the elementary notions of actions of infinite-dimensional
Lie groups on locally convex manifolds.

Definition A.3.1 (Smooth actions of Lie groups). If G is a locally convex
Lie group and M is a locally convex manifold, then a smoothmap A : G x M — M,
(g,5) +— g.s is called a smooth action of G on M if the map A\, : M — M, s+ g.s
is a diffeomorphism for each g € G and G 5 g — A, € Diff (M) is a homomorphism
of abstract groups.

If, moreover, M = H is a locally convex Lie group and each ), is an element
of Aut(H), then we call the action a smooth automorphic action. Furthermore,
if H=Y is a locally convex space and each ), is an element of GL(Y’), then we
call the action a smooth linear action. Finally, if Y =% is a locally convex Lie
algebra and each A, is an element of Aut(£), then we call the action also a smooth
automorphic action. |

Remark A.3.2 (Adjoint action). A locally convex Lie group G acts in a nat-
ural way on its Lie algebra g by

Ad:Gxg—g, Ad(g).x=Tcy(x),
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where ¢, : G — G denotes the conjugation map h+— ¢-h- g~ and g is identified

with T.G. This action is in particular smooth and automorphic. [

Lemma A.3.3 (Actions need only be smooth on unit neighbourhoods).
Let G be a locally convex Lie group, M be a locally conver manifold and
AN:GxM— M be an abstract action, i.e., A\, € Diff(M) for all g € G and
G > g+— A, € Diff(M) is a homomorphism of abstract groups. Then X is smooth
if and only if there exists an open unit neighbourhood U C G such that A|;. ,, is
smooth.

Proof. For each g€ G, let U, be an open neighbourhood of ¢ such that
gt-zeU for all x€U,  Then Aa,v)=Ag,\(g~' x,0)) implies that
Al xar = Ag 0 Ao (Ag-1 X idyy) is smooth. "

Lemma A.3.4 (Smoothness criterion for automorphic actions). Let G
and H be locally convex Lie groups, and \ : G x H — H be an automorphic action
of abstract groups., i.e., \y € Aut(H) for all g € G and G 3 g — A\, € Aut(H) is
a homomorphism of abstract groups. Then X is smooth if and only if the orbit
maps
G>g+— ANg,h) € H

are smooth for each h € H and there exists an open unit neighbourhood U C H
such that |, is smooth.

Proof. For each h € H, let U, be an open neighbourhood of ¢ such that
h='-x €U for all z € U,. Then \(g,h') = \g,h)-A(g,h~"-1')) implies that
M gxp, 18 smooth, because A(g, h) depends smoothly on g for fixed h. n

Proposition A.3.5 (Automorphic actions on Lie algebra extension). Let
H be a locally conver Lie group and g, be a central extension, given by some
cocycle w: g X g — 3 as in Remark[A.2.4 If H x 3 — 3, (h,z) — h.z is a linear
action, H x g — @, (h,x) — h.x is an automorphic action and R: H X g — 3 is
a map, then

Hx3xg—3xg, h(z,2)=(hz+ R(h,z), hx) (A.9)
defines a smooth automorphic action of H on 3 @, g if and only if
h.R(W,z)+ R(h,h.x) = R(h -}, z), (A.10)

forallh,h € H and x € g, the restriction of R to U x (3 @ g) is smooth for some
open unit neighbourhood U C H and

w(h.z, h.a') = hw(z,2') + R(h, [z, 2']) (A.11)

for allh € H and x,z' € g.
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Proof. A direct computation yields that ({A.10) is equivalent to the condition that
(A.9) defines an abstract action. Then the smoothness of the action follows from
Lemma [A.3.3 and the assertion follows from Lemma [A.2.3 ]

Remark A.3.6 (Cocycle for group actions). Let G and H be locally convex
Lie groups and A : G x H — H be a smooth action. A crossed homomorphism or
1-cocycle is a smooth map f : G — N with

flg-h)=f(g) g.f(h) forall g,h € H,

which is equivalent to (f,idg) : G — H x G being a group homomorphism. We
note that in view of Lemma this implies, in particular, that for a 1-cocycle,
smoothness on an identity neighbourhood is equivalent to global smoothness. =

Definition A.3.7 (Derived action). If G is a locally convex Lie group, Y is a
locally convex space and A : G x Y — Y is a smooth action, then

NigxY =Y, zy=d\e,y)(z,0)
is called the derived action. In the special case of the adjoint action of G on g, we
get Az, y) = ad(z,y) = [z,y] . u

Definition A.3.8 (Left logarithmic derivative). If M is a locally convex
manifold with corners, G is a locally convex Lie group and f € C*°(M,G), then
the left logarithmic derivative 6'(f) € Q*(M, g) of f is defined to be

8 (). Xom = TAp=1(m) (T £ (X))

Is is simply the pull-back f*kg of the Maurer-Cartan form kg : TG — T.G,
Xy — TA,~1(Xy) to M along f. n

Lemma A.3.9 (Product rule for left logarithmic derivative). If M is a lo-

cally convexr manifold with corners, G s a locally conver Lie group and
f,g € C®(M,QG), then

0'(f - 9) = 0'(g) + Ad(g)~".0'(f)
and in particular 6'(f~1) = — Ad(f).6'(f).
Proof. This follows from the definition and an elementary calculation. [

Lemma A.3.10 (Product rule for pointwise action). Let M be a smooth
locally conver manifold with corners, G be a locally convex Lie group and
A:G XY =Y be a smooth linear action on the locally conver space Y. If
h:M— G and f: M —'Y are smooth, then we have

d(AR).f) X = A(h).(df-X,n) + A (Ad(R).0"(R). X)) - (A(R(m)).f(m))  (A.12)
with A\(h™Y).f: M — E, mw— XA(h(m)™Y).f(m). If A = Ad is the adjoint action
of G on g, then we have

d (Ad(R).f) . X;n = Ad(h).(df X)) + Ad(R). [8'(h). X, [(m)]
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Proof. We write A(h, f) instead of A(h).f, interpret it as a function of two vari-
ables, suppress the dependence on m and calculate

d()‘(hvf)) (erXm) = d(/\( )) (( ) + (va m))
= dz (A(h, [)) (Xom ) dy (A(h).f) (Xim)
A df (X)) + A ). Th(X,0)
= A(R).(df (X)) + dA(, [).T(An 0 Ap-10 A 0 A1 0 h)(Xin)
= Ah)-(df (Xom) + d (AL, £) 0 A(R)). Ad(h).0'(h)(X.n)
= A(R).(df (Xin)) + A (Ad(R).6' (h)(Xom), A(R(m), f(m)) ,

dy) denotes the differential of A\ with respect to the first (respectively second)
variable, keeping constant the second (respectively first) variable. [






Appendix B

Notions of bundle theory

B.1 Vector- and Principal Bundles

In this section we provide the basic concepts of continuous and smooth vector
bundles. In particular, we focus on a description of principal bundles in terms of
transition functions (or cocycles), because this is the picture of principal bundles
we mostly use.

Throughout the thesis, we always assume that the base spaces of the bundles
under consideration are connected.

Definition B.1.1 (Continuous vector bundle). Let X be a topological space
and Y be a locally convex space. A continuous vector bundle over X with fibre
Y (or shortly a continuous vector bundle) is a topological space F together with
continuous map & : E — X such that each fibre F, := ¢71(z) is a locally convex
space and that for each point in X there exists an open neighbourhood U, called
a trivalising neighbourhood, and a homeomorphism

0:YU)—UxY,

called local trivialisation, such that pr; o © = £| e-1(U) and that O] £, 18 an isomor-
phism of topological vector spaces from E, to {z} x Y =Y for each x € U. We
often refer to a vector bundle as a tuple (Y, : E — X) with the calligraphic letter
E. If € and & are two vector bundles, then a morphism of vector bundles is a con-
tinuous map f: £ — E' such that f(Ege)) € Eecpe)) and f|E§(e) is a continuous
linear map for each e € F.

A continuous section of £ is a continuous map o : X — E, which satisfies
¢ oo = idy and we denote by S.(€) the space of all continuous sections. If U C X is
a subset, then &y = (Y, {|¢-1 ) : §71(U) — U) denotes the restricted vector bundle
over U and S.(&y) is correspondingly the space of sections defined on U. (]

Remark B.1.2 (Transition functions in vector bundles). If £ is a contin-
uous vector bundle with fibre Y and U and U’ with UNU’ # () are two triv-
ialising neighbourhoods, then we have for each z € UNU’ an isomorphism

137
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¢y =0 (07 (z,-)) € GL(Y) induced from the homeomorphism
UNU)xY - UNU)xY (z,0)—60'(07(z,v)).

Since we have in general no nice topology on GL(Y) if YV fails to be a Banach
space, it does not make sense to put any requirements on the continuity of the
map & +— Q.

Furthermore, if K is a topological group acting continuously on Y (i.e., K acts
on Y as an abstract group and K x Y — Y, (k,y) — k.y is continuous), then & is
a vector K -bundle if the local trivialisations can be chosen such that for each pair
of trivialising neighbourhoods U and U’, there exists a continuous mapping

I{JUU/ :UnN U, — K
with ¢, (y) = kypr(x).y forally € Y and 2 € UNU'. n

Definition B.1.3 (Smooth vector bundle). If £ and M are manifolds with
corners, then a continuous vector bundle £ : E — M with fibre Y is a smooth
vector bundle if all local trivialisations can be chosen to be diffeomorphisms. If
K is a Lie group acting smoothly on Y, then a continuous K-vector bundle & is
a smooth vector K-bundle if the kyy from Remark can be chosen to be
smooth. [

Definition B.1.4 (Continuous principal bundle). Let K be a topological
group. If X is a topological space, then a continuous principal K-bundle over
X (or shortly a continuous principal K-bundle) is a topological space P together
with a continuous right action p : P x K — P, (p,k) — p-kandamapn: P — X
such that for each x € X there exists an open neighbourhood U, called a trivial-
1sing neighbourhood, such that there exists a homeomorphism

O:7'U)—UxK, (B.1)

called local trivialisation, satisfying pryo© = 7| _.,, and O(p-k) =O(p) - k,
where K acts on U x K by right multiplication in the second factor. An arbitrary
subset A C X is called trivialising if it has a neighbourhood which is trivialising.
We often refer to a continuous principal bundle as a tuple (K, 7 : P — X) by the
calligraphic letter P, where we assume the action of K on the domain of 7 to be
given implicitly. If confusion with homotopy groups could occur, we denote the
bundle projection by 7 instead of 7.

A morphism of continuous principal K-bundles or a continuous bundle map
between two continuous principal K-bundles P and P’ is a continuous map
f: P — P’ satisfying pj. o f = fopg, where p, and pj are the right actions of
k€ K on P and P'. Since the above definition implies in particular X = P/K
and X' = P'/K, we obtain an induced map fx: X = P/K — X' = P'/K given
by fx(p- K):= f(p) - K. Furthermore, if X = X', then we call f a bundle equiv-
alence if it is an isomorphism and fy = idy. m
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Remark B.1.5 (Sections define local trivialisations). Let

P=(K,m: P— M) be a continuous principal bundle. If U C X is open
or closed, then a continuous map o :U — P with moo =idy is a continuous
section. In particular, if U C X is a trivialising neighbourhood, then the
corresponding trivialisation © : 771(U) — U x K determines a continuous section

oo :U— P, o(x) =0 xe).

Conversely, if 0 : U — P is a continuous section of 7, then this defines a local
trivialisation as follows. For each p € 7~ }(U) we can write p = o(7(p)) - k,(p)
for some k,(p) € K. This defines a continuous map k, : 7~ }(U) — K, because
ko (p) = pry(O(c(p))) ' - pry(O(p)). We thus have a local trivialisation

Oy 7 (U) = Ux K, pw (n(p),ks(p)).

Since O,, = © and og, = 0, we have a one-to-one correspondence between local
trivialisations and continuous local sections of . [

Definition B.1.6 (Trivialising system). Let P = (K, 7 : P — X)) be a contin-
uous principal K-bundle. If (U;);e; is an open cover of X by trivialising neigh-
bourhoods and (o; : U; — P);e; is a collection of continuous sections, then the
collection U = (U;, 0;)ier is called an continuous open trivialising system of P.

If (U,)ier is a closed cover of X by trivialising sets and (o; : U; — P)ies is
a collection of continuous sections, then the collection U = (UZ-, 0:)ier is called a
continuous closed trivialising system of P.

If U = (U, 0:)ier and V = (V}, 7;) ey are two continuous open trivialising sys-
tems of P, then V is a refinement of U if there exists a map J > j—i(j) € [
such that V; C Uy and 7; = O‘Z'(j)‘vj, ie., (V;)jes is a refinement of (U;);e; and
the sections 7; are obtained from the section o; by restrictions.

If U = (Ui, 0;)icr is a continuous open trivialising system and V = (V,7;) e is
a continuous closed trivialising system, then V is a refinement of U if there exists
amap J 3 j s i(j) € I such that V; C Uy and 7; = U,-(j)‘vj and vice versa. m
Remark B.1.7 (Principal bundles and Cocycles). If P is a continuous prin-
cipal K-bundle over X, and U and U’ are open trivialising neighbourhoods
with U NU’ # (), then the corresponding local trivialisations, given by sections
oy : U — P and oy : U' — P, define continuous mappings kyyr : U NU' — K by

kuu(x) = ko (op/(x))  or equivalently oy (z) - kyy(x) = oy (), (B.2)
called transition functions. They satisfy the cocycle condition

kyy(z)=eforz e U and kyy (x)-kpon(x) kpwo(x) =e for x e UNU'NU",
(B.3)
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for any third continuous section o”:U"” — P with open U” C X. If
U = (U;,04)ier is a continuous open trivialising system, we thus have a collection
Kp = (kij : U;NU; — K); jer of continuous functions satisfying (B.3).

On the other hand, if (U;);es is an open cover of X, then each collection
K= (kij: U;NU; — K); je; of continuous maps satisfying is called a con-
tinuous cocycle. It defines a continuous principal K-bundle P over X if we set

Pe = J{i}xUix K/ ~ with ((i,z,k) ~ (j, 2/, K')) & (v = 2’ and kj;(z)-k = k).

i€l

Then a bundle projection 7 : P — X is given by [i,z, k] — z, (U,;);es is a cover
by trivialising open sets with local trivialisations given by

0;: | JI( 2, k)] = Ui x K, [(i,2,k)] — (z,k)

zeU;

and the K-action is given by ([(¢,z, k)], k") — [(i,z, kK')]. Thus (U;, 7;)ier with
7;(x) = [(i,x,€)] is a continuous open trivialising system of Px. Since Py, is
equivalent to P by the equivalence [(U, z, k)| — oy(x) - k, each principal K-bundle
may equivalently be described by such a collection of continuous functions . m

Lemma B.1.8 (Forcing transition functions into open covers). Let X be
a compact space, K be topological group and (Oy)ecr, be an open cover of K. If P
1s a continuous principal K-bundle over X, then for each continuous open trivi-
alising system U = (U;, 0;)i=1...n there exists a refinement V = (V, Ts)s=1,.» Such
that for each transition function kg : Vs NV, — K of V we have kgq(VsNV;) C Oy
for some ( € L.

Proof. Let x;;: U;NU; — K be the transition functions of Y. Furthermore,
let V{,..., V) be an open cover of X such that for each ¢ € {1,...,m} we
have V' C Uy for some i(q) € {1,...,n}. By replacing U by the refinement
(Uitg), 0i(q))g=1,....m We may thus assume V’; C Uj.

For each pair (7,7) with 1 <, 7, < m, the open cover (Oy)ser pulls back to an
open cover (6éi’j))g€L of U;NUj, ie., 6?’” = :‘ii_jl(Og). Then each z € V/; N V7,
has an open neighbourhood USD such that U CV, for some g € {1,...,m}
and Uxi’j) C 5éi’j) for some ¢ € L. Then

Uiy = (VINViN V), VNN V), (US)) e,

is an open cover of X and each set of this cover is contained in some V.

Now take a common refinement Vi,...,V, of all the open covers % ;) for
1 <i,7 <m. That means, that for each (i,j) and each s € {1,...,r} we have
that V is contained in one of the open sets of the cover U; ;). Note that this is
possible since for each two covers (Qs)scs and (Ry)ier we have (Qs N Ry)(syesxT as
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a common refinement. Since X is compact there exists a finite subcover Vi, ...V,
of the common refinement of all G ;).
Now for each s € {1,...,7} we have that Vj is contained in some Vi’(s) for some

i(s) € {1,...,m} and we thus have V, N 'V; C V;iy N V). We claim that V; NV, is

contained in one Uaﬁ“s)”'(t” if V, NV, # (. First, recall that V; is contained in one
of the open sets of V() i(r)), and the same holds for V;. The claim is trivially true

if Vi or V; are contained in one Ug(f(s)’i(t)), so assume V; C V;;\(Wi(s) mW(t)) and
V; C Vq’,\(ﬁ(s) ﬂﬁi(t)) for some ¢,¢' € {1,...,m}. Then

VenV, (VN ‘/Z’)\(Wi(S) NV'iw) and V;NV; C Vit N Vi € Vi NV i)

imply V; NV, = 0 and the claim is established.

We now set 74 := Ui(s)’vs for s € {1,...,r}. Then V := (Vi,75)s=1,., is a con-
tinuous open trivialising system of P, which is a refinement of &. Denote the
transition functions of V by kg : Us N Uy — K. Since the sections of V are given by
restricting the sections of ¢ and the sections determine the transition functions by
05 kg = 0y, we have kg = Ki(s)i() ‘Vsth' We have seen before that if V, NV, # (),

then V, NV, € US®) for some = € Vits) N Vipy. Since i) ¢ 5éi(s)’i(t)) for
some ¢ € L we thus have

kat(Va N V;) C kg (OF D) = ki i OV )y C O, .

Remark B.1.9 (Equivalences of principal bundles and cocycles). Let K
be a topological group. If X is a topological space and (U;);c; is an open cover
of a X, then a collection K = (k;; : U;NU; — K),; jer of continuous maps satis-
fying (B.3) is called a K-valued cocycle on X. Two such cocycles K and K’ are
sald to be equivalent if there exists a common refinement (V});c; of their open
covers together with two functions f:.J — I and f': J — I' such that V; C Uy
and V; C U}, for all j € J and a collection G = (g; : V; — K)je; of continuous
functions satisfying
g; (@) - Ky p6n (@) - gjr (@) = Ky ()

for all x € V;NV;. If Pc and Py are the associated principal K-bundles over
X, then this defines a continuous bundle equivalence gg between Py and Py by
setting

9 : P = Py [(f(), 2, k)] = [('(4), %, g;() - K)).

Conversely, if Px and Py are two principal K-bundles over X, given by two
cocycles K and K', then there exists an open cover (V;);c; which is a common
refinement of the open covers (U;);e; and (U),)yep underlying K and K'. In fact,

(Ui N UL Ginerxr
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is such a cover and, we assign to it the functions f = pr; and f’ = pr,. Then a
bundle equivalence g : Px — Py defines for each (i,47') € I x I' a continuous map

gzm-/) :U;NU, x K — K by g([(i,z,k)]) = [(i',x,ggm,)(z, k))]. (B.4)

Sine g is assumed to satisfy g(p - k) = g(p) - k, we have g(, (2, k) = g{; (2, €) - k.
If we set g(;i1)(x) := g; (2, €), we obtain a collection of continuous maps

Gy = (g(i,i’) Ui 0 UZ-// - K)(i,i’)e[x[’
satisfying
kjrir(x) - 9y (x) = g(j,jn)() - kji(x) for all 2 € U; N Uy NU; N U, (B.5)

because [(4, z, k)] = [(J, x, k;i(x)k)] has to be mapped to the same element of Py by
g. Since G = G, and g = gg, and since each principal K-bundle may equivalently
be described by a cocycle, the set of equivalence classes of principal K-bundles
over X is parametrised by

Bun(X, K) = {K : K is a K-valued cocycle on X}/ ~,
where ~ is the equivalence of cocycles described above. |

Definition B.1.10 (Smooth principal bundle). Let K be a locally convex Lie
group and M be a manifold with corners. A continuous principal K-bundle over
M is called a smooth principal K-bundle over M if P is a manifold with corners
and the local trivialisations from (B.1]) can be chosen to be diffeomorphisms. A
morphism of smooth principal bundles is a morphism of continuous bundles that
is also smooth. n

Remark B.1.11 (Continuous vs. smooth principal bundles). All the re-
marks on the equivalent description of sections and local trivialisations, principal
bundles and cocycles and bundle equivalences remain valid in exactly the same
way if one only substitutes the assumptions of being continuous with those of
being smooth. In particular, we have the same notions of trivialising subsets,
smooth bundle equivalences and smooth sections defining smooth local trivialisa-
tions. Smooth local sections in turn define smooth transition functions , cocy-
cles k;;j : UyNU; — K and bundle equivalences are defined by smooth mappings
g V; — K.

Furthermore, if P is a smooth principal K-bundle over M, then a smooth open
trivialising system U of P consists of an open cover (U;);c; and smooth sections
o; : U; — P. If each U, is also a manifold with corners and the section o; can be
extended to smooth sections o; : U; — P, then U = (Ui, 0i)icr is called a smooth
closed trivialising system of P. In this case, U is called the trivialising system
underlying U. [
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Remark B.1.12 (Smooth Structure on Smooth Principal Bundles).

Let K be a Lie group and P be a continuous principal K-bundle over the
manifold with corners M. If there exists a trivialising cover (U;);e; and triviali-
sations ©; : 7 1(U;) — U; x K such that the corresponding transition functions
kij : UyNU; — K are smooth, then we define on P the structure of a manifold
with corners by requiring the local trivialisations

@i . 7T_1(Ui> — Uz x K

to be diffeomorphisms. This actually defines a smooth structure on P, because it
is covered by (771(U;))ier and since the coordinate changes

(U; N Uj) x K — (U;N Uj) x K, (z,k)— @j(@;l(m,k)) = (z, k”(x) - k)
are smooth. n

Lemma B.1.13 (Existence of smooth trivialising systems). If
P=(K,m:P— M) is a smooth K-principal bundle with finite-dimensional
base M, then there exists an open cover (V;)icr such that each V; is trivialising and
a manifold with corners. In particular, there exists a smooth closed trivialising
system V = (V;, 04)icr, where o; is the restriction of some smooth section, defined
on an open neighbourhood of V. If, moreover, M is compact then we may assume
I to be finite.

Proof. For each m &€ M there exists an open neighbourhood U and
a chart ¢:U — (R™)" such that U is trivialising, i.e. there exists
a smooth section o:U — P. Then there exists an € >0 such that
(RM)* N (e(m) + [—€,e]") C p(U) is a manifold with corners and we set
Vi = @ H(R™) ™ N (@(m) + (—¢&,€)")). Then (V;,)menr has the desired properties
and if M is compact it has a finite subcover. [

Definition B.1.14 (Associated bundles). Let P be a smooth principal K-
bundle and A : K x N — N be a smooth left action of K on some smooth locally
convex manifold N. Then we define the associated bundle A\(P):=P x, N to
consist of the topological space

(P x N)/K,

where K acts on P x N from the right by (p,n)-k:= (p-k,A\(k7',n)) and the
bundle projection

map) i P X N — M, [p,n]— 7p(p),

where 7p : P — M is the bundle projection of P. [
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Remark B.1.15 (Local trivialisations in associated bundles). If
AMP)=P x, N is an associated bundle, then it is in particular a locally
trivial K-bundle over M with fibre N, i.e., we have for each m € M an open
neighbourhood U, called trivialising neighbourhood and a diffeomorphism

O :myp(U) = UxN

such that for two trivialising neighbourhoods U and U’ with local trivialisations
© and ©" we have
0 (0 Hz,n)) = kyy(z) tn (B.6)

for © € UNU’ and some smooth function kyy : UNU — K. In fact, if
mp : P — M is the bundle projection of P, U is a trivialising neighbourhood for
P and o : U — P a smooth section of mp, then

T (U) = (Ux N)JK = Ux N, (p,n) > (wp(p), ky (p)n)

defines such a diffeomorphism with inverse (x,n) — [(o(x),n)]. Furthermore, two
such trivialising neighbourhoods define by (B.2)) a smooth map kyy : UNU — K

such that holds. m

B.2 Classification results for principal bundles

This section provides some results from the classification theory of continuous
principal bundles. We focus mostly on bundles over spheres and surfaces, since
these are the cases dealt with in Chapter [4]

When treating universal bundles, we will restrict to the case of bundles uni-
versal for bundles over CW-complexes. This will suffice, because we are always
interested in principal bundles over finite-dimensional manifolds, which are locally
finite CW-complexes.

To avoid confusion with the homotopy groups, we denote throughout this chap-
ter the bundle projection with 7 instead of .

Definition B.2.1 (Pull-back bundle). If P is a continuous (respectively
smooth) principal K-bundle over M and f : N — M is a continuous (respectively

smooth) map, then f*(P) = (K, f*(n) : f*(P) — N) is the pull-back bundle, where

fH(P)=A{(n,p) € Nx P: f(n) =n(p)}

and f*(n)(n,p) = n. Furthermore, we have an action

() [1(P) x K — f*(P), (n,p)-k=(n,p-k)

and an induced map fp: f*(P) — P, (n,p) — p . n
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Lemma B.2.2 (Cocycle for pull-back bundle). If P is a continuous (respec-
tively smooth) principal K-bundle, then f*(P) is a continuous (respectively smooth)
principal bundle, and fp is a continuous (respectively smooth) bundle map.

Furthermore, if K = (kij : U;NU; — K); jer is a cocycle describing P, then
[ (kij) : [7HUNTU;) — K, n e kij(f(n)) are the transition functions of a cocycle
f(K) of f*(P).

Proof. If (U;);cr is the open cover underlying K, then (f~!(U;))ies is an open
cover of N. Furthermore, if o;:U; — P is a section of P with corresponding
ko, : n Y (U;) — K, then f*(o;): f7Y(U;) — f*(P), n— (n,04(f(n))) is a section
of f*(P), and

f*(n)il(fil(Uz)) - f71<Uz) X Ka (nap) = (n7 kl(p))
defines local trivialisations of f*(P) with f*(k;;) as transition functions. "

Definition B.2.3 (Universal bundle). Let Px = (K,nx : EK — BK) be a
continuous principal K-bundle for a topological group K. Then Pk is called a
universal bundle and BK is called a classifying space for K if for each other
continuous principal K-bundle P = (K,n: P — X) over a CW-complex X, there
exists a map ¢: X — BK, called classifying map, such that ¢*(Pg) is equivalent
to P, and, furthermore, if two maps ¢: X — BK and ¢ — BK are homotopic if
and only if f*(Px) and f™*(Pk) are equivalent.
In other words, Pk is universal if for each CW-complex X the map

(X, BG]. — Bun(X, K),  [f] = [[*(EK)],

where the brackets around f denote the homotopy class of f and around f*(EK)
the equivalence class of f*(EK), is well-defined and a bijection. [

Theorem B.2.4 (Existence of universal bundles). ([Mi56]) If K is a topo-
logical group, then there exists a continuous principal K-bundle Pk which is uni-
versal. [

Corollary B.2.5 (Bundles over contractible spaces are trivial). A contin-
uous principal K-bundle P over a contractible CW-complex X s necessarily trivial.

Proof. If X is contractible, then each classifying map is homotopic to a constant
map and the pull-back bundle of a constant map is trivial. [

Theorem B.2.6 (Criterion for universal bundle). ([Hu94, Theorem 13.1])
If P is a continuous principal K-bundle, then P is universal if and only if
mn(P) =0 for all n € Ny. =

Corollary B.2.7 (Homotopy groups of classifying spaces). If Pk is a uni-
versal continuous principal K-bundle, then m,11(BK) = m,(K) for all n € Ny.
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Proof. Since a locally trivial bundle is in particular a Serre fibration [Br93, Corol-
lary VII.6.12], this is an immediate consequence of the long exact homotopy se-

quence [Br93, Theorem VII.6.7] and Theorem [B.2.6] ]

Proposition B.2.8 (Classification of bundles over Spheres). The set of
equivalence classes of continuous principal K-bundles over S™ is parametrised by
Wm_l(K).

Proof. This follows from Bun($™, K) = [$™, BK|. & m,(BK) = mp,—1(K). ]

Remark B.2.9 (Description of bundles over spheres). The bijection from
Proposition [B.2.10] can be obtained as follows. Identify 5" with
{z € R""!: ||z|| = 1}. Then

Uv:={rxeS" 2,41 >0} and Ug :=={z € " : 2,41 <0}

are the northern and southern hemisphere with north pole zy = (0,...,0,1) and
south pole g = (0,...,0,—1) and we have

UvNUs=8"N{zxc R :2,,, =0} ="

We will assume that xg is the base-point of $”. Furthermore, if P is a con-
tinuous principal K-bundle over $", then there exist sections oy : Uy — P and
os: Us — P, because Uy and Ug are contractible (cf. Corollary [B.2.5). If
os(zs) - k = po, then  — og(x) - k defines a new base-point preserving section. In
the same way, if z( is the base-point of $"~! = Uy N Us, and on(z) - k' = o5(x0),
then oy (z) := on(x) - k' defines a section that coincides with og in 2. Then

on(z) = o5(x) -cp(x) if x € UyNUs =2 $" !
defines c¢p € C,($"!, K), and we may take [cp| as a representative in
Bun($", K) = [$", BK|, = 7,-1(K).

Since ¢:8"!'— K and ¢ :8"!— K are homotopic if and only if
c-ct: 8 2 9B" — K extends to B", it follows with Remark that
[P] = [ep] is actually bijective. In particular, principal K-bundles over $! are
(up to equivalence) of the following form. For k € K denote

P =R x K/~ with (z,k)~ (x+nk™ k).

Then K acts naturally on P by [(z,k') k'] =[(z,2'-k")] and n: P, — S,
[(z,k")] — [z] is a bundle projection, where we identified $' with R/Z. The above
considerations show that Py is classified by [k] € my(K). Furthermore, if K is a Lie
group, then Py is also a smooth principal K-bundle, since there exists a trivialising
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system such that the transition functions take values in {e, k} and thus are smooth.

Alternatively, a representing map ¢ € C,($" !, K) can also be obtained as fol-
lows. We consider $™ as the quotient B" /0B™ and denote by ¢ : B" — $" the corre-
sponding quotient map. Then there exists a map () : B* — P with no Q) = ¢, since
n: P — §"is alocally trivial bundle and thus a Serre fibration (cf. [Br93) Corollary
VIL.6.12]). Then Q(OB™) C n~(z5) and thus Q(zg) = ( ) - ¢(x) for x € OB™,
where zg is the base-point of B™ = §"~!. Since c(x) = k,(Q(x)) - k (Q(x))*1
for any section o : Ug — P defining k, : 171 (Us) — P by p = a(n(p)) - k»(p), we
furthermore have that ¢ is continuous and thus ¢ € C, (5"} K).

Since ¢ By(0) 15 @ homeomorphism onto Uy, the map Q| B1(0) determines a

2 2

section oy on Uy. Setting og(z) = Q(x) - c¢(x - ||z||7')~", this defines a continu-
ous map on ]Bm\int(B%(O)) which is constant on 0B™ and thus a section on Ug.

For x € 0By we have on(z) = og(z) - ¢(2x), and thus ¢ also represents P in
Bun(S", K) = 7,1 (K). =

Proposition B.2.10 (Classification of bundles over surfaces). Let K be
a connected topological group and > be an oriented surface. Then
Bun(X, K) = m(K) if ¥ is closed and compact and Bun(3, K) is trivial if ¥ is
non-compact or non-closed.

Proof. Since my(K) = m(BK) by Corollary and H'(X) =0 for i > 2, we
have
Bun(Y, K) 2 [¥, BK], = H*(X, m(BK))

by [Br93, Corollary VII.13.16]. Since Hy(X) is free, [Br93, Corollary V.7.2] now
yields
H*(X, 7(BK)) = Hom(Hy(X), m(BK)) = Hom(Hy (%), m1(K)),

and the assertion follows from Hy(¥) = Z in the case of a compact and closed
surface and Hs(X) = 0 otherwise. "

Remark B.2.11 (Notation for surfaces). We recall some facts on the classi-
fication of compact surfaces (cf. [Ma67, Theorem 5.1], [Ne02b, Remark IV.4.5]).
Each closed compact orientable surface 3 of genus g can be described as a CW-
complex by starting with a bouquet

Ayy=8'v---v§

2g

of 2g circles. Denote by S} the i-th circle in this bouquet. We write ay, ..., ay, for
the corresponding generators of the fundamental group of A,,, which is a free group
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on 2g generators, and represent a; by the inclusion a; : §! — $! C §tv ... v L
Then we consider a continuous map fs : $' — Ay, representing

ap-ag-aytcagt - agy g - ag, - a;gl_l : a;; € m(Agy). (B.7)

Now ¥ is homeomorphic to the space obtained by identifying the points on
OB? = §' with their images in Ay, under fx, i.e.,

52 Ay, Uy, B2, (B.8)

and we denote by ¢x; the corresponding quotient map gx, : B2 — . Thus we can
identify Ay, with the subset Ay, = X\ int(B?) of X, int(B?) is itself a subset of X
and we take the base-point of Ay, as base-point of ¥. Furthermore, note that with
respect to this identification we have $/A,, = $? and we denote by gg2 : ¥ — $?
the corresponding quotient map.

The most instructive picture is to view IB? as a regular polygon with 4g edges,
where we identify certain points on the edges such that in counterclockwise order
the sequence of edges corresponds to the loop

—1_—1 -1 -1
a1G201 Qo ... agg,lagg%g_lazg .
Now ¥ corresponds to the polygon modulo these identifications. [

Remark B.2.12 (Description of bundles over surfaces). Let ¥ be a com-
pact, closed and orientable surface and K be a topological group. The bijection
Bun(X, K) = 7 (K) from Proposition can be obtained as follows.

At first, we obtain a map Bun($?, K) — Bun(X, K) as follows. Let ¢ : ¥ — 1B
be the quotient map identifying A,, with the base-point in $? (c¢f. Remark .
For each continuous bundle Pg2 over $2 we have the corresponding pull-back bundle
Ps = q*(Ps2) given by

Py —% . P

o

y 2, g2

If ¢:8%— BK is a classifying map for Pg:, then coq is a classifying
map for Pg.  Furthermore if F:[0,1] x $2 — BK is a homotopy, then
Fo(idp xq) : [0,1] x ¥ — BK is a homotopy and we thus obtain a well-defined
map

Bun($? K) — Bun(X, K), [Ps:] — [Ps]. (B.9)

Since K is assumed to be connected, BK is simply connected (cf. Corollary
and thus each map Ay, — BK is homotopic to a constant map. This in turn
implies that a classifying map cx : ¥ — BK can always be chosen to be constant
on Ay, and thus factors through a map cg : $*> — BK. This shows that is
surjective. The same argument shows that is also injective and thus provides
a bijection Bun(X, K) & Bun($?, K) & 1 (K). »
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Proposition B.2.13 (Bundles over 3-dimensional manifolds). If K is a
simply connected finite-dimensional Lie group, then any continuous principal K-
bundle over a 3-dimensional manifold is trivial.

Proof. With m3(BK) = m(K) =20, m(BK) = m(K) =0, m(BK) = m(K) =0
this follows as in Proposition [B.2.10] [

Remark B.2.14 (Bundles whose structure group is a K(n,G)). If X is a
topological space with non-trivial G = 7, (X) for all but one n € N, then it is
called an FEilenberg—MacLane space K(n,G). In particular, if a topological group
Kisa K(n,G), then BK is a K(n + 1,G) and [Br93| Corollary VII.13.16] implies

(X, BK], = H""'(X,G)

Since T=R/Z is a K(1,Z), this shows that for any X,
Bun(X,$') = H?*(X,Z). Furthermore, if H is an separable infinite-dimensional
Hilbert space, then U(H) is contractible (cf. [Ku65]) and Z(U(H)) = U(1) implies
that PU(H) = U(H)/Z(U(H)) is a K(2,Z) and thus

Bun(X, PU(H)) = [X, BPU(H). = H*(X, Z). n

B.3 Connections on principal bundles

Connections describe the geometric aspects of smooth principal and vector bundles.
In this section we give the basic definition and relate these two concepts.

Definition B.3.1 (Vertical invariant vector fields). If P is a smooth princi-
pal K-bundle, then V), :=ker(Tn(p)) C T,P is called the vertical tangent space.
Furthermore, if V(P)X denotes the subspace of V(P) satisfying T)pp 0 X = X o py,
for all k£ € K, then the space of vertical K-invariant vector fields is the closed
subspace

Veert(P)X := {X e V(P)X : X(p) € V, for all pe P}. .

Lemma B.3.2 (Isomorphism to the gauge algebra). If P is a smooth prin-
cipal K-bundle and if we consider the fibre m* (W(p)) as a sub-manifold of P, then
V, =2 T,nt (W(p)) Fach 'V, is canonically isomorphic as a vector space to the Lie
algebra €, where the isomorphism is given by

T, t—=T,P, xw~—dp,e).x,

where p, : K — P, k+ p-k is the orbit map at p € P. Furthermore, we have a
canonical C*° (M, R)-linear isomorphism of topological Lie algebras

L C®(P RS = Veer(P), 1(n)(p) = —7,(n(p))
and thus a closed C>(M,R)-linear embedding C(P, €)X < V(P)X.
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Proof. The first assertion follows from the fact that 7=!(7(p)) is diffeomorphic to
K. Tt suffices to check the second in local trivialisations, so let U be a trivialising
neighbourhood of p with section o : U — P and corresponding k, : 7~ }(U) — K.
Then

0'(ks) ()], Veer(P) — C=(x=(U), )"

defines a continuous inverse of ¢. m

Definition B.3.3 (Connection 1-forms). Let P be a smooth principal K-
bundle over the finite-dimensional closed manifold M. Then a connection on P is
given by a connection 1-form A € Q!(P,€) satisfying

oAl =idy, forall pe P and AoTp, = Ad(k™').A for all k € K.

Remark B.3.4 (Connections as horizontal lift of vector fields). A  con-
nection I-form on P determines a C°°(M,R)-linear splitting of the exact
sequence

Co(P 0 <5 V(P T V(M)
where T'r,(X)(m) = Tn(X(p)) for some p € 7= (m). In fact,

V(P)K 5 X — AX € C=(P,p)K

defines a continuous inverse to ¢ and thus a splitting. Then the corresponding
horizontal lift
S:V(M)— V(P)%, X S(X)

is given by X +— X — A.X for an arbitrary lift X of X. [

Remark B.3.5 (Isomorphisms of sections and invariant mappings). Let
P be a smooth principal K-bundle, A : K XY — Y be a smooth action of K on
the locally convex space Y, and let A(P) be the corresponding associated smooth
vector bundle. Then the space of sections S(A(P)) = Q°(M, A(P)) is isomorphic
to

CRPY) ={f€C®(PY): f(p-k) = \E™", f(P)},
where the isomorphism is given by C*(P,Y)* — S(\(P)), f + o with
op(m) =[p. f(p)] =lp- k=" Ak, f())] = p- k=", flp- k7).
Furthermore, if
Ql

bas

(PY) :={weQ(PY):woTp = Ad(k™)w, w|, =0Vke€ K,pe P}
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denotes the space of based invariant 1-forms on  A(P),  then
QL (P,Y)Y =2 QY (M, \(P)) , where the isomorphism is given by

bas
QL (PY)Y — QY M, ANP)), wr wy

bas

with was(Xpm) = [p,w(X,)], where X, € T, P is such that T'7(X,) = X,,. Note that
this is well-defined, because for X’ with TW(X/) X we have X, — X €V,
which implies that w(X,,) does not depend on the choice of X, in T,P.

Furthermore, [p, w(X,)] = [p- k, Ad(k) " .w(X,)] = [p- k,w(Tpr(X,))] implies that
wir(X,) does not depend on the choice of p. "

Definition B.3.6 (Covariant derivative). If £ is a smooth vector bundle over
the finite-dimensional manifold M without boundary, then a covariant derivative
is a continuous linear map

V QUM E) — QLM E)

such  that V(f -w)X=({fX) w+f-(V(w).X) for all feC®M),
we(M,E) and X € V(M). If weQ'(M,E), then we write shortly Vw
for V(w). u

Lemma B.3.7 (Connection 1-forms inducing covariant derivatives). Let
P be a smooth principal K-bundle and X\ : K XY —Y be a smooth action of K.
Then a connection 1-form A induces a continuous map

d*:CX(PY) = QUPY),  d'(n)(X,) = dn(X,) — MA(X,),n(p)).

Furthermore, d* takes values in QL (P, Y)* and determines a covariant deriva-

tive with respect to the identifications Q°(M,\(P)) = S(A(P)) = C=(P,Y)* and
QLM A(P)) = O (P, Y)N

bas

Proof. Since d* is given locally in terms of push-forwards of continuous mappings,
it is continuous. Since each X, € V}, can be written as 7,(x) = dp,(e).z for some
x € twith p, : K — P, k' p-k, we have

d* n(X,) = di(r(x)) — MA(7,(2)), 1(p)) = dn(dpy(e)-x) = Az, n(p))
= d(no py)(e).x = A(z),n(p)) = dAC 1(p))(e).x = Az, 9(p)) = 0.
Thus d* actually takes values in Qf (P, Y) . It is clear that d* is linear, and
because d(f - n)(X,) = df (X,) - n(p) + f(p) - dn(X,), it defines a covariant deriva-

tive. n

Remark B.3.8 (Covariant derivative induced from horizontal lift). If A
is a connection 1-from on P and S: V(M) — V(P)¥ is the corresponding lift
from Remark [B.3.4] then we obtain the covariant derivative also by

L CX(PY ) = (P Y)Y 0= S(X).g

bas

with  respect to the identifications QO(M,\(P)) = C>(P,Y)* and
QM A(P)) = QL_(P,Y) .

bas
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Remark B.3.9 (Invariant forms inducing fibrewise bilinear forms). Let
P1 be a smooth K;i-principal bundle over M, K5 be a Lie group and ¢ : K1 — K
be a morphism of Lie groups. Then ¢ induces a smooth principal Ksy-bundle
over M by composing the transition functions of a cocycle representing P;
with ¢. Furthermore, we have a map ®: P, — P,, which is locally given by
(m, k) — (m, @(k)) which satisfies ®(p - k) = ®(p) - (k).

Now let A\ : K1 xY; — Y] and Ay : K9 X Y5 — Y5 be smooth actions of K
and K5. Then the two associated vector bundles A\ (P;) = (Y1,& : P — M) and
Ao(Ps) = (Ya,& : Py — M) are given by

Py, =P x,, Y1=P xY)/~ with (p,x)~ (p-k,\(k1).2),
Py, =Py xy,Yoa=PyxYy/ ~ with (p,z)~ (p-k,\o(k™1).2).
Furthermore, let x:Y; xY; — Y, be continuous, bilinear and ¢-equivariant

map, ie., k(A (k).z,\(k).2") = X(p(k)).c(x,2") for all z,2' €Y and
ke K. For p,p’ € P we define k,-, € Ky by p=p -k,1,, whence

p P>
k.(p-k’)*l(p“k’) = k’_l . ]{,'pflp/ - k" and k'pflp/ =e if p = p/. If p,p/ S Pl, k’, kK e Kl and
x,x’ €Y1, then we have

[@(p k) k(M () A (B Ky - k’).A(k;’*l).x’)]
— [®(p) - p(k), Aol (k™)) (s Ay 17).a')]. (B210)

Thus we can fibrewise define bilinear maps

"i('v )m D By X By — i, Ii([p, I], [plal’/])W(p) = [(I)(p>7 li(l‘, AQ(kp_lp’>‘x/)]7

where E,, = &1 (m), F, = & '(m) are the corresponding fibres over m and. That
this is in fact well-defined follows from (B.10). In particular, if K7 = Ky = K,
¢ =1idg, A1 = Ay = Ad and & is the Lie bracket [-,]¢, which is K-equivariant for
the adjoint action, this construction defines a Lie bracket [, |, on each (Eqq)p,. =

Definition B.3.10 (Multiplication induced from invariant forms). In the
situation of Remark [B.3.9, we define the multiplication

Kot QP(M A (P))) X QUM A (Pr)) — QPTUM, Ao (Pa)),  (w,0) = Ku(w,w’),

where

K (W, W) (X1my - ooy Xpigm) =
Z Sgn(a)/{(wm(Xo(l),ma s aXU(p),m)a w;—n(Xa(erl),ma s 7Xa(p+q)))m

0€Sp+q
for Xim,. .., Xprgm € TnM. In particular, if Ky =K, =K, ¢=idg,
A =X =Ad: K xt— ¢ and k is the Lie bracket [-,]¢, then this defines a Lie
bracket on the space of sections S(Ad(P)) by [o,0'[(m) = [o(m), o’ (m)] . ]
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Lemma B.3.11 (Continuity of the multiplication). In the situation of Re-
mark[B.3.9 if (p,q) € {(0,0),(1,0),(0,1)}, then

Fo 2 (M, A1 (Pr)) X QUM, A (Pr)) — QPTYM, Ao(Pa))
18 continuous.

Proof. This is immediate, since in local coordinates k, is given by the push-
forward of a continuous map which is continuous by Proposition [2.2.22] ]

Proposition B.3.12 (Sections in adjoint bundle form a Lie algebra). If
P is a smooth principal K-bundle, then the Lie bracket

[0, 0l(m) = [o(m), o’ (m)]m
on the space of section S(Ad(P)) turns S(Ad(P)) into a locally convex Lie algebra
isomorphic to C*°(P, ¢)%
Proof. This is an immediate consequence of Remark and Lemma |B.3.11| m

Lemma B.3.13 (Naturality of covariant derivative and multiplication).
Let P be a smooth principal K-bundle and \y : K X Y7 — Y, and Ay : K X Yy — Y,
be two smooth actions of K and k:Y) XYy — Yy be K-equivariant (i.e., idg-
equivariant in the sense of Remark . If A e QYP,¥) is a connection 1-form
on P and dity : Q°(M, A 2(P)) — Q(M, M\ 2(P)) are the corresponding covariant
derivatives, then we have for n,u € Q°(M, A\(P))

dy (0, 1) = w(di 0, 1) + k() d7' ).

In particular, if Ay = o =Ad: K xt — ¥, and k is the Lie bracket [-,-]¢, then
dt = d§t =: d* and we have

d* [n, p] = [d"n, ] + [n, " .
Proof. Since k is K-invariant, we have Ay o(idg xk) = Ko(A; X A\j) o A, with
A:KxYixYi > KxYixKxYy, Alkyy)=(kykv).
This implies

Sale, wly, 1)) = dOa olidi ) (e,9,5')(2,0,0)

d(/{o (A1 x M) oA)(e,y,y")(x,0,0)

(Al( y). dhi(e,y)(x,0)) + k(dAi(e,y)(x,0), Aile, )
Ky, Mz, y) + k(A (2, 9),y)

where i) holds, because & is bilinear. We thus have

||v Il

d3 ko (n, 1) = drs(n, ) — Aa(A, £ (0, 1)) = Ku(dn, 1) + (), dpa)
— k(M (A, 1) — B (M (A D), 1) = Ku(di g, i) + K, dif ). m
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Lemma B.3.14 (Canonical connection on bundles over the circle). Let
Py be a smooth principal K-bundle over $' = R/Z, given by some k € K as in
Remark . If we identify V(S') with the Z-invariant vector fields on R and
gau(P) with C2(S, ), then there is a connection 1-form on Py, inducing f +— df
as its covariant derivative on Py.

Proof. First we note that f +— df defines in fact a covariant derivative, since

(df. X)(t+n) = f'(t+n) - X(t+n) = (Ad(E™).f'(t)- X () = Ad(E™").((df X)(2)).

We may cover $' with two arcs Uy, U, and choose trivialisations of 7T_1<U1) and
771 (U,) such that the transition function ki is locally constant. Then the triv-
ialisations define ky : 771(U;) — K and ky : 7 }(Uy) — K. Since kyo is locally
constant, Lemma implies that ¢'(k;)(X,) is the same for ¢ = 1,2 and thus

X, = 8(k;)(X,) if pent(Uy)

defines a connection 1-form on P,. Since the above identifications are obtained
by evaluating f € C*°(F, €)X along a sections on which k; is constant, this shows
that the induced covariant derivative is in fact given by f — df. [

Remark B.3.15 (Canonical flat connection). More generally, we call a
smooth principal K-bundle P over M flat if one of the following equivalent con-
ditions is satisfied

i) P has a smooth open trivialising system (U;, ;)5 such that all correspond-
ing transition functions k;; : U; N U; — K are constant

ii) P = P,, where ¢ :m (M) — K is a homomorphism and P, = M x K/ ~
with (m, k) ~ (m - d, p(d)” 1. k) and canonical bundle projection and K-

action. Here M denotes the universal covering of M, on which m (M) acts
canonically from the right.

In the case of a flat bundle, we have a canonical (flat) connection, constructed as
follows. The T.(K) = ¢-valued Maurer—Cartan form sy, Xi — T,\ (k) (X)) on
K induces a (M )-invariant connection 1-form A :=pr} kae on M x K. Since
the fibres of 7 : M x K — P, are discrete, A vanishes in particular on the tangent
spaces of the fibres and thus is the pull-back of a -valued 1-form A € Q'(p,, £),
i.e., we have m*A = A. This implies immediately that A is a connection 1-from on
Po.

We now consider the covariant derivative corresponding to A for an associ-
ated vector bundle. Let A : K x Y — Y be a smooth action and let A\(P) be the
associated bundle. Then we may identify C>(P,Y)* with

CE(M,Y) = {f € C*(M,Y) : f(z-d) = Xp(d) ™", f(x))}.
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With respect to these identifications, the covariant derivative induced from A is
d*: CX(MY) — QY (M, A\(P)), d*n.X,=dn.X,,

where we identify T,, M with Tm]\A/[/ canonically. ]
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Notation

cM(U,Y)
C>(U,Y)
Jint
C(U,Y)
C=(U,Y)
OU,Y)
d"f

Y+

(Ui, ¢i)ier
int (M)
a(M)
C™"(M,N)
(M, N)
O(M,N)
T, M

M
Tf:TM — TN
"M

Tf:T"M — TmN

O, W]
C(X,Y).
C*>-topology
QP (M, E)

res

Sa(€)

space of n-times differentiable maps
space of smooth maps

restriction of f to interior

space of n-times differentiable maps
space of smooth maps

space of holomorphic maps

higher differential

intersection of half-spaces
differential structure

interior of a manifold with corners
boundary of a manifold with corners
set of n-times differentiable maps
set of smooth maps

set of holomorphic maps

tangent space

tangent bundle

tangent map

higher tangent bundle

higher tangent map

basic open set in c.-o. topology
space of maps with c.-o. topology
topology on space of smooth maps

space of p-forms with values in vector
bundle
restriction map (for sections in vector

bundles)
space of restricted sections
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164 Notation

glue gluing map (for sections in vector bun- 15
dles)

Su(€) space of restricted sections 15

res restriction map (for group valued func- 19
tions)

Gy space of restricted maps 19

glue gluing map (for group valued functions) 19

Aut.(P) group of continuous bundle automor- 28
phisms

Gau,(P) group of continuous gauge transforma- 28
tions

Aut(P) group of smooth bundle automorphisms 28

Fy map induced on base by F' € Aut(P) 28

Diff (M) p image of the homomorphism 28
Q : Aut(P) — Diff (M)

Gau(P) gauge group (group of smooth gauge 28
transformation)

C>=(P,K)& group of K-equivariant smooth maps 28

gau(P) = C>=(P,e)X gauge algebra (algebra of K-equivariant 29
maps)

gv(P) gauge algebra in local coordinates 29

av(P) gauge algebra in local coordinates 29

Gy(P) gauge group in local coordinates 31

0. U C G(P) — gu(P) chart for the gauge group in local coordi- 32
nates

C(P,K)& group of K-equivariant continuous maps 37

G.y(P) continuous gauge group in local coordi- 38
nates

Gev(P) continuous gauge group in local coordi- 38
nates

cr(U, A) n-cochains 57

On boundary operator on cochains 57

HM(M, A) continuous abelian Cech cohomology 57

H™(M, A) smooth abelian Cech cohomology 57

HM(M, K) continuous non-abelian Cech cohomology 57

H*(M, K) smooth non-abelian Cech cohomology 57

U(H) unitary group 58
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PU(H) projective unitary group 58
K(n,m, (X)) Eilenberg-MacLane space 58
K°(M) K-theory of M 58
Fred(H) Fredholm operators of H 59
Kp(M) twisted K-theory of M 59
g lift of ¢g € Diff(M) to bundle automor- 61

phism
Exp:TM — M exponential mapping of Riemannian met- 62
ric
S:0 — Aut(P) section of Aut(P) > F — F) € Diff(M) 63
(T,w) smooth factor system 67
ev:C(P,K)X - K evaluation fibration 76
C.(P,K)¥ pointed gauge group 76
Ca(X,Y) continuous maps with f(A) = {x} 78
O Tp(B) — w1 (F) n-th connecting homomorphism 85
a#3 commutator map defining (-, -)s 86
(a,b)s Samelson product 87
a3 map defining (-, )y 89
(-, Ywn Whitehead product 89
PH"! projective space 91
(G) = 1, (G) ® Q rational homotopy groups 92
su(Y) target space for the covariant cocycle on 96
gau(P)
Aa(w) integral of w € Q'(M,Y") over a 96
Wi, A continuous cocycle on gau(P) 96
g@(\P) central extension of the gauge algebra 97
per, : mo(G) — 3 period homomorphism 98
krgo  txt—R Cartan—Killing form 100
I, = im(per,, ) period group of covariant cocycle 102
faau map induced by pull-backs 103
foau map induced by pull-backs 103
ra: Aut(P) — QY (M, Ad(P)) cocycle for action of Aut(P) on 111
QY (M, Ad(P))
Gw)o central extension of gauge group 113
C($Y, K) twisted loop group 116



166 Notation
gL = C,‘;O/CST,E) affine Kac-Moody algebra 118
G = C,So/(‘STK) affine Kac—Moody group 118
H"(M, X\ (P)) twisted cohomology 123
expo g — G exponential function of G 127
3—=g—>g central extension of Lie algebras 129
o central extension given by cocycle w 130
HZ2(g,3) second continuous Lie algebra cohomol- 130
ogy

Z—G—»(G central extension of Lie groups 130

G ¥ central extension given by cocycle f 131

H(G, Z) second smooth Lie group cohomology 131

Ag: M — M Ay, ) for ~a  smooth  action 132
ANiGxM—M

Ad:Gxg—g adjoint action 132

Am i G — M orbit map A(-,m) for a smooth action 133
ANiGxM—M

Se(€) space of continuous sections in vector 137
bundle £

pr: P— P p(-, k) for action p: Px K — P 138

ky:m Y (U)— K map with o(7(p)) - k,(p) = p for section 139
oc:U—P

U= (Ui, 0i)icr open trivialising system 139

U= (Ui, 0:)ier closed trivialising system 139

K=k :UnU; = K) cocycle 140

Bun(X, K) equivalence classes of principal K- 142
bundles over X

A(P) bundle associated to smooth action A 143

f*(P) pull-back bundle 144

fr map induced on pull-back bundle 144

Asg bouquet of 2¢g circles 147

Veert (P)E vertical K-invariant vector fields 149

T, € —T1T,P derivative of the orbit map 149

pp: K — P orbit ~ map  p(p,-) for  action 149
p: PxK—K

V QUM E) — QM E) covariant derivative 151



Index

action
adjoint, 132-134
derived, 134
of Aut(P) on 3x(Y), 110

(P)

of Aut(P) on Q'(M,Y), 110
of Aut(P) on Q'(P,¥), 111

of Aut(P) on Gau(P)o, 114
of Aut(P) on gau(P), 112

of Aut(P) on C*(M,Y), 110
of Aut(P) on C*(P, E)K 110
of Aut(P) on C*(P,Y)*, 110
of Diff (M) on Q'(M, Y), 21

iff (

of Diff(M) on C>*(M,Y), 21

pull-back, 21

push-forward, 20

smooth, 132

smooth automorphic, 132

smooth linear, 132

smoothness criteria, 133-134
algebra

affine Kac-Moody, 118

gauge, 29

twisted loop, 116
automorphism

bundle, see bundle automorphism
automorphism group, 28

Banach-Lie group

is locally exponential, 128
boundary

of a manifold with corners, 10
boundary operator, 57
bouquet, 147

bundle
associated, 143
automorphism
continuous, 28
smooth, 28
vertical, 28
equivalence, 138
principal, 138, see principal bun-
dle
pull-back, 144
universal, see universal bundle
vector, 137, see vector bundle
bundle equivalence
in local coordinates, 141
bundles
over spheres
classification, 146
description, 146
over surfaces
classification, 147
description, 148

C*>-topology, 13
Cartan—Killing form, 100, 109
Cartesian closedness principle, 22
central extension
integrating, 132
of gau(P), 97
of Gau(P)y, 113
of Lie algebra induced from Lie
group, 132
of Lie algebras, 129
automorphism, 130
equivalent, 129
of Lie groups, 130
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Index

equivalent, 131
chain rule
for sets with dense interior, 8
chart, 9
centred, 126
for Diff(M), 62
for Gau(P), 32
classifying map, 145
classifying space, 145
of PU(H), 58
smooth
of a compact Lie group, 56
coboundary
on gau(P) for different connec-
tions, 97
cochain, 57
cocycle
continuous
for principal bundle, 140
covariant, 97
for Aut(P) action on
QY (M, Ad(P)), 111
for action of Aut(P) on gat(\P),
112
for action on central extension,
133
for group action, 134
for pull-back bundle, 145
Lie algebra, 129
Lie group, 131
locally smooth, 64
on gau(P), 96
universality, 98
cohomology
Cech, 56-58
isom. of cont. and smooth, 57
continuous Lie algebra, 130
smooth Lie group, 131
twisted, 123
compact-open topology, 12
complex manifold with corners, 9
connecting homomorphisms, 85

given by the Samelson product,
87
reduction to bundles over $™, 85
connection form, 150
canonical
on bundle over S*, 154
on flat bundle, 154
continuous extension, 8
continuous gauge group, 28
Convenient Calculus, 125
convex
subset of a Lie group, 126
coordinate change, 9
coordinate representation, 10
covariant cocycle, 97
covariant derivative, 151
induced
from connection form, 151
naturality, 153
crossed homomorphism, 134

dense interior

set with, 8
Diff(M)p

description of, 69
diffeomorphism

decomposition, 62

lift, 61

preserving [P] under pull-backs,

70

diffeomorphism group

chart, 62
differentiable map, 7

on manifold with corners, 10

on set with dense interior, 8

usual notion, 9

differential, 8

higher

on set with dense interior, 8

differential calculus

history, 125
differential form, 13
differential structure, 9
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discrete period group for bundles over
St 108
Dixmier-Douady class, 58

Eilenberg-MacLane space, 58
equivalence
bundle, see bundle equivalence
homotopy, see homotopy equiva-

lence

of central extensions of Lie alge-
bras, 129

of central extensions of Lie
groups, 131

of Lie group extension, 60
equivalence classes
of principal bundles, 142
equivariant
continuous maps
isomorphism to continuous
gauge group, 37
smooth maps
isomorphism to gauge group, 29
evaluation fibration, 76-77
exact homotopy sequence, 58, 85
for Aut(P) for bundles over $',
120
for C(P,K)X for bundles over
spheres, 81
for C(P,K)X for bundles over
surfaces, 83
rational, 92
exponential function, 127
exponential law
for smooth maps, 22
extension
central
of gau(P), 97
of Gau(P)o, 113
continuous, 8
of Diff(M)p by Gau(P), 70
of Lie groups (non-abelian), 59,
64
of smooth maps, 24-25

extension theorem, 24
Whitney, 25

fibration, 85
evaluation, see evaluation fibra-
tion
quaterionic Hopf fibration, 91
Serre, 85
flat bundle, 121
form
differential, 13
Fréchet topology on C*(M, F'), 22
Fredholm operators, 59

gauge algebra, 29
in local coordinates, 29
isomorphisms of, 29
gauge group, 28
chart, 32
continuous, 28
isomorphism, 37
isomorphism to equivariant
continuous maps, 37
in local coordinates, 31
isomorphism, 29, 31
modelling space, 34
pointed, 76
weak homotopy equivalence, 46
gluing map, 14-16, 19-20, 66-69
group
affine Kac-Moody, 118
projective, unitary, 58
twisted loop, 116
unitary, 58
group of
K-equivariant smooth maps, 29
continuous  bundle  automor-
phisms, 28
continuous vertical bundle auto-
morphisms, 28
smooth bundle automorphisms,
28
smooth vertical bundle automor-
phisms, 28
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Index

holomorphic map
on manifold with corners, 10
on set with dense interior, 8
homotopy equivalence
Cp,(X,Y) ~ C.(X,Y), 80
Cnfl(ﬁo)(Pa K)K ~ C,(P,K)¥, 80
weak
of continuous and smooth gauge
group, 46
homotopy groups
of Aut(Pk)7 120
of Diff($1), 120
of Gau(P), 92
rational, 92
homotopy sequence, 76-90
horizontal lift
of vector fields, 150

interior
of a manifold with corners, 10
interior points
invariance  under
changes, 9
invariance of interior points, 10
isomorphism
CL(X/AY) = Cy(X,Y), 82
C.(2, K) = C,(%?
82
Cn—l(ﬁ)(P, K)¥ 2 (C5(X,K), 78
Hix(M,Y) = Hom(H,(M),Y),

coordinate

106
S(A(P)) =2 C=(P,Y)*, 150
Gau(P) = C’OO(P K)X 29
Gau(P) = Gy(P), 31
Gau(Py) = C’C’O(S1 K), 116

Gau(Py) = C°(8,8), 116
Gau.(P) = C(P,K)X, 37

O (P, Y)Y =2 QUM X(P)), 151
HNM,K) = H'M,K), 57
gau(P) 2 Ve (P)X, 149
gau(P) = gy(P), 29
gau(P) = gy(P), 29

de Rham, 106

K) x C,(S*, K)?

K-theory, 58
twisted, 58
Kac-Moody
algebra
affine, 118
group
affine, 118
homotopy groups, 118
Killing form, see Cartan—Killing form

left logarithmic derivative, see loga-
rithmic derivative
Lie algebra, 126
locally convex, 126
of a Lie group, 127
Lie bracket, 127
on gauge algebra, 29
Lie group, 126
Banach, 128
extension, 59
equivalent, 60
local description, 126
locally convex, 126
locally exponential, 127
Lie group structure
on O(M, K), 18
on Gau(P), 32-35
on C*(M, K), 18
on C*(P,K)X, 32
on gauge group in local coordi-
nates, 32
lift
from Diff (M) to Aut(P), 61-71
Lindelof space, 38
locally convex Lie algebra, 126
locally convex Lie group, 126
locally exponential
gauge group, 34
structure group, 36
structure group group, 34
logarithmic derivative, 134
product rule, 134

manifold
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closed, 10
locally convex, 10
without boundary, 10
manifold with corners, 9
complex, 9
finite-dimensional, 9
map
classifying, 145
differentiable, 7
on manifold with corners, 10
on set with dense interior, 8
holomorphic
on manifold with corners, 10
on set with dense interior, 8
smooth, 7
on manifold with corners, 10
on set with dense interior, 8
Maurer—Cartan form, 134
multiplication
of invariant forms, 152
continuity, 153

paracompact space, 38
partition of unity, 12
period group, 102
discreetness for bundles over S,
108
reduction to bundles over $', 107
period homomorphism, 98
pointwise action
product rule, 134
smooth, 20
principal bundle
continuous, 138
morphism, 138
smooth, 142
notions from continuous bun-
dles, 142
product
Samelson, see Samelson product
Whitehead, see Whitehead prod-
uct
product rule

for logarithmic derivative, 134
for pointwise action, 134
property SUB, 31-37, 60
pull-back
action
smooth, 21
bundle, 144
linear and continuous, 21
push-forward
action
smooth, 20
holomorphic, 18
smooth, 18, 20

rational
homotopy groups, 92
of Gau(P), 93
Samelson product, 93
reduction
of the connectiong homomor-
phisms to bundles over $™, 85
of the period group to bundles
over $!, 107
representing space
for K-theory, 59
restriction map, 14-16, 19-20, 66-69
retraction
strong relative, 79

s.c.l.c. space, 98
Samelson product, 86
is bi-additive, 87
rational, 93
relation to Whitehead product, 89
section
defining local trivialisation, 139
in principal bundle, 139, 142
in vector bundle, 137
set
with dense interior, 8
o-compact space, 38
smooth
curve, 125
factor system, 64-71
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Index

smooth map, 7
on manifold with corners, 10
on set with dense interior, 8
usual notion, 9
smooth principal bundle, 142
notions from continuous bundles,
142
smoothing
of bundle equivalences, 54
of bundle equivalences (fin.-dim.),
56
of group valued maps, 40
of homotopies, 55
of principal bundles, 50
of principal bundles (fin.-dim.),
56
of vector valued maps, 39
space
o-compact, 38
classifying, see classifying space
Eilenberg-MacLane, 58
Lindelof, 38
paracompact, 38
representing
for K-theory, 59
s.c.l.c., 98
sphere, 81
notation, 146
surface, 81
notation, 147

tangent
bundle, 11
differential structure, 11
higher, 11
map, 11
higher, 11
space, 11
vertical, 149
Theorem
Fundamental Theorem of Calcu-
lus, 18
Huber’s, 106

Lifting, 115
Universal Coefficient, 106
Whitney Extension Theorem, 25
topology
C>, 13
compact-open, 12
Fréchet
on C*(M, F), 22
on spaces of functions, 12
transition functions, 139
trivialisation
local, 137, 138
defining section, 139
in associated bundle, 144
trivialising neighbourhood, 137, 138
trivialising subset, 138
trivialising system, 29-36, 60
continuous, 139-141
existence, 143
refinement, 35, 60, 139
smooth, 142
twisted
K-theory, 58
cohomology, 123
loop algebra, 116
automorphism group, 120
loop group, 116

unitary group, 58
projective, 58
universal bundle, 145
criterion, 145
existence, 145
smooth
of a compact Lie group, 56
universal form, 100
Ky-invariance, 122
Aut(€)-equivariance, 121
and the Cartan Killing form, 100,
121

vector K-bundle
continuous, 138
smooth, 138
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vector bundle
continuous, 137
morphism, 137
smooth, 138
transition functions, 137
vector field, 11
left invariant, 127
vertical
K-invariant vector field, 149
tangent space, 149

Whitehead product, 89

relation to Samelson product, 89
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