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1 Introduction

The finite-dimensional representation theory of quantum groups can be organised in so-called rib-
bon categories, which lead to algebraic invariants of knots, links and tangles, such as the Jones
polynomial, and manifold invariants with good gluing properties (TQFTs). This first part of this
seminar will review the categorical algebra of monoidal categories, braidings, graphical calculi, etc.
that are employed in these constructions.

The second part of this seminar concerns the research area of link homology (which got its own
MSC code 57K18 recently). A link homology theory associates a chain complex of graded abelian
groups to each knot or link diagram, which is invariant under Reidemeister moves up to homotopy
equivalence. Its homology is a bigraded abelian group and taking a graded Euler characteristic
recovers a corresponding polynomial link invariant.

The goal of the seminar is to bring the two parts together, namely to work towards a better
understanding of the categorical algebra underpinning link homology theories.

2 List of talks

1. Monoidal categories, duals and pivotal structure. In this first talk, we introduce
the notion of a monoidal category, and discuss a number of elementary examples and basic
theorems. We then focus on the string diagram calculus of monoidal categories and introduce
a number of diagrammatic categories. Finally, we introduce the concept of a pivotal structure
leading to an oriented string diagram calculus and a notion of dimension.

2. The Temperley-Lieb monoidal category. We introduce the Temperley-Lieb category
TL, a rich algebraic variant of the category of unoriented planar tangles. We classify pivotal
structures on TL and characterize TL via a universal property. We use this universal property
to relate TL to categories of representations of Lie algebras.

3. Braided monoidal categories and the Kauffman bracket. This talk introduces braided
monoidal categories, their interaction with pivotal structures and ribbon structure, and how
ribbon monoidal categories give rise to knot and link invariants. This is exemplified with the
Temperley-Lieb category which leads to the Kauffman bracket and the Jones polynomial.
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4. Frobenius algebras in monoidal categories and topological quantum field theories.
This talk introduces the notion of a Frobenius algebra object in an arbitrary monoidal cat-
egory, and discusses a number of concrete examples such as group algebras of finite groups,
and cohomology rings

⊕
k H

k(M,C) of compact oriented manifolds. The second half of the
talk is concerned with the definition of oriented topological quantum field theories, and their
classification in one and two dimensions, coming full circle back to Frobenius algebras.

5. Climbing the categorical ladder: Bicategories and a taste of higher categories.
This talk begins with the definition of bicategories, their relation to monoidal categories,
and guiding examples such as the bicategory Cat of categories, functors and natural trans-
formations, and Alg of algebras, bimodules and bimodule maps. Adjunctions and monads
are discussed as generalizations of the duals and algebras from previous talks. Moving up in
dimension, the graphical calculus of monoidal and braided monoidal bicategories in terms of
surfaces in R3 and R4 (a.k.a. ‘movie moves’) is sketched. The talk ends with an overview of
the Baez-Dolan periodic table of higher categories and their expected graphical calculi.

6. Khovanov homology. This talk will give an introduction to Khovanov homology as a
categorification of the Jones polynomial. We will see in which sense it is invariant under
Reidemeister moves and what it means for a link homology to be functorial under link cobor-
disms.

7. Introduction to categorification. In this talk we work towards understanding Khovanov
homology on a more conceptual level in the framework of categorification.

8. From Hecke to HOMFLYPT After having met Khovanov homology, we aim towards one
of the most general and mysterious link homology theories: the triply-graded Khovanov–
Rozansky homology which categorifies the HOMFLYPT invariant. We prepare for this by
reviewing the type A Hecke algebras and related topics.

9. Soergel bimodules. Soergel bimodules, introduced by Soergel form an additive monoidal
category that categorifies the corresponding Hecke algebra. This talk introduces Soergel
bimodules and Bott–Samelson bimodules (named after the Bott–Samelson resolution) and
explains their relationships to Hecke algebra bases.

10. Diagrammatic calculus for Soergel bimodules. This talk introduces the diagrammatic
Soergel calculus of Elias–Khovanov and Elias–Williamson.

11. Rouquier complexes. We meet Rouquier complexes of Soergel bimodules and check that
their composites satisfy braid relations up to canonical homotopy equivalence. This talk
should follow the article of Elias–Krasner.

12. Triply-graded link homology. This talk follows a paper of Khovanov and takes us from
the categorical braid invariant given by Rouquier complexes of Soergel bimodules to a cate-
gorification of the HOMFLYPT invariant.

13. Bonus talk 1. Higher categories, dualizability, and the cobordism hypothesis.

14. Bonus talk 2. Higher categories from Soergel bimodules.
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Organisational meeting: 15th March 2022, online. paul.wedrich@uni-hamburg.de

3 Participating in the seminar

To pass the seminar, participants should:

� Give a 75-minute talk on one of the topics outlined above.

� Prepare a write-up of the talk that can be shared with other participants.

� Attend other talks and contribute actively to the discussion. Please email beforehand if you
cannot attend a session.

4 Organisation of the seminar

� Talk topics will be assigned at or after the organisational meeting on 15th March 2022.

� For every talk a detailed outline with literature references will be provided. In preparing
the talk, participants should roughly follow the outline and consult the references provided.
Some topics may require reading and work beyond the references provided, depending on the
participant’s background.

� The topics of the talks build on each other to some degree, so it is important to stay up-to-date
with the progress of the seminar and attend ideally all talks.

� Participants are invited to schedule a meeting with one of the seminar organizers two to three
weeks before their talk. At this meeting, participants should already be familiar with the
topic and have a plan for their talk.

� Participants are invited to submit a write-up of their talk one to two weeks before their talk
to the organizers to receive feedback. Write-ups are due two weeks after the relevant talk and
should incorporate feedback received during and after the talk.

� The language of the seminar will be English.

� The seminar is planned to take place in room 435, Geomatikum.

5 Some hints for preparing talks

� Try to single out one theorem which you might want to call the main theorem of the talk and
make sure that everybody understands the statement.

� Is there a definition you might call the main definition of the talk?

� We will meet many concepts during this seminar, which might be known to some of the
participants, but will be new to others. When preparing your talk, make sure to include
explicit examples to illustrate new concepts.

� In some cases the talk outlines contain more than what fits into a single talk. If you are
unsure about what to include, don’t hesitate to ask.
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6 Schedule of talks

6.1 Monoidal categories, duals and pivotal structures

In this first talk, we introduce the notion of a monoidal category, and discuss a number of elementary
examples and basic theorems. We then focus on the string diagram calculus of monoidal categories
and introduce a number of diagrammatic categories. Finally, we also introduce the concept of a
pivotal structure leading to an oriented string diagram calculus.

The main references for this talk are Section 2 of [EGNO15] and Sections 3.1, 4.1 and 4.2
of [Sel11].

� Following [EGNO15, Section 2], define monoidal categories (using the traditional Definition
2.2.8 of [EGNO15] instead of the alternative Definition 2.2.1) and monoidal functors, and
discuss a number of basic examples. These example should include, but are not limited to,
the category of sets and functions, the category of vector spaces over a field, and the categories
of oriented and unoriented planar tangles (which can only be sketched and does not need to
be introduced rigorously).

� Recall MacLane’s strictification theorem [EGNO15, Theorem 2.8.5] and summarize the main
ideas of the proof appearing in [EGNO15]. Introduce the monoidal category VecG of vector
spaces graded by a group G and grading preserving morphisms, and discuss its variant VecωG
for a 3-cocycle ω : G3 → k where the associator α : (U ⊗ V ) ⊗W → U ⊗ (V ⊗W ) is given
on homogenous vectors u, v, w with degree g, h, k ∈ G, respectively, by the ‘boring’ associator
multiplied with ω(g, h, k). Briefly explain why VecωG and Vecω

′
G are equivalent if ω and ω′ are

cohomologous. Discuss how this does not contradict MacLane’s strictification theorem.

Also state MacLane’s coherence theorem [EGNO15, Theorem 2.9.2] and explain how it follows
from the strictification theorem.

� Explain the string diagram graphical calculus for monoidal categories, e.g. following Section
3.1 of [Sel11], or any other reference.

� Introduce the notion of a dual of an object in a monoidal category and define rigid monoidal
categories (see [EGNO15, Section 2.10]). Discuss duals in the category of (possibly infinite-
dimensional) vector spaces and in the category of unoriented planar tangles. Explain in what
sense rigidity is a property of a monoidal category rather than extra structure.

� In a rigid monoidal category C, show that a choice of duality data for every object gives rise
to a monoidal functor (−)∗ : C → Cop,mp where Cop,mp denotes the opposite category with
opposite tensor product. Explain that different choices of duality data lead to monoidally
equivalent double dual functors.

� If time permits: Give an example of an object X in a monoidal category which has a dual and
a double dual, but for which the double dual is not isomorphic to X itself. Hint: Consider the
monotone map Z → Z, n 7→ 2n seen as an object of the monoidal category of endofunctors of
the poset Z seen as a category.

� Define a pivotal structure on a rigid monoidal category to be a monoidal natural isomorphism
from the identity functor to the double dual functor (−)∗∗. Explain why the set of pivotal

4



structures on a rigid monoidal category is either empty or a torsor over Aut⊗(id), the set of
monoidal natural automorphisms of the identity functor. Show that the category of finite-
dimensional vector spaces admits a unique pivotal structure. Show that for a group G, pivotal
structures on the category VecG of finite-dimensional G-graded vector spaces correspond to
group homomorphisms G → C×.

� Explain that the graphical calculus of pivotal categories is that of oriented planar tangles and
oriented planar graphs (see e.g. Section 4.2 of [Sel11]).

6.2 The Temperley-Lieb monoidal category

The purpose of this talk is to introduce the Temperley-Lieb categories and their pivotal structures.
These pivotal structures allow to define TL in terms of a universal property relating it to a number
of representation theoretic categories.

� Recall the definitions of duals and of pivotal structures, and their graphical calculus from the
first talk (see e.g. Sections 4.1 and 4.2 of [Sel11]).

� Define the dimension dimp(X) ∈ EndC(I) of an object X in a rigid monoidal category C
equipped with a pivotal structure p : idC ⇒ (−)∗∗ as the evaluation of a loop labelled by X.
Explain why dimp(X) depends on the choice of pivotal structure.

Explain that for the unique pivotal structure on the category of finite-dimensional vector
spaces this agrees with the usual notion of dimension. Recall from the first talk that pivotal
structures on the category of finite-dimensional G-graded vector spaces correspond to group
homomorphisms λ : G → C×. For such a pivotal structure λ : G → C× and a g ∈ G compute
the dimension dimλ of the one-dimensional vector space C⟨g⟩ concentrated in degree g. (This
last example shows that dim indeed depends on the choice of pivotal structure.)

� For a λ ∈ C, define the C-linear monoidal Temperley-Lieb category TL(λ) either combinato-
rially or as the C-linearization of the category of unoriented planar tangles with loop value λ.
More generally, define TL as a category over the polynomial ring C[d] in one indeterminate
corresponding to the loop value. Some background on the Temperley–Lieb category appears
in the lecture notes [Wed22].

� Show that TL has two pivotal structures. Hint: What is the data of a pivotal structure
on a monoidal category freely generated by an object and generating morphisms subject to
relations?

� Compute the dimension of the generating object of TL for both these pivotal structures.

� Let C be a rigid monoidal category with pivotal structure p : idC → (−)∗∗. A symmetric
self-duality structure on an object X is an isomorphism f : X → X∗ so that f = f∗ ◦ pX :
X → X∗∗ → X∗. Explain that the graphical calculus of a symmetrically self-dual object in a
pivotal monoidal category is that of unoriented planar tangles.

� Show that the generating object of TL is symmetrically self-dual for precisely one of the two
pivotal structures of TL. For the other pivotal structure, it is antisymmetrically self-dual :
there exists an isomorphism f : X → X∗∗ so that f∗ ◦ pX = −f . We will therefore denote
the two pivotal structures of TL by ps and pas.
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� The universal property of TL: For λ ∈ C, explain in what sense the pivotal monoidal category
(TL(λ), ps) is the free C-linear pivotal monoidal category on a symmetrically self-dual object
with dimension λ, and (TL(λ), pas) is the free C-linear pivotal monoidal category on an anti-
symmetrically self-dual object with dimension −λ. Hint: Classify C-linear pivotal monoidal
functors out of (TL(λ), ps) and (TL(λ), pas).

This universal property can be seen as a main reason for the ubiquity of TL in representation
theory and quantum algebra.

� Let Rep(g) denote the category of finite-dimensional complex representations of a Lie algebra
g. Show that Rep(g) has a canonical pivotal structure. Show that the data of a symmetric
(resp. antisymmetric) self-duality on an object, namely a representation ρ : g → End(V )) of
Rep(g, is a symmetric (resp. antisymmetric) non-degenerate pairing ⟨−,−⟩ : V ⊗ V → C so
that

⟨ρ(x)(v), w⟩+ ⟨v, ρ(x)(w)⟩ = 0. (1)

� An orthogonal vector space (resp. a symplectic vector space) is a finite-dimensional C-vector
space V with a symmetric (resp. antisymmetric) non-degenerate pairing ⟨−,−⟩ : V ⊗V → C.
The orthogonal Lie algebra so(V, ⟨−,−⟩) (resp. the symplectic Lie algebra sp(V, ⟨−,−⟩)) is the
complex Lie algebra of endomorphisms of V fulfilling (1). V is called its vector representation.

Since all orthogonal (resp. symplectic) vector spaces of a given dimension n are isomor-
phic (via an isomorphism which preserves ⟨−,−⟩), these complex Lie algebras are often just
denoted son and spn.

� Given an orthogonal vector space (V, ⟨−,−⟩) (resp. symplectic vector space) of dimension n,
use the universal property of pivotal monoidal functors out of Temperely-Lieb categories to
build pivotal monoidal functors

(TL(n), ps) → Rep(so(V, ⟨−,−⟩))

(TL(−n), pas) → Rep(sp(V, ⟨−,−⟩))

which send the generating object to the ‘fundamental representation’.

� Show that every endomorphism of a symplectic vector space (V, ⟨−,−⟩) fulfilling (1) is trace-
less, and hence that sp(V, ⟨−,−⟩) is a Lie subalgebra of sl(V ), the Lie algebra of traceless
endomorphisms of V .

If V is two-dimensional, this embedding sp2 ↪→ sl2 is in fact an isomorphism and the induced
equivalence Rep(sp2)

∼= Rep(sl2) maps the vector representation to the vector representation.

� The functor (TL(−2), pas) → Rep(sp2)
∼= Rep(sl2) is almost an equivalence. State without

proof that it is fully faithful. However, show that it is not essentially surjective. Hint: There
are morphisms p : a → a in TL(λ) with p2 = p (so called idempotent morphisms) which
cannot be written as a composite f ◦ g of morphisms f : b → a and g : a → b with g ◦ f = idb.
On the other hand, show that every idempotent morphism in Rep(sl2) splits in this way.

� Define the idempotent completion Kar(C) of a category C and discuss its universal property.
In particular, it follows that the functor TL(−2) → Rep(sl2) extends to a monoidal functor
Kar(TL(−2) → Rep(sl2). State without proof that this monoidal functor is an equivalence.
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This motivates thinking of Kar(TL(λ)) for more general λ ∈ C as a ‘quantum deformation’
of Rep(sl2).

6.3 Braided monoidal categories and the Kauffman bracket

This talk introduces braided monoidal categories, their interaction with pivotal structures, and
the way they give rise to knot and link invariants. As the main example we continue to use the
Temperley-Lieb monoidal category leading to the Kauffman bracket and Jones polynomial.

References for this talk are [Sel11], [JS91].

� Following Sections 3.3 and 3.5 of [Sel11], define braided and symmetric monoidal categories,
and give basic examples of braided and symmetric monoidal categories, including the category
of vector spaces, the category of super vector spaces (i.e. Z/2-graded vector spaces with an
interesting symmetric monoidal structure), the category of chain complexes and the category
of oriented tangles.

� Explain the relation between braided monoidal categories and the braid groups, and discuss
the graphical calculus of braid groups (see Section 3.3 of [Sel11] and [JS91]). In particular,
discuss Example 3.6 of [Sel11] and show how the axioms of a braided monoidal category imply
the third Reidemeister move (a.k.a. the Yang-Baxter equation). What is the free braided
monoidal category on one generating object?

� Show that the set of braidings on the Temperley-Lieb category TL(λ) for λ ∈ C coincides with
the set of solutions to the equation A2 + A−2 = −λ. Given such a solution A, we will write
TL(λ,A) for the Temperley-Lieb category TL(λ) equipped with the braiding determined by
A.

� Let C be a rigid braided monoidal category with chosen duality data for every object. Define
the Drinfeld isomorphism uX : X → X∗∗ of an object X in C as the isomorphism (omitting
associator isomorphisms)

uX := (idX∗∗ ⊗ evX) ◦ (cX,X∗∗ ⊗ idX∗) ◦ (idX ⊗ coevX∗) =
X

X∗∗
evX

coevX∗

.

Show that if C is a symmetric monoidal category, u defines a monoidal natural isomorphism
from the identity to the double dual functor, and hence a pivotal structure. If C is not
symmetric, uX is still natural in X but is not monoidal anymore.

� A twist (or balancing) on a braided monoidal category C with braiding cX,Y : X⊗Y → Y ⊗X
is a (non-monoidal) natural isomorphism θ : idC → idC so that

θX⊗Y = cY,X ◦ cX,Y ◦ (θX ⊗ θY ).

� Show that for any rigid braided monoidal category C, the assignment {pX : X → X∗∗}X 7→
{θX := p−1

X ◦ uX : X → X}X defines a bijection between pivotal structures p on C and twists
θ on C. (See e.g. Lemma 4.20 of [Sel11].)
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� A braided category is symmetric if and only if the identity natural isomorphism {idX}X
defines a twist. In particular, any symmetric monoidal category has a canonical pivotal
structure.

� For λ ∈ C and A ∈ C× a solution to A2 + A−2 = −λ, show that the twists of TL(λ,A)
corresponding to the two pivotal structures ps and pas of TL(λ) are given on the generating
object X by θX = ±A−3.

� A twist on a braided monoidal category (or equivalently, a pivotal structure on a braided
monoidal category) is called ribbon if (θX)∗ = θX∗ . Explain why both twists on TL(λ,A) are
ribbon.

� Follow Section 4.7 of [Sel11] (and the references therein) and explain the graphical calculus
of ribbon braided monoidal categories (there called ‘tortile categories’). Explain how this
graphical calculus allows to express morphisms in a ribbon braided monoidal category in
terms of oriented and normally framed tangles (also known as ‘ribbons’). In particular, what
is the free ribbon category on one generating object?

� Explain how it follows from the graphical calculus that any object X in a ribbon braided
category C gives rise to an invariant of normally framed oriented (a.k.a. ribbon) knots K
valued in EndC(I).

� For the generating object of TL(λ,A) equipped with its pivotal structure pas, this framed knot
invariant is known as the Kauffman bracket. Compute the Kauffman bracket for a number of
example knots.

Further references for this talk are Chapter 8 of [EGNO15] and [JS93] and [Tur94].

6.4 Frobenius algebras in monoidal categories and topological quantum field
theories

The purposes of this talk is to introduce the notion of algebra object and Frobenius algebra object in
a monoidal category, and introduce some basic concepts behind topological quantum field theories.
A good reference for this talk is [Koc04].

� Define algebra objects (A,m : A ⊗ A → A, u : I → A) in monoidal categories. Discuss
examples in Vect and in the category of oriented planar tangles.

� A pairing between objects A and B in a monoidal category is a morphism A ⊗ B → I. A
pairing is non-degenerate if A ⊗ B → I is the counit of a duality between A and B. A
Frobenius algebra in a monoidal category C is an algebra object (A,m, u) equipped with a

morphism tr : A → I such that the pairing A⊗A
m→ A

tr→ I is non-degenerate.

� Give examples of Frobenius algebras in Vec, these should include the algebra Matn(C) with
tr : Matn(C) → C given by the trace, and the group algebra C[G] of a finite group G.

� For M a closed oriented manifold, show that the cohomology ring
⊕

nH
n(M ;C) has the

structure of a Frobenius algebra in the monoidal category of C-vector spaces. Hint: Poincare
duality.
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� Show that a Frobenius algebra in a monoidal category may equivalently be defined as an
object A equipped with an algebra structure (m : A ⊗ A → A, u : I → A) and a coalgebra
structure (∆ : A → A ⊗ A, tr : A → I) fulfilling a certain compatibility condition, known as
the Frobenius equation.

� Define commutative algebra objects in braided monoidal categories, and discuss some exam-
ples.

� LetM be a closed oriented manifold with cohomology in even degrees. Show that
⊕

nH
n(M,C)

defines a commutative Frobenius algebra object in VecC. Discuss what goes wrong if M has
cohomology in odd degrees and how this could be fixed for even-dimensional M by passing
to the category of super vector spaces, Z/2-graded vector spaces equipped with an interesting
symmetric braiding.

� As an example, discuss the commutative Frobenius algebra structure on C[x]/xn+1 ∼=
⊕

k H
k(CPn,C).

� Define oriented topological quantum field theories (of arbitrary dimension) valued in a sym-
metric monoidal category C. Explain the classification of oriented one-dimensional TQFTs.

� Explain the classification of oriented two-dimensional TQFTs in terms of commutative Frobe-
nius algebras.

� Define the window element w : I → A of a Frobenius algebra (A,m, u,∆, tr) to be the
composite m ◦ ∆ ◦ u : I → A. Compute the window elements of the Frobenius algebra
C[G] for G a finite group, for C[x]/xn+1 and for

⊕
k H

k(M,C) where M is a closed oriented
manifold with cohomology in even degrees.

� Express the value of the TQFT associated to a commutative Frobenius algebra on a genus g
surface in terms of the window element and the trace. Using the computation of the window
elements from above, compute this value in all discussed examples.

� Explain the following fun way of computing with the two-dimensional TQFT corresponding
to C[x]/(x2). First we associate with 1 and x the following pictures:

1 := , x := •

Then for F(⃝⃝) ∼= F(⃝)⊗F(⃝) we have a basis given by pictures:

1⊗1 := , 1⊗x := • , x⊗1 := • , x⊗x := • •

Now verify that the maps that F associates to cap, cup, and (upside-down) pairs of pants
cobordisms can be computed on pictures as follows. Pick a basis element, stack the desired
cobordism on top of it, and simplify the picture using the following relations

= 0 ,
•

= 1 , =
•

+
•

, •• = 0
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until you get a linear combination of basis elements. Use these relations to compute the value
on a genus g surface and compare it with the computation from the previous item.

Do you see how to generalize this graphical notation to the TQFT associated to C[x]/xn+1?
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