From link homology to TQFTs

Paul Wedrich
parts one joint work with s.Morniso, k. Walke Y. Liv, A. More-goe, D. Reath, C. Shopgo M. Hegacomp, D. Ren

1. Strategies

2. Agebraic input "link homology for unlinks"
3. commatative ning

A comoutative (exterbed) Frobenis agebrac $/ \mathbb{L} \leftrightarrow 1-2$ TQFT in H-nel $k=\mathbb{Z}$
$A=H^{\prime}\left(C^{\prime}\right)=\pi[x 3]\left(x^{2}\right)$
ع. 㸚:

$$
\begin{aligned}
& \text { abstract }\left\{\begin{array}{c}
0 \stackrel{\sim}{\mapsto} A
\end{array}\right. \\
& \text { abstract } \begin{cases}0 & \mapsto A \\
\operatorname{RO} & \mapsto\left(A^{02} \rightarrow A\right) \\
\text { etc }\end{cases}
\end{aligned}
$$

Idea 1: Holograply
Goget enbeding
$\left(B^{3}, L\right) \xrightarrow{\stackrel{\text { apps TQFT }}{ }} \mathbb{H}(L) \in \mathbb{E}-\bmod \mathbb{Z}^{\mathbb{Z}}$
apt. 1 -subuld of $\partial B^{3}=S^{2}$ Mertol nodel:
BN dotled colos in B^{3}
1dea 2: Stratify $S^{2}, B^{3} m$ polyhodion, study gleing along faces

$$
F\left(T_{1} \cup T_{2}\right) \otimes F\left(\bar{T}_{2} \cup T_{3}\right) \quad \longrightarrow \quad F\left(T_{1} \cup T_{3}\right)
$$

$$
P=\bigcup_{\text {oocuacon" }} \longrightarrow P \times[0,1] \begin{aligned}
& \text { hos natival } \\
& \text { stralification }
\end{aligned}
$$

$$
=\bigcup_{\text {"polggon" }} \longrightarrow P \times[0,1] \quad \text { hos natual } \begin{array}{ll}
\text { stralification }
\end{array}
$$

\leadsto build higho agebraie stuctus
slides 1-3
kc)

$$
\begin{aligned}
& P_{k}=\dot{2-f u n c t a n} \\
& B N^{\otimes k} \longrightarrow \operatorname{BN}\left(P_{k}\right) \operatorname{Mor}\left(\operatorname{Cat} \frac{\mathbb{Z}}{k}\right) \\
& \underline{n} \longmapsto B N(\underline{n}) \\
&(\square, \ldots) \longmapsto B N(n)-B N(\underline{n}) \text {-bincodule } \\
& \cdots \longmapsto \text { bimodule homs. }
\end{aligned}
$$

fix/cloose
slide 1

1a)
$P_{1}=Q_{2 n}$

1b) $P_{1}=\square$

2a）$p_{2}=\square_{s}$

4a）$P_{2}=++\square 5$

$\leadsto \underset{2-\text { calogy }}{\text { monoidal }} B N_{\square}$ $\Delta_{1}: \square \square \rightarrow \square$凶 ロロ \rightarrow E
For $\mathbb{Z}[x]\left(x^{2}\right)$ this categoifies $T L$ our $\mathbb{Z}\left[q^{ \pm t}\right]$ wth $O=q \pm q^{\prime \prime}$
$k \in N$
ka)

categary

$$
B N\left(n_{1}, \ldots, n_{k}\right)=: B N(\Lambda)
$$

k b)

$\leadsto B N(\underline{\Lambda})-B N(\underline{m})$-bincodule paranemized by k-teple ($[0], \ldots$.

Packaging all polygons $\left\{B N\left(P_{k}\right)\right\}_{k \pi 11}$

- $\Delta 川$ contract/sibdivide elges $\rightarrow s$ a simplicial object
- $\mathbb{Z} / k \mathbb{Z} \cap B N\left(P_{k}\right)$ rotale k-gon \sim a cyclic objject
- oluing two polggans dong an edfor $B N\left(P_{k+e}\right)=B N\left(P_{k+1}\right) \otimes_{B N\left(P_{2}\right)} P\left(P_{e+1}\right)$ ma an algebra for the
A(2 segd Dychenlofl-Uaproow cyclic A_{∞}-operad Q
self-glining along a pain al edges m an algebra for the modular operad
getren-kopraos
Conelllo
Brochier-Woike

人 a TCFT
Q : valued where exactly?
lineor okr $d g g^{a r} m \hat{\otimes}$ for sel-gluing
3. The invariant
"marking"
Def: A marked surface (Σ, M) cassias of:

- \sum compact, oriented surface, no cloud φ ¢
- $\mu \leqslant \partial \Sigma$ opal submfa hitting every opt of $\partial \Sigma$
sit. $\Pi:=\partial \Sigma \prime \mu$ is a firm union of dosed intervals
Set $B N(\Pi):=B N^{\otimes\left|\pi_{0}(\Pi)\right|}$
$C \otimes$ of $B N$ 2-categaries, one for each unmarked a ε-interval
Thy (HRW24)
For every morbid surface (Σ, μ)
Э 2-functor $B N(\pi) \rightarrow M a r\left(\operatorname{dgCat}_{k}^{\pi}\right)$
- compatible with gluing \& $\mu<g$-action
- extending polygon 2-functan
-"bonus stakneat"
on objects: $0 \bigcirc \mapsto{ }^{\circ} \underbrace{}_{H^{\circ}: B N(\Sigma, P)}(\Sigma, P) d g$ cat

4. Use guide for $e(\Sigma, P)$ ST S Auxilion choice: Γ "tesselation"
$e(\varepsilon, P, \Gamma)$: set of ours cutting Σ into disks $\Gamma \cap \pi=\phi$

- objects: tangles T in \sum with $\partial T=P, T h r$

- hon complex $s \rightarrow T: \operatorname{CRW}\left(T v_{\partial T} \bar{s}\right)$

- composition uses new "sideways" multiplicaten
 Eilidey-3ilb shuple poodu on Bo-cx associativity reques core
Idea: Γ cat \sum into polygos源 implements $\hat{\theta}$ to reossenble

5 Indeperdere of Γ :

$$
\text { - } e(\Sigma, P, \Gamma) \xrightarrow[\text { coousening }]{\substack{\text { qui-equiv }}} e\left(\Sigma, P, \Gamma^{\prime}\{\gamma\}\right)
$$

Proof idea: cocuily 國 $\rightarrow \leq$ is hite who © ute prgctive = thagh

- functors for simultoncos coonsering commulé. dy functor $T(\Sigma, \mu) \rightarrow$ dg calegories tesselation poset
- take (honolopy) colimit $e(\varepsilon, p)$
- $e(\Sigma, P) \simeq e(\varepsilon, P, \Gamma)$ since $|N(T(\Sigma, \mu))|$ is conhaclible
(Haner 86)
$\square \underbrace{4} \in$ squere
Example: $e(0, \phi)=\operatorname{Tr}(B N)$ aghaizatal voce Garshy-Hegancanp - W/20 (any nomber of sooms)

6. Bonus statement for $2[x]\left(x^{2}\right)$

Lemma: $\frac{\sum_{n}^{n}}{\frac{\delta_{n}^{n} m}{n}}$

cat:
$\operatorname{Thm}(\mathrm{HRW} 24)$ 国

1) $e(\varepsilon, p)$ in be completed bo $e^{-}(\varepsilon, p)$ generated by cooper - Kneshhal spin net works

 (afar dicing)
wrigulen r)
2) $e(\varepsilon, p) \cong e(\varepsilon, p)^{o p}$
extends to a symuelhized hon pairing

$$
\begin{aligned}
& \text { redd to a symmetrized hon paring } \\
& e^{-}(\varepsilon, p) \times e^{-}(\varepsilon, p) \xrightarrow{(t)} C^{(k}(k-\text { mod })
\end{aligned}
$$

for which the spin net woks γ are onthogeval

