ZMP Seminar: Knot Homology

Paul Wedrich Universität Hamburg

Part 1: Khovanov's categorification of the Jones polynomial

2 November 2023

Plan

2 Khovanov's categorification of the Jones polynomial

3 Plan for the seminar

What is ... ?

Definition (Knots)

A knot is an equivalence class of smooth embeddings $K \colon S^1 \to S^3$.

Equivalence $K_1 \sim K_2 \iff K_2 = \varphi \circ K_1$ for some $\varphi \in \text{Diff}^+(S^3)$.

Definition (Links)

A link is an equivalence class of smooth embeddings $L: S^1 \sqcup \cdots \sqcup S^1 \to S^3$.

Definition (Link diagrams)

A link diagram for a link L is a generic projection of $\operatorname{im}(L) \subset S^3 \to \mathbb{R}^2$.

Typical questions about knots and links

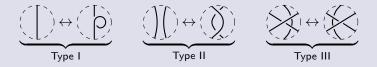
- Is a given knot the unknot? Unknot detection.
- Are two given knots the same?
- What is the minimal number of crossings in a diagram of a given knot? Crossing number.
- What is the infimal length of a rope of diameter 1 into which a given knot can be tied? Rope length.
- What is the minimal possible genus of an oriented surface S ⊂ S³ bounded by a given knot? Knot genus.
- What is the minimal possible genus of an oriented smooth surface $S \subset B^4$ bounded by a given knot in $S^3 = \partial B^4$? Smooth slice genus.

• ...

Towards computable invariants

Theorem (Reidemeister)

Any two diagrams of a link can be obtained from each other through planar isotopy and a finite sequence of Reidemeister moves:



A link is an equivalence class of link diagrams modulo Reidemeister moves.

The Jones polynomial

Algorithm (State sum for the Jones polynomial)

- Input: a diagram of an oriented knot or link, for example:
- Step 1: count $n_+ = \#(\swarrow)$ and $n_- = \#(\swarrow)$
- Step 2: expand in states $\swarrow \mapsto$) ($-q \succeq$, rewrite $\bigcirc \mapsto q + q^{-1}$
- Output: the coefficient of the empty diagram times $(-1)^{n_-}q^{n_+-2n_-}$

Example (The Jones polynomial of the Hopf link)

Theorem

The Jones polynomial is an invariant of oriented links.

Proof idea: the output of the algorithm remains constant under

$$(\begin{bmatrix} 1 \\ 0 \end{bmatrix}) \leftrightarrow (\begin{bmatrix} 0 \\ 0 \end{bmatrix}) \rightarrow (\begin{bmatrix} 0 \\ 0 \end{bmatrix}) \leftrightarrow (\begin{bmatrix} 0 \\ 0 \end{bmatrix}) \rightarrow (\begin{bmatrix}$$

Physics of the Jones polynomial

Theorem (Witten 1989)

The Jones polynomial arises as vacuum expectation value of Wilson loops in the vector representation in SU(2) Chern-Simons theory on S^3 .

This can be significantly generalized by varying:

- the gauge group, e.g. to $\mathrm{SU}(N)$ for $N\geq 3$
- $\bullet\,$ representations of the gauge group on link components $\rightsquigarrow\,$ colors
- the ambient 3-manifold S³
- boundary conditions ~> tangles (knot fragments)

Question

Why does the Jones polynomial have integer coefficients?

Khovanov: the coefficients are signed sums of dimensions of vector spaces!

Plan

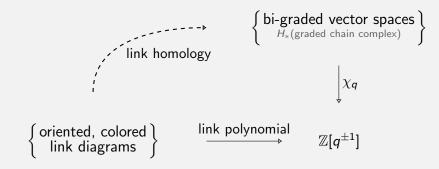
Knots, links, and their invariants

2 Khovanov's categorification of the Jones polynomial

- Link homology
- Khovanov homology
- Functoriality

3 Plan for the seminar

Link homology as categorification

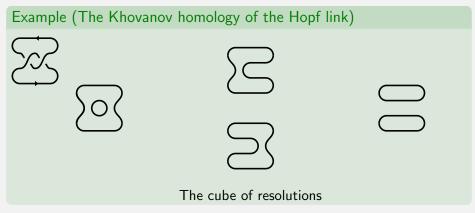


A categorification against taking the graded Euler characteristic:

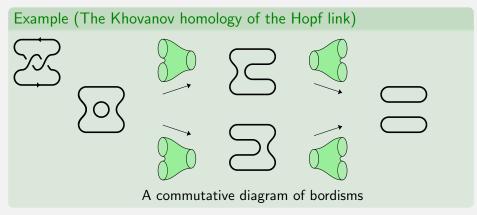
$$\chi_q(\bigoplus_{i,j\in\mathbb{Z}}H^{i,j})=\sum_{i,j\in\mathbb{Z}}(-1)^iq^{-j}\dim(H^{i,j})$$

Algorithm (Construction of Khovanov homology)

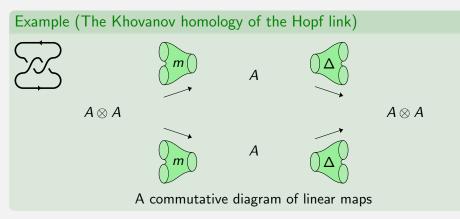
- Input: a diagram of an oriented knot or link.
- Step 1: count $n_+ = \#(\swarrow)$ and $n_- = \#(\swarrow)$
- Step 2: build cube of resolutions
- Step 3: apply graded 2D TFT
- Step 4: totalize to a graded chain complex
- Output: bigraded homology (with global shift)



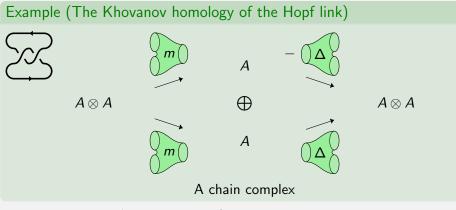
Consider the edges in the cube of resolutions.



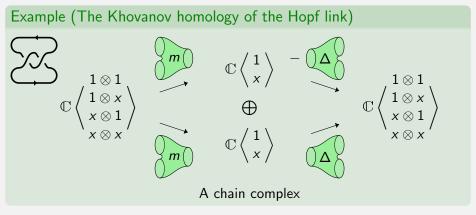
Apply a 2-dimensional graded TFT.



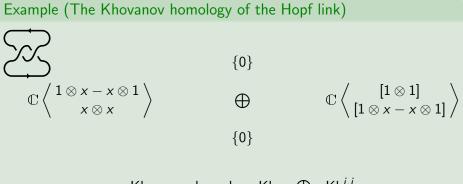
Make anti-commutative and totalize.



 $\mathsf{Take}\; A := H^*(\mathbb{CP}^1,\mathbb{C}) \cong \mathbb{C}[x]/\langle x^2 \rangle = \mathbb{C}\langle 1,X \rangle, \; \Delta(1) = X \otimes 1 + 1 \otimes X.$



Take homology.



Khovanov homology $Kh = \bigoplus_{i,j} Kh^{i,j}$

Algorithm (Construction of Khovanov homology)

- Input: a diagram of an oriented knot or link.
- Step 1: count $n_+ = \#(\swarrow)$ and $n_- = \#(\bigtriangledown)$
- Step 2: build cube of resolutions
- Step 3: apply graded 2D TFT
- Step 4: totalize to a graded chain complex
- Output: bigraded homology (with global shift)

Theorem (Khovanov 1999)

These bigraded vector spaces computed from link diagrams

- **(**up to isomorphism) only on the underlying link, and
- a have the Jones polynomial as graded Euler characteristic.

Khovanov homology as a functor

- link diagrams \mapsto graded chain complexes
- Reidemeister moves \mapsto homotopy equivalences
- movies of link diagrams \mapsto chain maps
- + existence of certain compatibility homotopies

Theorem (Khovanov 2002, ..., Morrison–Walker–W. 2019)

Khovanov homology extends to a functor:

The Jones polynomial is the Euler characteristic of a link homology theory

1 Knots, links, and their invariants

2 Khovanov's categorification of the Jones polynomial

3 Plan for the seminar

Plan for the seminar

We will have six talks:

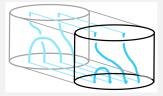
- Skiele Khovanov's categorification of the Jones polynomial (PW)
- Khovanov homology for tangles (Jesse Cohen)
- Solution Physics of knot homology (Joerg Teschner & Co.)
- Israid group actions in geometry and physics (Tobias Dyckerhoff)
- Soergel bimodules and Rouquier complexes (David Reutter)
- From knot homology to TFT (PW)

Part 2: Khovanov homology for tangles

Tangles form a 2-category:

- \bullet Objects: finite sets of points in \mathbb{D}^2
- 1-morphisms: tangles in $\mathbb{D}^2 \times I$

 \bullet 2-morphisms: tangle cobordism in $\mathbb{D}^2 \times I \times I/\text{isotopy}$



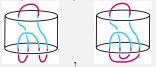
Does Khovanov homology extend to a functor between 2-categories

?

Part 2: Khovanov homology for tangles

Khovanov's 2001 functor-valued invariant of tangles:

- $\bullet\,$ Cube of resolutions for tangle diagrams $\checkmark\,$
- 2D TFT does not extend to non-closed 1-manifolds. Workaround: consider all possible planar closures:



- Change-of-closure controlled by Khovanov's arc rings Hⁿ.
- Closure chain complexes for tangle → sweet dg bimodule for arc rings
 → exact functor between triangulated categories associated to disk
 with even numbers of points. (Homotopy cats of gr.proj./derived cats/stable module cats for Hⁿ).

Construction has several variations and geometric incarnations!

Part 3: Physics of knot homology

Fact

The Jones polynomial is uniquely determined by its value on the unknot and the oriented skein relation

$$q^2V(leph)-q^{-2}V(leph)=(q-q^{-1})V(ar{r})$$

Varying the skein relation recovers other link polynomials:

• The Alexander-Conway polynomial:

$$\Delta(\aleph) - \Delta(\aleph) = (q - q^{-1})\Delta(\aleph)$$

• The HOMFLY-PT polynomial:

$$aP_{\infty}(X) - a^{-1}P_{\infty}(X) = (q - q^{-1})P_{\infty}(Y)$$

• The gl_N polynomial:

$$q^N P_N(\aleph) - q^{-N} P_N(\aleph) = (q - q^{-1}) P_N(\mathfrak{k})$$

Question

Are there corresponding link homology theories?

Part 3: Physics of knot homology

Initial proposal Gukov-Schwarz-Vafa, Dunfield-Gukov-Rasmussen 2005:

- Poincaré polynomials of knot homology ≡ refined count of open BPS states ≡ cohomology of all-genus open Gromov–Witten moduli.
- Geometric setup depends on type of knot homology. (Ambient Calabi–Yau 3-fold, Lagrangian boundary condition)
- Geometric transitions \implies relations between knot homologies
- \bullet Closed BPS acts on open \implies additional structure on knot homology Many predictions have been verified mathematically.

Newer physics perspectives on knot homology:

- Witten 2011: Fivebranes and knots. (Via gauge theory in 5D.)
- Aganagic 2020-23: Knot Categorification from Mirror Symmetry.

Part 4: Braid group actions in geometry and physics

An example: Seidel-Smith symplectic Khovanov homology

• 2*n*-punctured disc \mapsto symplectic fibre bundle \mathcal{Y} over $\operatorname{Conf}_{2n}(\mathbb{C})$.

Adjoint quotient map on transverse slice in \mathfrak{sl}_{2n} to the adjoint action at a nilpotent with equal Jordan blocks.

- closures $a, b \mapsto \text{Lagrangians } L_a, L_b \subset \mathcal{Y}_{t_0}$, $\text{each} \cong_{\text{diff}} (S^2)^n$.
- parallel transport along braid $\beta \mapsto$ symplectic automorphism of fibre.
- symplectic Khovanov homology $\mathsf{Kh}_{\mathrm{symp}}(\widehat{\beta}) := HF^*(\beta(L_a), L_b)$

Agreement with ordinary Khovanov homology Abouzaid-Smith 2013-15.

Part 5: Soergel bimodules and Rouquier complexes

$\operatorname{Br}_n \xrightarrow{\operatorname{\mathsf{linearization}}} \operatorname{\mathsf{Hecke}} \operatorname{\mathsf{algebra}} \xrightarrow{\operatorname{\mathsf{Jones-Ocneanu trace}}} \operatorname{\mathsf{HOMFLYPT}} \operatorname{\mathsf{polynomial}} \operatorname{\mathsf{categorifies to:}}$

 $\operatorname{Br}_n \xrightarrow{\operatorname{Rouquier} \mathsf{cx}.} \mathsf{Soergel bimodules} \xrightarrow{\mathit{HH}_{\bullet}} \mathsf{HOMFLYPT} \mathsf{homology}$

- This controls all known "algebraic" knot homology theories.
- Laboratory for homotopy coherent knot homology & related TFT.

Part 6: From knot homology to TFT

A local TFT is an assignment:

```
spacetimes \rightarrow algebraic structures
```

compatible with gluing, determined by value on Euclidean space.

Algebraic structures capturing local TFTs in $k + n + \varepsilon$ dimensions:

$E_k \setminus n$	0	1	2
E ₀	vector spaces	categories	2-categories
<i>E</i> ₁	algebras	monoidal cats	monoidal 2-cats
<i>E</i> ₂	comm. algebras	braided cats	braided 2-cats
E ₃	—	sym. mon. cats	sylleptic 2-cats
E ₄	—		sym. mon. 2-cats
÷	_		_

Part 6: From knot homology to TFT

A local TFT is an assignment:

```
spacetimes \rightarrow algebraic structures
```

compatible with gluing, determined by value on Euclidean space.

Examples of observables:

$E_k \setminus n$	0	1	2
E ₀			
<i>E</i> ₁			
E ₂		Jones polynomial	Khovanov homology
E ₃			
E ₄	—		
:	_	—	_

Part 6: From knot homology to TFT

A local TFT is an assignment:

```
spacetimes \rightarrow algebraic structures
```

compatible with gluing, determined by value on Euclidean space.

Examples of TFTs:

$E_k \setminus n$	0	1	2
E ₀			
<i>E</i> ₁		Turaev–Viro	new
<i>E</i> ₂		Crane–Yetter	new
E ₃	—		
E ₄	—	—	
:	—	—	_