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1 Introduction

1.1 Definition of a Lie algebra

Definition 1.1.1 A Lie algebra over F is an vector space 𝔤 over F, equipped with a bilinear map

𝔤 × 𝔤 → 𝔤,

(𝑥,𝑦) ↦→ [𝑥,𝑦],

called the Lie bracket, such that the following identities hold for all 𝑥,𝑦, 𝑧 ∈ 𝔤:

• [𝑥, 𝑥] = 0, i.e. the Lie bracket is antisymmetric, and

• [𝑥, [𝑦, 𝑧]] + [𝑧, [𝑥,𝑦]] + [𝑦, [𝑧, 𝑥]] = 0, i.e. the Lie bracket satisfies the Jacobi identity.

Lemma 1.1.2 For any Lie bracket on 𝔤 we have [𝑣,𝑤] = −[𝑤, 𝑣] for 𝑣,𝑤 ∈ 𝔤.

Proof. By bilinearity, we have 0 = [𝑣 +𝑤, 𝑣 +𝑤] = [𝑣, 𝑣] + [𝑣,𝑤] + [𝑤, 𝑣] + [𝑤,𝑤] = [𝑣,𝑤] + [𝑤, 𝑣]. □

Remark 1.1.3 We have defined a Lie algebra to be a pair (𝔤, [−,−]) of a vector space and a Lie bracket on it.
However, it is common to refer to 𝔤 itself as a Lie algebra if the choice of Lie bracket is clear from the context.

We have the following, more general notion of an algebra:

Definition 1.1.4 An algebra over F is an vector space 𝐴 over F, equipped with a bilinear map

𝐴 ×𝐴 → 𝐴,

(𝑥,𝑦) ↦→𝑚(𝑥,𝑦),

called themultiplication.

• If𝑚 satisfies the properties of a Lie bracket ([𝑥,𝑦] :=𝑚(𝑥,𝑦)) from Definition 1.1.1, then (𝐴,𝑚) is a Lie algebra.
It is said to be abelian if [𝑥,𝑦] = 0 for all 𝑥,𝑦 ∈ 𝐴.

• If𝑚 is associative, i.e. 𝑚(𝑥,𝑚(𝑦, 𝑧)) = 𝑚(𝑚(𝑥,𝑦), 𝑧) for all 𝑥,𝑦, 𝑧 ∈ 𝐴, then (𝐴,𝑚) is called an associative
algebra. It is said to be abelian if𝑚(𝑥,𝑦) =𝑚(𝑦, 𝑥) for all 𝑥,𝑦 ∈ 𝐴.

• If there is an element 1𝐴 ∈ 𝐴, such that𝑚(1𝐴, 𝑥) =𝑚(𝑥, 1𝐴) = 𝑥 for all 𝑥 ∈ 𝐴, then (𝐴,𝑚) is said to be unital
and 1𝐴 is called the unit element or identity element.

As before, we will sometimes refer to 𝐴 as an algebra, even though it would be more accurate to ascribe this
name to the pair (𝐴,𝑚).

Remark 1.1.5 It is very important to distinguish the concepts of Lie algebras and associative algebras. A Lie algebra
is, in general, neither associative, nor unital, nor abelian. Conversely, the multiplication in an associative algebra
typically does not satisfy the Jacobi identity. Because of this, we will use special notation for the multiplication in Lie
algebras and associative algebras:

[𝑥,𝑦] :=𝑚(𝑥,𝑦) in the case of Lie algebras
𝑥 · 𝑦 :=𝑚(𝑥,𝑦) in the case of associative algebras

For example, the associativity law then takes the familiar form 𝑥 · (𝑦 · 𝑧) = (𝑥 ·𝑦) · 𝑧 for all 𝑥,𝑦, 𝑧 ∈ 𝐴. Sometimes we
will even drop the dot from the notation of an associative multiplication and simply write 𝑥𝑦 := 𝑥 · 𝑦.

Later we will see many connections between the theories of Lie algebras and associative algebras.

Definition 1.1.6 Let (𝐴1,𝑚1) and (𝐴2,𝑚2) be algebras over F. Amorphism (or algebra homomorphism) from
(𝐴1,𝑚1) to (𝐴2,𝑚2) is a linear map 𝑓 : 𝐴1 → 𝐴2 that satisfies 𝑓 (𝑚1(𝑥,𝑦)) =𝑚2(𝑓 (𝑥), 𝑓 (𝑦)) for all 𝑥,𝑦 ∈ 𝐴1. In other
words, the following diagram commutes:

𝐴1 ×𝐴1 𝐴2 ×𝐴2

𝐴1 𝐴2

𝑓 ×𝑓

𝑚1 𝑚2

𝑓
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Such a morphism is called an mono-/epi-/isomorphism if 𝑓 : 𝐴1 → 𝐴2 is an mono-/epi-/isomorphism of vector
spaces over F. We also say that 𝑓 is injective/surjective/bijective, respectively. In the latter case, (𝐴1,𝑚1) and (𝐴2,𝑚2)
are said to be isomorphic, in symbols (𝐴1,𝑚1) � (𝐴2,𝑚2).

If both algebras are unital with unit elements 1𝐴1 and 1𝐴2 respectively, then 𝑓 is said to be unital if 𝑓 (1𝐴1) = 1𝐴2 .

Note that for a morphism 𝑓 : 𝔤1 → 𝔤2 between Lie algebras, the required compatibility with the Lie brackets takes
the form 𝑓 ( [𝑥,𝑦]) = [𝑓 (𝑥), 𝑓 (𝑦)], while for a morphism 𝑔 : 𝐴1 → 𝐴2 between associative algebras, the compatibility
condition reads 𝑔(𝑥 · 𝑦) = 𝑔(𝑥) · 𝑔(𝑦).

Definition 1.1.7 Let (𝐴,𝑚) be an algebra over F. A subalgebra of (𝐴,𝑚) is a linear subspace 𝐵 ⊂ 𝐴, such that
𝑚(𝑥,𝑦) ∈ 𝐵 for all 𝑥,𝑦 ∈ 𝐵. In this case, 𝐵 is itself an algebra with multiplication given by restricting𝑚 to 𝐵×𝐵 ⊂ 𝐴×𝐴.
Moreover, the natural inclusion 𝐵 ↩→ 𝐴 defines a monomorphism of algebras. If 𝐴 is unital with unit element 1𝐴,
then 𝐵 is called a unital subalgebra if 1𝐴 ∈ 𝐵. Subalgebras of Lie algebras will be called Lie subalgebras, or simply
subalgebras if confusion is unlikely.

Note that a linear subspace 𝔥 of a Lie algebra 𝔤 with Lie bracket [−,−]𝔤 is a Lie subalgebra if and only if [𝑥,𝑦]𝔤 ∈ 𝔥

whenever 𝑥,𝑦 ∈ 𝔥.

Exercise 1 Prove that the intersection
⋂

𝑖∈𝐼 𝐵𝑖 of (an arbitrary number of) subalgebras 𝐵𝑖 of a given algebra 𝐴 is
again a subalgebra of 𝐴 and of any of the 𝐵𝑖 . Also find an example of an algebra with two subalgebras whose union
is not a subalgebra. Hint: Consider the algebra of complex 2𝑥2-matrices with respect to the matrix multiplication,
with its subalgebra

𝑈1 =

{(
0 𝑐

0 0

)
| 𝑐 ∈ C

}
and another analogous subalgebra𝑈2.

Exercise 2 Recall or familiarize yourself with the notion of a category and with what it means for a category to
be F-linear, where F is a field. Verify that Lie algebras (resp. associative algebras) over F form a category LieAlgF
(resp. AssocAlgF) with morphisms as in Definition 1.1.6. Is it F-linear?

1.2 Examples

Examples 1.2.1 The following are examples of associative unital algebras over a field F:

(1) The polynomial ring F[𝑥1, . . . , 𝑥𝑛].

(2) The vector space EndF(𝑉 ) of endomorphisms 𝑓 : 𝑉 → 𝑉 of an F-vector space 𝑉 with multiplication given by
composition𝑚(𝑓 , 𝑔) := 𝑓 ◦ 𝑔.

(3) The vector space Mat𝑛×𝑛 (F) of 𝑛 × 𝑛-matrices with entries in F, with respect to matrix multiplication.

Example 1.2.2 Let 𝑉 be any vector space over F and declare [𝑥,𝑦] := 0 for all 𝑥,𝑦 ∈ 𝑉 , then this defines a Lie
bracket on 𝑉 . The Lie algebra (𝑉 , [−,−]) is abelian.

Remark 1.2.3 On vector spaces of dimension 0 or 1, there is a unique Lie bracket, namely the abelian one. In
Exercise 3 we will see that there are exactly two Lie algebra structures up to isomorphism on any 2-dimensional
vector space.

Construction 1.2.4 Let 𝐴 be an associative algebra over F. Consider the commutator of two elements 𝑥,𝑦 ∈ 𝐴

[𝑥,𝑦] := 𝑥 · 𝑦 − 𝑦 · 𝑥 .

This defines a bilinear map𝐴×𝐴 → 𝐴, which is antisymmetric (easy) and satisfies the Jacobi identity (straightforward
computation). Thus, (𝐴, [−,−]) is a Lie algebra. L1

End
We can summarize the content of this construction in the slogan:

“Every associative algebra produces a Lie algebra, with the Lie bracket given by the commutator”.
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Example 1.2.5 Let 𝑉 be any vector space over F and consider the associative algebra EndF(𝑉 ) of endomorphisms
of 𝑉 . Now apply Construction 1.2.4 to define the general linear Lie algebra 𝔤𝔩(𝑉 ). Explicitly, the Lie bracket of
two linear maps 𝑓 , 𝑔 : 𝑉 → 𝑉 is

[𝑓 , 𝑔] := 𝑓 ◦ 𝑔 − 𝑔 ◦ 𝑓 .

We will use the symbol 𝔤𝔩(𝑉 ) whenever the vector space of endomorphisms of 𝑉 will be considered as a Lie
algebra. Conversely, we use EndF(𝑉 ) when we consider the endomorphisms of 𝑉 as an associative algebra.

If 𝑉 is finite-dimensional over F and we have chosen a basis {𝑣1, 𝑣2, . . . , 𝑣𝑛} for 𝑛 = dimF(𝑉 ), then EndF(𝑉 )
is isomorphic to the vector space Mat𝑛×𝑛 (F) of 𝑛 × 𝑛-matrices with entries in F, and composition of linear maps
translates into matrix multiplication. Using the matrix commutator as Lie bracket, we can also consider Mat𝑛×𝑛 (F)
as a Lie algebra, which we denote by 𝔤𝔩(𝑛, F). Clearly we have 𝔤𝔩(𝑛, F) � 𝔤𝔩(𝑉 ).

Lie subalgebras of general linear Lie algebras 𝔤𝔩(𝑉 ) or 𝔤𝔩(𝑛, F) are called linear Lie algebras. We will see several
more examples.

Example 1.2.6 (type A) For 𝑛 ∈ N, one checks that the linear subspace

𝔰𝔩(𝑛, F) = {𝑀 ∈ 𝔤𝔩(𝑛, F) | Tr(𝑀) = 0}

of traceless 𝑛 × 𝑛-matrices is closed under the matrix commutator (Exercise 5) and thus defines a Lie subalgebra of
𝔤𝔩(𝑛, F). It is called a special linear Lie algebra and the classical Lie algebra of type 𝑨𝒏−1.

More abstractly, whenever 𝑉 is finite-dimensional over F, one can define a Lie subalgebra 𝔰𝔩(𝑉 ) of 𝔤𝔩(𝑉 ) (the
trace of a linear endomorphism is basis-independent) and 𝔰𝔩(𝑉 ) � 𝔰𝔩(𝑛, F) for 𝑛 = dimF(𝑉 ).

For the following three examples, of the classical Lie algebras of types B, C, and D, let char(F) ≠ 2.

Example 1.2.7 (type B) For odd 2𝑛 + 1 ∈ N, consider the linear subspace

𝔰𝔬(2𝑛 + 1, F) = {𝑀 ∈ 𝔤𝔩(2𝑛 + 1, F) | 𝑆𝑀 = −𝑀𝑡𝑆}, where 𝑆 =
©­«
1 0 0
0 0 𝐼𝑛
0 𝐼𝑛 0

ª®¬ .
We will see that this is a Lie subalgebra of 𝔤𝔩(2𝑛 + 1, F) and, in fact, of 𝔰𝔩(2𝑛 + 1, F). It is called an orthogonal Lie
algebra and the classical Lie algebra of type 𝑩𝒏.

Example 1.2.8 (type C) For even 2𝑛 ∈ N, consider the linear subspace

𝔰𝔭(2𝑛, F) = {𝑀 ∈ 𝔤𝔩(2𝑛, F) | 𝑆𝑀 = −𝑀𝑡𝑆}, where 𝑆 =

(
0 𝐼𝑛
−𝐼𝑛 0

)
.

We will see that this is a Lie subalgebra of 𝔤𝔩(2𝑛, F) and, in fact, of 𝔰𝔩(2𝑛, F). It is called a symplectic Lie algebra
and the classical Lie algebra of type 𝑪𝒏.

Example 1.2.9 (type D) For even 2𝑛 ∈ N, consider the linear subspace

𝔰𝔬(2𝑛, F) = {𝑀 ∈ 𝔤𝔩(2𝑛, F) | 𝑆𝑀 = −𝑀𝑡𝑆}, where 𝑆 =

(
0 𝐼𝑛
𝐼𝑛 0

)
.

We will see that this is a Lie subalgebra of 𝔤𝔩(2𝑛, F) and, in fact, of 𝔰𝔩(2𝑛, F). It is also called an orthogonal Lie
algebra and the classical Lie algebra of type 𝑫𝒏.

Remarks 1.2.10 (1) The type B, C andD Lie algebras also have a basis-independent description as Lie subalgebras
of 𝔤𝔩(𝑉 ) for a vector space 𝑉 over F of suitable dimension. In each case, the counterpart of the explicit matrix
𝑆 is a non-degenerate bilinear form ⟨−,−⟩ : 𝑉 ×𝑉 → F (symmetric for types B and D, skew-symmetric for
type C) and the Lie subalgebras consist of exactly those endomorphisms 𝑓 : 𝑉 → 𝑉 , such that

⟨𝑓 (𝑣),𝑤⟩ = −⟨𝑣, 𝑓 (𝑤)⟩, for all 𝑣,𝑤 ∈ 𝑉 . (1)

(2) Among the classical complex Lie algebras, there are the following exceptional isomorphisms (that we
will not all prove). The classical Lie algebras 𝔰𝔩(2,C), 𝔰𝔬(3,C), 𝔰𝔭(2,C) are isomorphic, 𝔰𝔬(2,C) � C is the
1-dimensional abelian Lie algebra, 𝔰𝔬(5,C) � 𝔰𝔭(4,C) , 𝔰𝔬(6,C) � 𝔰𝔩(4,C) , and 𝔰𝔬(4,C) � 𝔰𝔩(2,C) × 𝔰𝔩(2,C).
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(3) There are also classical Lie algebras of type 𝐸6, 𝐸7, 𝐸8, 𝐹4, and 𝐺2 that we will meet later.

Examples 1.2.11 For 𝑛 ∈ N, we have a (commutative) diagram of Lie subalgebras of 𝔤𝔩(𝑛, F) as follows:

𝔫(𝑛, F) 𝔰𝔩(𝑛, F)

𝔰(𝑛, F) 𝔥(𝑛, F) 𝔱(𝑛, F) 𝔤𝔩(𝑛, F)

where

• 𝔱(𝑛, F) := {𝑀 ∈ 𝔤𝔩(𝑛, F) | 𝑀 is a upper triangular matrix}

• 𝔫(𝑛, F) := {𝑀 ∈ 𝔤𝔩(𝑛, F) | 𝑀 is a strictly upper triangular matrix}

• 𝔥(𝑛, F) := {𝑀 ∈ 𝔤𝔩(𝑛, F) | 𝑀 is a diagonal matrix}

• 𝔰(𝑛, F) := {𝜆𝐼𝑛 ∈ 𝔤𝔩(𝑛, F) | 𝜆 ∈ F}

It is straightforward to verify that these subspaces are closed under the matrix commutator and, thus, Lie subalgebras.

Exercise 3 Prove the assertion from Remark 1.2.3 that there are exactly two Lie algebra structures on any 2-
dimensional vector space. Give an example of a Lie algebra structure on a 3-dimensional vector space that is neither
abelian nor isomorphic to 𝔰𝔩(2, F).

Exercise 4 Verify that the commutator in an associative F-algebra 𝐴 defines a Lie bracket on the underlying vector
space of 𝐴 as claimed in Construction 1.2.4.

Exercise 5 (on type A) Verify that the commutator of two square matrices of trace zero is again trace zero, as
claimed Example 1.2.6. Compute dimF(𝔰𝔩(𝑛, F)), find a basis of 𝔰𝔩(𝑛, F) (consisting of matrices with very few non-zero
entries), and then evaluate the Lie bracket on all pairs of basis elements.

Exercise 6 (on types, B, C, and D) First explain the precise relationship between the matrices 𝑆 that appear in
Example 1.2.7-1.2.9 and the non-degenerate bilinear form ⟨−,−⟩ in Remarks 1.2.10.(1). Then verify that the subspace
of endomorphisms 𝑓 ∈ 𝔤𝔩(𝑉 ) satisfying (1) is closed under the commutator. Deduce that 𝔰𝔬(2𝑛 + 1, F), 𝔰𝔭(2𝑛, F), and
𝔰𝔬(2𝑛, F) as described in Example 1.2.7-1.2.9 are indeed Lie algebras.

Exercise 7 (on type B) Explicitly describe the elements𝑀 ∈ 𝔰𝔬(2𝑛+1, F) ⊂ 𝔤𝔩(2𝑛+1, F) appearing in Example 1.2.7
as (1 +𝑛 +𝑛) × (1 +𝑛 +𝑛) block matrices with blocks satisfying certain conditions. Use this to deduce 𝔰𝔬(2𝑛 + 1, F) ⊂
𝔰𝔩(2𝑛 + 1, F), compute dimF(𝔰𝔬(2𝑛 + 1, F)), and find a basis.

Exercise 8 (on type C) Explicitly describe the elements𝑀 ∈ 𝔰𝔭(2𝑛, F) ⊂ 𝔤𝔩(2𝑛, F) appearing in Example 1.2.8 as
(𝑛 + 𝑛) × (𝑛 + 𝑛) block matrices with blocks satisfying certain conditions. Use this to deduce 𝔰𝔭(2𝑛, F) ⊂ 𝔰𝔩(2𝑛, F),
compute dimF(𝔰𝔭(2𝑛, F)), and find a basis. Finally, note 𝔰𝔭(2, F) = 𝔰𝔩(2, F).

Exercise 9 (on type D) Explicitly describe the elements𝑀 ∈ 𝔰𝔬(2𝑛, F) ⊂ 𝔤𝔩(2𝑛, F) appearing in Example 1.2.9 as
(𝑛 + 𝑛) × (𝑛 + 𝑛) block matrices with blocks satisfying certain conditions. Use this to deduce 𝔰𝔬(2𝑛, F) ⊂ 𝔰𝔩(2𝑛, F),
compute dimF(𝔰𝔬(2𝑛, F)), and find a basis. End

Week 2
Exerc.

Exercise 10 Verify the assertions made in Examples 1.2.11 and compute the dimensions of all six Lie algebras as
functions of 𝑛 ∈ N.

1.3 Toolkit

Construction 1.3.1 Let 𝔤1, 𝔤2 be Lie algebras over F. Then one defines a Lie bracket on 𝔤1 × 𝔤2 by declaring for
𝑥𝑖 , 𝑦𝑖 ∈ 𝔤𝑖 :

[(𝑥1, 𝑥2), (𝑦1, 𝑦2)] := ( [𝑥1, 𝑦1], [𝑥2, 𝑦2]) .
This is called the (direct) product of 𝔤1 and 𝑔2. Both appear as Lie subalgebras of 𝔤1 × 𝔤2 and, by construction
[𝔤1, 𝔤2] = 0. (Here and in the following, if 𝐴, 𝐵 are subspaces of a Lie algebra, then [𝐴, 𝐵] denotes the subspace
spanned by brackets [𝑎, 𝑏] where 𝑎 ∈ 𝐴,𝑏 ∈ 𝐵.)
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Definition 1.3.2 (1) A linear subspace 𝐼 of a Lie algebra 𝔤 is called an ideal if 𝑥 ∈ 𝔤 and 𝑦 ∈ 𝐼 together imply
[𝑥,𝑦] ∈ 𝐼 . Every Lie algebra 𝔤 has itself and 0 (the zero vector space) as ideals.

(2) If 𝔤 has no other ideals besides 0 and 𝔤 and is not abelian, then it is called simple.

Note that every ideal is a Lie subalgebra, but not necessarily the other way round.

Lemma 1.3.3 Let 𝑓 : 𝔤1 → 𝔤2 be a Lie algebra morphism. Then ker(𝑓 ) is an ideal in 𝔤1 and im(𝑓 ) is a Lie subalgebra
of 𝔤2.

Proof. If 𝑥 ∈ 𝔤1 and 𝑦 ∈ ker(𝑓 ), then 𝑓 ( [𝑥,𝑦]) = [𝑓 (𝑥), 𝑓 (𝑦)] = [𝑓 (𝑥), 0] = 0 and thus [𝑥,𝑦] ∈ ker(𝑓 ), i.e. ker(𝑓 )
is an ideal. If 𝑥 ′, 𝑦′ ∈ im(𝑓 ), then [𝑥 ′, 𝑦′] = [𝑓 (𝑥), 𝑓 (𝑦)] = 𝑓 ( [𝑥,𝑦]) ∈ im(𝑓 ) for some 𝑥,𝑦 ∈ 𝔤1. So im(𝑓 ) is a Lie
subalgebra of 𝔤2. □

Remark 1.3.4 A consequence of the lemma is that a non-abelian Lie algebra 𝔤 is simple if and only if every Lie
algebra morphism out of 𝔤 is either zero or injective. (For the ”if”-direction, see Construction 1.3.9.)

Example 1.3.5 Both Lie algebras 𝔤1, 𝔤2 are ideals in 𝔤1 × 𝔤2.

Example 1.3.6 The center of a Lie algebra 𝔤 is defined as 𝑍 (𝔤) = {𝑧 ∈ 𝔤 | [𝑧, 𝑥] = 0 for all 𝑥 ∈ 𝔤}. It is an ideal in
𝔤. We have 𝔤 = 𝑍 (𝑔) if and only if 𝔤 is abelian.

Example 1.3.7 If 𝔤 is a Lie algebra, then it follows from the Jacobi identity that the subspace [𝔤, 𝔤] spanned by
brackets is an ideal in 𝔤. It is called the derived Lie algebra of 𝔤. We have [𝔤, 𝔤] = 0 if and only if 𝔤 is abelian.

Remark 1.3.8 Let 𝐼 , 𝐽 be ideals in a Lie algebra 𝔤. Then 𝐼 ∩ 𝐽 and 𝐼 + 𝐽 = {𝑥 + 𝑦 | 𝑥 ∈ 𝐼 , 𝑦 ∈ 𝐽 } and [𝐼 , 𝐽 ] are ideals
in 𝔤.

Construction 1.3.9 If 𝐼 is an ideal in 𝔤, then we consider the quotient vector space 𝔤/𝐼 and equip it with the Lie
bracket:

[𝑥 + 𝐼 , 𝑦 + 𝐼 ] := [𝑥,𝑦] + 𝐼

This is well-defined and independent of the representatives 𝑥,𝑦 ∈ 𝔤 since 𝐼 is an ideal. The resulting Lie algebra 𝔤/𝐼
is called the quotient of 𝔤 by 𝐼 . The canonical quotient map 𝑞 : 𝔤 → 𝔤/𝐼 is a Lie algebra morphism. L2

EndNote that we have a short exact sequence:

𝐼 ↩→ 𝔤 ↠ 𝔤/𝐼

In this case 𝔤 is called an extension of 𝔤/𝐼 by 𝐼 .

Theorem 1.3.10 The standard isomorphism theorems hold for Lie algebras.

(1) Let 𝑓 : 𝔤1 → 𝔤2 be a morphism of Lie algebras, then

𝔤1/ker(𝑓 ) � im(𝑓 ) .

Moreover, if 𝐼 is any ideal of 𝔤1 and 𝐼 ⊂ ker(𝑓 ), then there exists a unique morphism 𝑔 : 𝔤1/𝐼 → 𝔤2 such that
𝑓 = 𝑔 ◦ 𝑞 where 𝑞 : 𝔤1 → 𝔤1/𝐼 is the quotient map.

(2) If 𝐼 and 𝐽 are ideals in 𝔤1 and 𝐼 ⊂ 𝐽 , then 𝐽/𝐼 is an ideal of 𝔤1/𝐼 and (𝔤1/𝐼 )/(𝐽/𝐼 ) � 𝔤1/𝐽 .

(3) If 𝐼 and 𝐽 are ideals in 𝔤1, then (𝐼 + 𝐽 )/𝐽 � 𝐼/(𝐼 ∩ 𝐽 ).

Proof. Exercise 12. □

We list some standard notions that may be used later.

Definition 1.3.11 Let 𝑔 be a Lie algebra. The normalizer of a Lie subalgebra 𝔥 in 𝔤 is defined as 𝑁𝔤 (𝔥) := {𝑥 ∈
𝔤 | [𝑥, 𝔥] ⊂ 𝔥}. This is a subalgebra in 𝔤, namely the largest one containing 𝔥 as an ideal. If 𝑁𝔤 (𝔥) = 𝔥, then 𝔥 is said
to be self-normalizing.

Definition 1.3.12 Let𝑔 be a Lie algebra. The centralizer of a subset 𝑆 in 𝔤 is defined as𝐶𝔤 (𝑆) := {𝑥 ∈ 𝔤 | [𝑥, 𝑆] = 0}.
This is again a subalgebra in 𝔤. Note that 𝐶𝔤 (𝔤) = 𝑍 (𝔤) and for a subalgebra 𝔥 we always have 𝐶𝔤 (𝔥) ⊂ 𝑁𝔤 (𝔥).
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Exercise 11 Prove the assertions in Remark 1.3.8.

Exercise 12 Prove Theorem 1.3.10. You may use the standard isomorphism theorems for vector spaces.

Exercise 13 Let char(F) = 0 or char(F) = 𝑝 a prime not dividing 𝑛 ∈ N. Prove that 𝔤𝔩(𝑛, F) = 𝔰𝔩(𝑛, F) + 𝔰(𝑛, F)
with [𝔰𝔩(𝑛, F), 𝔰(𝑛, F)] = 0.

Exercise 14 If char(F) ≠ 2 show that [𝔰𝔩(𝑛, F), 𝔰𝔩(𝑛, F)] = 𝔰𝔩(𝑛, F) for all 𝑛 ≥ 1. What happens if char(F) = 2?

1.4 Representations of Lie algebras

Definition 1.4.1 Let 𝔤 be a Lie algebra and 𝑉 a vector space, both over F. A representation of 𝔤 on 𝑉 is defined
to be a Lie algebra morphism 𝜌 : 𝔤 → 𝔤𝔩(𝑉 ). In this case, we also say 𝔤 acts on 𝑉 by 𝜌 . Specifically, if 𝑥 ∈ 𝔤, then
𝜌 (𝑥) ∈ 𝔤𝔩(𝑉 ) = EndF(𝑉 ), and the action of 𝑥 on 𝑣 is defined as 𝑥 · 𝑣 := 𝜌 (𝑥) (𝑣) ∈ 𝑉 . If 𝜌 is injective, then the
representation is called faithful.

Sometimes we abusively refer to𝑉 as a representation of 𝔤 if the Lie algebra morphism 𝜌 is clear from the context.

Remark 1.4.2 A representation of 𝔤 on 𝑉 can equivalently described via its action. This is the data of the bilinear
map 𝔤 ×𝑉 → 𝑉 , (𝑥, 𝑣) ↦→ 𝑥 · 𝑣 , which satisfies the equation 𝑥 · (𝑦 · 𝑣) −𝑦 · (𝑥 · 𝑣) = [𝑥,𝑦] · 𝑣 for all 𝑥,𝑦 ∈ 𝔤 and 𝑣 ∈ 𝑉 .

Examples 1.4.3 (1) Every vector space 𝑉 admits an action of 𝔤𝔩(𝑉 ) by 𝜌 = id : 𝔤𝔩(𝑉 ) → 𝔤𝔩(𝑉 ).

(2) Let 𝔤 be any of the linear Lie algebras from the previous section. These were defined as Lie subalgebras of
some 𝔤𝔩(𝑛, F) � 𝔤𝔩(F𝑛). Then the inclusion 𝜌 : 𝔤 → 𝔤𝔩(F𝑛) is a Lie algebra morphism that defines the vector
representation of 𝔤 on F𝑛 .

(3) Any Lie algebra 𝔤 acts on any vector space 𝑉 over the same F by the trivial action 𝑥 · 𝑣 = 0 for all 𝑥 ∈ 𝔤 and
𝑣 ∈ 𝑉 . The 1-dimensional vector space F with this trivial action is called the trivial representation (in the
physics literature sometimes singlet) of 𝔤.

Definition 1.4.4 (1) Let 𝜌1 : 𝔤 → 𝔤𝔩(𝑉1) and 𝜌2 : 𝔤 → 𝔤𝔩(𝑉2) be two representations of 𝔤. A morphism of
𝔤-representations (also called a 𝐠-intertwiner) from 𝑉1 to 𝑉2 is a linear map 𝑓 : 𝑉1 → 𝑉2 such that 𝜌2(𝑥) ◦ 𝑓 =

𝑓 ◦ 𝜌1(𝑥) as maps 𝑉1 → 𝑉2 for all 𝑥 ∈ 𝔤. In terms of actions, this means 𝑥 · 𝑓 (𝑣) = 𝑓 (𝑥 · 𝑣) for all 𝑥 ∈ 𝔤

and 𝑣 ∈ 𝑉 . If 𝑓 is furthermore an isomorphism of vector spaces, then we say that 𝑉1 and 𝑉2 are isomorphic
𝔤-representations, in symbols 𝑉1 � 𝑉2.

(2) A vector subspace𝑈 of a representation 𝑉 of 𝔤 is called a subrepresentation of 𝑉 if 𝑥 · 𝑢 ∈ 𝑈 for every 𝑥 ∈ 𝔤

and 𝑢 ∈ 𝑈 . In this case, the natural inclusion𝑈 ↩→ 𝑉 is an injective morphism of 𝔤-representations. Moreover,
there exists a unique structure of a 𝔤-representation on the quotient vector space 𝑉 /𝑈 such that the quotient
map 𝑞 : 𝑉 → 𝑉 /𝑈 is an intertwiner. It is called the quotient representation.

(3) A representation 𝑉 of 𝔤 is called irreducible or simple if 𝑉 ≠ 0 (it is not the zero vector space) and its only
subrepresentations are 0 and 𝑉 itself.

(4) If𝑉1 and𝑉2 are 𝔤-representation, then the direct sum𝑉1⊕𝑉2 naturally carries the structure of a 𝔤-representation
by declaring 𝑥 · (𝑣1 + 𝑣2) = (𝑥 · 𝑣1) + (𝑥 · 𝑣2) for 𝑥 ∈ 𝔤 and 𝑣1 ∈ 𝑉1, 𝑣2 ∈ 𝑉2.

(5) A representation 𝑉 of 𝔤 is called indecomposable if 𝑉 � 𝑉1 ⊕ 𝑉2 implies that either 𝑉1 � 0 or 𝑉1 � 𝑉 .

Any direct summand of a representation is also a subrepresentation, but not necessarily the other way round.
Conversely, any irreducible representation is also indecomposable, but not necessarily the other way round.

Remarks 1.4.5 (1) For 𝔤-representations𝑉 ,𝑊 we write Hom𝔤 (𝑉 ,𝑊 ) := HomRep(𝔤) (𝑉 ,𝑊 ) for the vector spaces
of 𝔤-intertwiners from 𝑉 to𝑊 . In the case 𝑉 =𝑊 we abbreviate End𝔤 (𝑉 ) := EndRep(𝔤) (𝑉 ) := Hom𝔤 (𝑉 ,𝑉 ).

(2) Given 𝑓 ∈ Hom𝔤 (𝑉1,𝑉2) and 𝑔 ∈ Hom𝔤 (𝑉2,𝑉3), then 𝑔◦ 𝑓 ∈ Hom𝔤 (𝑉1,𝑉3). To verify this, let the representations
be given by 𝜌𝑖 : 𝔤 → 𝔤𝔩(𝑉𝑖) for 𝑖 = 1, 2, 3 and for 𝑥 ∈ 𝔤 we thus check:

𝜌3(𝑥) ◦ (𝑔 ◦ 𝑓 ) = 𝑔 ◦ 𝜌2(𝑥) ◦ 𝑓 = (𝑔 ◦ 𝑓 ) ◦ 𝜌1(𝑥)
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(3) For any 𝔤-representation 𝑉 there are two naturally associated vector spaces with trivial 𝔤-action. First the
subrepresentation of 𝐠-invariants

𝑉 𝔤 := {𝑣 ∈ 𝑉 | 𝑥 · 𝑣 = 0 for all 𝑥 ∈ 𝔤}

and second the quotient representation of 𝐠-coinvariants

𝑉𝔤 := 𝑉 /𝔤 ·𝑉 .

(4) Let 𝑉 ,𝑊 be representations of a Lie algebra 𝔤 over F. Then the space of F-linear maps HomF(𝑉 ,𝑊 ) carries a
𝔤-action defined by:

(𝑥 · 𝑓 ) (𝑣) := 𝑥 · 𝑓 (𝑣) − 𝑓 (𝑥 · 𝑣) for all 𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉 , 𝑓 ∈ HomF(𝑉 ,𝑊 )

The 𝔤-intertwiners between 𝔤-representations𝑉 ,𝑊 are exactly the 𝔤-invariants among the linear maps from𝑉

to𝑊 , in formulas
Hom𝔤 (𝑉 ,𝑊 ) = HomF(𝑉 ,𝑊 )𝔤

see Exercise 15.

(5) Choosing for𝑊 the trivial representation𝑊 = F in (4), one obtains a 𝔤-representation on the dual space
𝑉 ∗ = HomF(𝑉 , F) called the contragradient representation. For 𝑥 ∈ 𝔤 and 𝑓 ∈ 𝑉 ∗, one has

(𝑥 · 𝑓 ) (𝑣) = (−𝑓 ) (𝑥 · 𝑣) for 𝑣 ∈ 𝑉 .

(6) Choosing for 𝑉 the trivial representation 𝑉 = F in (4), one obtains an isomorphism of 𝔤-representations:

𝑊 → HomF(F,𝑊 ),
𝑤 ↦→ (𝜆 ↦→ 𝜆𝑤).

(7) Let 𝑉 ,𝑊 be representations of a Lie algebra 𝔤 over F. Then the tensor product vector space 𝑉 ⊗𝑊 carries an
action of 𝔤, defined on elementary tensors by 𝑥 · (𝑣 ⊗𝑤) = (𝑥 · 𝑣) ⊗𝑤 + 𝑣 ⊗ (𝑥 ·𝑤) for 𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉 ,𝑤 ∈𝑊 .
For finite-dimensional 𝑉 ,𝑊 , one then has HomF(𝑉 ,𝑊 ) �𝑊 ⊗ 𝑉 ∗, see Exercise 16. L3

End
Lemma 1.4.6 Let 𝔤 be a Lie algebra over F and 𝑓 ∈ End𝔤 (𝑉 ) an endomorphism of a 𝔤-representation 𝑉 . For every
𝜆 ∈ F the generalized eigenspace

𝑉 𝜆 (𝑓 ) :=
⋃
𝑛≥0

ker(𝑓 − 𝜆id𝑉 )𝑛

is a subrepresentation of 𝑉 .

Proof. If 𝑥 ∈ 𝔤 and 𝑣 ∈ ker(𝑓 − 𝜆id𝑉 )𝑛 for some 𝑛 ≥ 0, then we have

(𝑓 − id𝑉 )𝑛 (𝑥 · 𝑣) = 𝑥 · ((𝑓 − id𝑉 )𝑛 (𝑣)) = 𝑥 · 0 = 0

so 𝑥 · 𝑣 ∈ ker(𝑓 − 𝜆id𝑉 )𝑛 ⊂ 𝑉 𝜆 (𝑓 ). □

Example 1.4.7 Let 𝔤 be a Lie algebra over F. A 1-dimensional representation of 𝔤 is a Lie algebra morphism
𝜌 : 𝔤 → 𝔤𝔩(F). If we identify 𝔤𝔩(F) � F, this is equivalent to the data of a linear form 𝜆 ∈ 𝔤∗, such that 𝜆 | [𝔤,𝔤] = 0.
Thus we have a bijection:

(𝔤/[𝔤, 𝔤])∗ ↔
{
1-dimensional representations
up to isomorphism

The elements on the left are called characters of 𝔤. If a 1-dimensional representation corresponds to 𝜆 ∈ (𝔤/[𝔤, 𝔤])∗,
then its contragradient representation corresponds to −𝜆.

Exercise 15 Verify both assertions made in Remarks 1.4.5.(4).

Exercise 16 Verify both assertions made in Remarks 1.4.5.(7).
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Exercise 17 (may split) Let𝑈 ,𝑉 ,𝑊 be 𝔤-representations, all over F. Show that the swap of tensor factors𝑈 ⊗𝑉 �

𝑉 ⊗ 𝑈 as well as the two canonical isomorphisms

𝑈 ⊗ (𝑉 ⊗𝑊 ) �−→ (𝑈 ⊗ 𝑉 ) ⊗𝑊

HomF(𝑈 ,HomF(𝑉 ,𝑊 )) �−→ HomF(𝑈 ⊗ 𝑉 ,𝑊 )

of vector spaces are 𝔤-intertwiners. Now take 𝔤-invariants to deduce Hom𝔤 (𝑈 ,HomF(𝑉 ,𝑊 )) � Hom𝔤 (𝑈 ⊗ 𝑉 ,𝑊 ).

Exercise 18 (may split) Let𝑈 ,𝑉 ,𝑊 ,𝑋 be 𝔤-representations, all over F. Show that the following are 𝔤-intertwiners:

“composing linear maps” HomF(𝑈 ,𝑉 ) ⊗ HomF(𝑉 ,𝑊 ) → HomF(𝑈 ,𝑊 )
“tensoring linear maps” HomF(𝑈 ,𝑉 ) ⊗ HomF(𝑊,𝑋 ) → HomF(𝑈 ⊗𝑊,𝑉 ⊗ 𝑋 )

Exercise 19 Let 𝑉 be a 𝔤-representation and 𝑟 ≥ 0. Show that there exists a unique action of 𝔤 on the exterior
power

∧𝑟 𝑉 , such that the canonical projection 𝑉 ⊗𝑟 ↠
∧𝑟 𝑉 is a 𝔤-intertwiner. Similarly, show that there exists a

unique action of 𝔤 on the symmetric power 𝑆𝑟𝑉 , such that 𝑉 ⊗𝑟 ↠ 𝑆𝑟𝑉 is a 𝔤-intertwiner.

Exercise 20 (*) Recall or familiarize yourself with the notion of a symmetric monoidal closed category. Do
representations of a Lie algebra 𝔤 form a symmetric monoidal closed F-linear category? End

Week 3
Exerc.1.5 The adjoint representation and derivations

Every Lie algebra has distinguished representation, which is very important for the further theoretical development:
the adjoint representation.

Lemma 1.5.1 Let 𝔤 be any Lie algebra and 𝔤𝔩(𝔤) the general linear Lie algebra of endomorphism of the underlying
vector space of 𝔤. Then 𝔤 acts on the vector space 𝔤 by the adjoint representation, which is given by:

ad : 𝔤 → 𝔤𝔩(𝔤)
𝑥 ↦→ ad𝑥 ,

where ad𝑥 (𝑦) := [𝑥,𝑦] for 𝑦 ∈ 𝔤.

Proof. We check that ad is indeed a morphism of Lie algebras. Let 𝑥,𝑦, 𝑧 ∈ 𝔤 and compute:

ad[𝑥,𝑦 ] (𝑧) = [[𝑥,𝑦], 𝑧]
= −[𝑧, [𝑥,𝑦]]
= [𝑥, [𝑦, 𝑧]] + [𝑦, [𝑧, 𝑥]]
= [𝑥, [𝑦, 𝑧]] − [𝑦, [𝑥, 𝑧]]
= ad𝑥 ( [𝑦, 𝑧]) − ad𝑦 ( [𝑥, 𝑧])
= ad𝑥 (ad𝑦 (𝑧)) − ad𝑦 (ad𝑥 (𝑧))
= [ad𝑥 , ad𝑦] (𝑧)

Here we have used antisymmetry twice and the Jacobi identity once. □

Note the two different uses of the brackets in the proof, first as a (formal) bracket in 𝔤 and finally as commutator
of linear maps in 𝔤𝔩(𝔤) in the last line.

Remarks 1.5.2 Let 𝔤 be a Lie algebra.

(1) The ideals of 𝔤 are exactly the subrepresentations of the adjoint representation.

(2) The center of 𝔤 is the kernel of the adjoint representation, i.e. 𝑍 (𝔤) = ker(ad).

Having discussed the adjoint representation, it is now worth to take a short detour and consider the concept of
derivations.

Definition 1.5.3 Let (𝐴,𝑚) be an algebra over F in the sense of Definition 1.1.4. A derivation of 𝐴 is a linear map
𝛿 : 𝐴 → 𝐴 that satisfies 𝛿 (𝑚(𝑥,𝑦)) =𝑚(𝛿 (𝑥), 𝑦) +𝑚(𝑥, 𝛿 (𝑦)) for 𝑥,𝑦 ∈ 𝐴.
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Lemma 1.5.4 The derivations of an algebra (𝐴,𝑚) form a Lie subalgebra Der(𝐴) of 𝔤𝔩(𝐴).

Proof. It is straightforward to check that linear combinations of derivations are again derivations. It remains to check
that the commutator of two derivations 𝛿1, 𝛿2 is again a derivation. For this let 𝑥,𝑦 ∈ 𝐴.

[𝛿1, 𝛿2] (𝑚(𝑥,𝑦)) = 𝛿1(𝛿2(𝑚(𝑥,𝑦))) − 𝛿2(𝛿1(𝑚(𝑥,𝑦)))
= 𝛿1(𝑚(𝛿2(𝑥), 𝑦) +𝑚(𝑥, 𝛿2(𝑦))) − 𝛿2(𝑚(𝛿1(𝑥), 𝑦) +𝑚(𝑥, 𝛿1(𝑦)))
=𝑚(𝛿1(𝛿2(𝑥)), 𝑦) +𝑚(𝛿2(𝑥), 𝛿1(𝑦)) +𝑚(𝛿1(𝑥), 𝛿2(𝑦)) +𝑚(𝑥, 𝛿1(𝛿2(𝑦)))

−𝑚(𝛿2(𝛿1(𝑥)), 𝑦) −𝑚(𝛿1(𝑥), 𝛿2(𝑦)) −𝑚(𝛿2(𝑥), 𝛿1(𝑦)) −𝑚(𝑥, 𝛿2(𝛿1(𝑦)))
=𝑚( [𝛿1, 𝛿2] (𝑥), 𝑦) +𝑚(𝑥, [𝛿1, 𝛿2] (𝑦)) □

Lemma 1.5.5 Let 𝔤 be a Lie algebra, then for 𝑥 ∈ 𝔤, we have ad𝑥 ∈ Der(𝔤). Such derivations of 𝔤 are called inner
derivations.

Proof. Let’s check that ad𝑥 is indeed a derivation. For this let 𝑦, 𝑧 ∈ 𝔤.

ad𝑥 ( [𝑦, 𝑧]) = [𝑥, [𝑦, 𝑧]]
= [[𝑥,𝑦], 𝑧] + [𝑦, [𝑥, 𝑧]]
= [ad𝑥 (𝑦), 𝑧] + [𝑦, ad𝑥 (𝑧)] □

Example 1.5.6 A short exact sequence of Lie algebras 𝔤1 ↩→ 𝔤 → 𝔤2 is called split if there exists a Lie algebra
morphism 𝜎 : 𝔤2 → 𝔤 such that 𝑞 ◦ 𝜎 = id𝔤2 . Such an 𝜎 is necessarily injective and 𝔤 � 𝔤1 + 𝔤2. The latter is a direct
sum of vector spaces but 𝔤2 need not be an ideal in 𝔤1 + 𝔤2. In that case we only have a semi-direct product of Lie
algebras. However, since 𝔤1 is an ideal, we have [𝑥2, 𝑥1] ∈ 𝔤1 for 𝑥1 ∈ 𝔤1 and 𝑥2 ∈ 𝔤2, i.e. we have a representation
of 𝔤2 on 𝔤1. More specifically 𝔤2 acts by derivations on 𝔤1, i.e. the corresponding Lie algebra morphism satisfies
𝜌 : 𝔤2 → Der(𝔤1) ⊂ 𝔤𝔩(𝔤1). (To see this, one performs a calculation very similar to the proof of Lemma 1.5.5.)
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2 Crash course on 𝔰𝔩(2, F)-representation theory

In this subsection we let F be a field of char(F) = 0.

2.1 Finite-dimensional simple representations

Here we study finite-dimensional representations of 𝔰𝔩(2, F), which will serve as a warm-up for the further develop-
ment and also as technical tool in later parts of the course.

Recall that 𝔰𝔩(2, F) denotes the Lie algebra of trace zero 2 × 2 matrices with entries in F and with the Lie bracket
given by the matrix commutator. A basis is given by the following three matrices:

𝑒 =

(
0 1
0 0

)
, ℎ =

(
1 0
0 −1

)
, 𝑓 =

(
0 0
1 0

)
The Lie bracket on 𝔰𝔩(2, F) satisfies:

[ℎ, 𝑒] = 2𝑒, [ℎ, 𝑓 ] = −2𝑓 , [𝑒, 𝑓 ] = ℎ (2)

and this determines the value of the Lie bracket on any pair of elements of 𝔰𝔩(2, F) since we automatically have
[𝑒, 𝑒] = [𝑓 , 𝑓 ] = [ℎ,ℎ] = 0 and [𝑥,𝑦] = −[𝑦, 𝑥] for any 𝑥,𝑦 ∈ 𝔰𝔩(2, F). More generally, any triple of elements 𝑒, ℎ, 𝑓 of
a Lie algebra 𝔤 that satisfy (2) is called an 𝔰𝔩(2)-triple.

Let 𝜌 : 𝔰𝔩(2, F) → 𝔤𝔩(𝑉 ) be a representation, then it is convenient to abbreviate

𝐸 := 𝜌 (𝑒), 𝐻 := 𝜌 (ℎ), 𝐹 = 𝜌 (𝑓 )

We may consider 𝐸, 𝐻, 𝐹 as elements of the associative algebra EndF(𝑉 ). In the physics literature the elements 𝐸 and
𝐹 are sometimes called creation and annihilation operators. In fact, three operators 𝐸, 𝐻, 𝐹 on a vector space 𝑉
over F form an 𝔰𝔩(2, F) representation if and only if

𝐻𝐸 − 𝐸𝐻 = 2𝐸, 𝐻𝐹 − 𝐹𝐻 = −2𝐹, 𝐸𝐹 − 𝐹𝐸 = 𝐻.

For a fixed 𝔰𝔩(2, F)-representation 𝑉 and 𝜇 ∈ F we write 𝑉𝜇 := ker(𝐻 − 𝜇id𝑉 ) for the eigenspace of 𝐻 for the
eigenvalue 𝜇 and 𝑉 𝜇 :=

⋃
𝑛≥0 ker(𝐻 − 𝜇id𝑉 )𝑛 for the corresponding generalized eigenspace. We refer to 𝑉𝜇 as the

𝝁-weight space of 𝑉 . Now we observe

𝐸 (𝐻 − 𝜇id) = (𝐻 − (𝜇 + 2)id)𝐸, 𝐹 (𝐻 − 𝜇id) = (𝐻 − (𝜇 − 2)id)𝐹

which implies 𝐸 (𝑉𝜇) ⊂ 𝑉𝜇+2 and 𝐹 (𝑉𝜇) ⊂ 𝑉𝜇−2 and similarly 𝐸 (𝑉 𝜇) ⊂ 𝑉 𝜇+2 and 𝐹 (𝑉 𝜇) ⊂ 𝑉 𝜇−2.

Examples 2.1.1 (1) The trivial representation 𝑉 = F of 𝔰𝔩(2, F) coincides with its zero-weight space 𝑉 = 𝑉0 and
the action of 𝐸, 𝐻 , and 𝐹 can be illustrated as:

0 F 0

𝐻=0
𝐸

𝐹

(2) The vector representation𝑉 � F2 is the direct sum of its nonzero weight spaces𝑉 = 𝑉−1 ⊕𝑉1, each of which is
1-dimensional and spanned by a standard basis vector in F2. The action of 𝐸, 𝐻 , and 𝐹 can be illustrated as:

0 F

(
0
1

)
F

(
1
0

)
0

𝐻=−id

𝐸

𝐹

𝐻=id

𝐹

𝐸

(3) By the adjoint representation, the Lie algebra 𝔰𝔩(2, F) acts on itself via the assignment 𝑥 · 𝑣 := [𝑥, 𝑣] for
𝑥 ∈ 𝔰𝔩(2, F) and 𝑣 ∈ 𝑉 := 𝔰𝔩(2, F). By the above formulas, we have 𝑉 = 𝑉−2 ⊕ 𝑉0 ⊕ 𝑉2 and the action of 𝐸, 𝐻 ,
and 𝐹 are illustrated by:

0 F𝑓 Fℎ F𝑒 0

𝐻=−2id
𝐸

𝐹

𝐻=0

𝐹

𝐸

𝐻=2id
𝐸

𝐹
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More precisely, 𝐸 (ℎ) = 𝑒 · ℎ = −2𝑒 and 𝐹 (ℎ) = 𝑓 · ℎ = 2𝑓 , so the associated arrows also scale the corresponding
basis elements.

These three examples form the start of a sequence of representations of 𝔰𝔩(2, F), one of each positive dimension,
which represent all isomorphism classes of finite-dimensional simple representations. L4

End
Theorem 2.1.2 Let F be a field of characteristic char(F) = 0 and let {𝑒, ℎ, 𝑓 } be a basis of 𝔰𝔩(2, F) satisfying
[ℎ, 𝑒] = 2𝑒 , [ℎ, 𝑓 ] = −2𝑓 and [𝑒, 𝑓 ] = ℎ.

(1) For every positive 𝑛 ∈ N, there exists a simple 𝔰𝔩(2, F)-representation 𝐿 of dimension 𝑛 and it is unique up to
isomorphism.

(2) Every simple 𝔰𝔩(2, F)-representation 𝐿 of dimension𝑚 + 1 decomposes into 1-dimensional eigenspaces for the
action of ℎ:

𝐿 = 𝐿−𝑚 ⊕ 𝐿2−𝑚 ⊕ · · · ⊕ 𝐿𝑚−2 ⊕ 𝐿𝑚

with integral eigenvalues −𝑚, 2 −𝑚, . . . ,𝑚 − 2,𝑚. Moreover, if 𝐿 𝑗 ≠ 0 ≠ 𝐿 𝑗+2, then the actions of 𝑒 and 𝑓

restrict to isomorphisms 𝑒 : 𝐿 𝑗

�−→ 𝐿 𝑗+2 and 𝑓 : 𝐿 𝑗+2
�−→ 𝐿 𝑗 .

In other words, every finite-dimensional simple 𝔰𝔩(2, F)-representation is of the form:

0 F F · · · F F 0

𝐻=−𝑚id
𝐸

𝐹

𝐻=(2−𝑚)id

𝐹

𝐸 𝐸

𝐹

𝐻=(𝑚−2)id
𝐸

𝐹

𝐻=𝑚id
𝐸

𝐹

Proof. We only consider the case of an algebraically closed field F. We first prove the existence part of (1). For this
we first construct an infinite-dimensional representation of 𝔰𝔩(2, F), namely on the polynomial ring F[𝑥,𝑦] in two
variables. Specifically we define 𝜌 : 𝔰𝔩(2, F) → 𝔤𝔩(F[𝑥,𝑦]) on the basis 𝑒, ℎ, 𝑓 by:

𝐸 = 𝜌 (𝑒) = 𝑥𝜕𝑦

𝐻 = 𝜌 (ℎ) = 𝑥𝜕𝑥 − 𝑦𝜕𝑦

𝐹 = 𝜌 (𝑓 ) = 𝑦𝜕𝑥

Here 𝜕𝑥 , 𝜕𝑦 denote partial differentiation with respect to 𝑥 and 𝑦 respectively, and 𝑥,𝑦 are the linear maps F[𝑥,𝑦] →
F[𝑥,𝑦] that multiply by 𝑥 and 𝑦 respectively. To verify that 𝜌 defines a representation, we have to check for all
𝑝 ∈ F[𝑥,𝑦]:

(𝐻𝐸 − 𝐸𝐻 ) (𝑝) = (𝑥𝜕𝑥 − 𝑦𝜕𝑦) (𝑥𝜕𝑦) (𝑝) − (𝑥𝜕𝑦) (𝑥𝜕𝑥 − 𝑦𝜕𝑦) (𝑝)
= (2𝑥𝜕𝑦) (𝑝) = 2𝐸 (𝑝)

(𝐻𝐹 − 𝐹𝐻 ) (𝑝) = (𝑥𝜕𝑥 − 𝑦𝜕𝑦) (𝑦𝜕𝑥 ) (𝑝) − (𝑦𝜕𝑥 ) (𝑥𝜕𝑥 − 𝑦𝜕𝑦) (𝑝)
= (−2𝑦𝜕𝑥 ) (𝑝) = −2𝐹 (𝑝)

(𝐸𝐹 − 𝐹𝐸) (𝑝) = (𝑥𝜕𝑦) (𝑦𝜕𝑥 ) (𝑝) − (𝑦𝜕𝑥 ) (𝑥𝜕𝑦) (𝑝) = (𝑥𝜕𝑥 − 𝑦𝜕𝑦) (𝑝) = 𝐻 (𝑝)

For 𝑚 ∈ Z≥0, let 𝑉 (𝑚) ⊂ F[𝑥,𝑦] denote the subspace of polynomials of total degree 𝑚, which has as basis the
monomials {𝑣𝑖 = 𝑦𝑖𝑥𝑚−𝑖}0≤𝑖≤𝑚 . Note that the maps 𝐸, 𝐻, 𝐹 preserve the total degree of polynomials in F[𝑥,𝑦], so
𝑉 (𝑚) is a subrepresentation. We compute the action of these maps on the basis:

𝐸 (𝑣𝑖) = (𝑥𝜕𝑦) (𝑦𝑖𝑥𝑚−𝑖) = 𝑖 (𝑦𝑖−1𝑥𝑚−𝑖+1) = 𝑖𝑣𝑖−1

𝐻 (𝑣𝑖) = (𝑚 − 2𝑖)𝑣𝑖
𝐹 (𝑣𝑖) = (𝑚 − 𝑖)𝑣𝑖+1

where we set 𝑣−1 = 𝑣𝑚+1 = 0 for convenience. Now we claim that 𝑉 (𝑚) is simple. Any nonzero subrepresentation
𝑈 ⊂ 𝑉 (𝑛) must contain an eigenvector for 𝐻 , i.e. one of the 𝑣𝑖 . But then it contains also all images under repeated
application of 𝐸 and 𝐹 , so all the 𝑣𝑖 and we deduce𝑈 = 𝑉 (𝑚). Thus for every 𝑛 ≥ 1 we have constructed a simple
𝔰𝔩(2, F)-representation 𝑉 (𝑛 − 1) of dimension dimF(𝑉 (𝑛 − 1)) = 𝑛.

Let 𝑉 now be any finite-dimensional representation of 𝔰𝔩(2, F) by operators 𝐸, 𝐻, 𝐹 with 𝐸 (𝑣) = 𝑒 · 𝑣, 𝐻 (𝑣) =
ℎ · 𝑣, 𝐹 (𝑣) = 𝑓 · 𝑣 as above. If 𝑉 ≠ 0, then there exists at least one 𝜆 ∈ F such that the weight space 𝑉𝜆 ≠ 0. By
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finite-dimensionality, we may choose 𝜆 such that 𝑉𝜆+2 = 0. For every 𝑣 ∈ 𝑉𝜆 we have 𝐸 (𝑣) = 0 and 𝐻 (𝑣) = 𝜆𝑣 .
Furthermore, 𝐻𝐹𝑛 (𝑣) = (𝜆 − 2𝑛)𝐹𝑛 · 𝑣 since 𝐹𝑛 (𝑉𝜆) ⊂ 𝑉𝜆−2𝑛 . Now one inductively shows

𝐸𝐹𝑛 (𝑣) = 𝑛(𝜆 − 𝑛 + 1)𝐹𝑛−1 · 𝑣

for all 𝑛 ≥ 0. This implies that𝑈 = spanF{𝑣𝑖 = 𝐹 𝑖 (𝑣) | 𝑖 ≥ 0} is a subrepresentation of𝑉 . If𝑉 was simple, then we get
𝑈 = 𝑉 . Let 𝑑 ≥ 0 be minimal such that 𝐹𝑑 (𝑣) = 0, then 𝑣, 𝐹 (𝑣), . . . , 𝐹𝑑−1(𝑣) are linearly independent, and thus a basis
of𝑉 , and thus dimF(𝑉 ) = 𝑑 . We also deduce 0 = 𝐸𝐹𝑑 (𝑣) = 𝑑 (𝜆 −𝑑 + 1)𝐹𝑑−1(𝑣), which implies 𝜆 = 𝑑 − 1. This verifies
the claims of (2) and the uniqueness stated in (1), since the action of 𝐸, 𝐻, 𝐹 in terms of the basis {𝑣, 𝐹 (𝑣), . . . , 𝐹𝑑−1(𝑣)}
only depends on 𝑑 . In particular, 𝑉 is isomorphic to the simple subrepresentation 𝑉 (𝑑 − 1) of F[𝑥,𝑦]. □

Remark 2.1.3 For𝑚 ≥ 0 we let 𝐿(𝑚) denote the (𝑚 + 1)-dimensional simple 𝔰𝔩(2, F)-representation, which is
unique up to isomorphism and has highest weight𝑚. Note that 𝐿(0) is the trivial representation, 𝐿(1) is the vector
representation, and 𝐿(2) is the adjoint representation. It is convenient to relabel the basis vectors 𝑤𝑚−2𝑖 := 𝑣𝑖 by
their weights {𝑚,𝑚 − 2, . . . , 2 −𝑚,−𝑚}. Then one has:

𝐸 (𝑤 𝑗 ) = 𝑒 ·𝑤 𝑗 =
𝑚 − 𝑗

2 𝑤 𝑗+2

𝐻 (𝑤 𝑗 ) = ℎ ·𝑤 𝑗 = 𝑗𝑤 𝑗

𝐹 (𝑤 𝑗 ) = 𝑓 ·𝑤 𝑗 =
𝑚 + 𝑗

2 𝑤 𝑗−2

Proposition 2.1.4 Let F be a field of characteristic char(F) = 0. Every finite-dimensional representation of 𝔰𝔩(2, F)
decomposes into a direct sum of simple subrepresentations.

Proof. This will be proved in greater generality in Theorem 4.2.5. An elementary proof for 𝔰𝔩(2,C) appears in
Exercise 23. □

Consequences 2.1.5 Let 𝑉 be a finite-dimensional representation of 𝔰𝔩(2, F) with char(F) = 0, then the action
of ℎ ∈ 𝔰𝔩(2, F) on 𝑉 is diagonalizable and 𝑉 𝜆 = 𝑉𝜆 for every 𝜆 ∈ C, and so 𝑉 =

⊕
𝜆𝑉𝜆 . Moreover, we have

𝑉𝜆 ≠ 0 ⇒ 𝜆 ∈ Z. Let 𝑞 denote an invertible formal variable and define the character of 𝑉 :

Ch(𝑉 ) :=
∑︁
𝜆∈Z

dimF(𝑉𝜆)𝑞𝜆 ∈ Z[𝑞, 𝑞−1]

Note that Ch(𝑉 ) ↦→ dimF(𝑉 ) under the specialization 𝑞 ↦→ 1 and Ch(𝑉 ⊕𝑊 ) = Ch(𝑉 ) + Ch(𝑊 ).
We record a number of important consequences of Theorem 2.1.2 and Proposition 2.1.4 in terms of characters.

(1) We have 𝑉 � 𝐿(𝑚) if and only if Ch(𝑉 ) = 𝑞𝑚 + 𝑞𝑚−2 + · · ·𝑞2−𝑚 + 𝑞−𝑚 =: [𝑚 + 1]. The Laurent polynomial
[𝑚 + 1] is called the quantum integer𝑚 + 1. Note [𝑚 + 1] ↦→𝑚 + 1 when 𝑞 ↦→ 1.

(2) A Laurent polynomial 𝑃 =
∑

𝑖∈Z 𝑎𝑖𝑞
𝑖 ∈ Z[𝑞, 𝑞−1] is the character of an 𝔰𝔩(2, F)-representation 𝑉 if and only

if its coefficients are non-negative (𝑎𝑖 ≥ 0), symmetric (𝑎−𝑖 = 𝑎𝑖 ) and the even and odd subsequences are
unimodal, i.e.

· · ·𝑎−2𝑖−2 ≤ 𝑎−2𝑖 ≤ · · ·𝑎−2 ≤ 𝑎0 ≥ 𝑎2 ≥ · · · ≥ 𝑎2𝑖 ≥ 𝑎2𝑖+2 ≥ · · ·
· · ·𝑎−2𝑖−1 ≤ 𝑎−2𝑖+1 ≤ · · · ≤ 𝑎−1 = 𝑎1 ≥ · · · ≥ 𝑎2𝑖−1 ≥ 𝑎2𝑖+1 ≥ · · · .

Moreover, in this case 𝑉 is uniquely determined up to isomorphism, namely 𝑉 �
⊕

𝑖∈Z≥0 𝐿(𝑖)
⊕(𝑎𝑖−𝑎𝑖+2 ) .

(3) If an 𝔰𝔩(2, F)-representation 𝑉 has weight spaces 𝑉0 = 𝑉1 = 0, then 𝑉 = 0.

(4) If 𝑉 ,𝑊 are finite-dimensional 𝔰𝔩(2,C)-representations, then:

Ch(𝑉 ∗) = Ch(𝑉 ) and Ch(𝑉 ⊗𝑊 ) = Ch(𝑉 ) Ch(𝑊 )

(Details in Exercise 24.) In particular, 𝑉 � 𝑉 ∗, i.e. 𝑉 is self-dual and Hom(𝑉 ,𝑊 ) � 𝑉 ⊗𝑊 .

(5) For𝑚,𝑛 ≥ 0, the Clebsch–Gordan rule holds

𝐿(𝑚) ⊗ 𝐿(𝑛) � Hom(𝐿(𝑚), 𝐿(𝑛)) � 𝐿(𝑚 + 𝑛) ⊕ 𝐿(𝑚 + 𝑛 − 2) ⊕ · · · ⊕ 𝐿( |𝑚 − 𝑛 |)
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as well as (a special case of) Schur’s Lemma:

Hom𝔰𝔩 (2,F) (𝐿(𝑚), 𝐿(𝑛)) =
{
Fid𝐿 (𝑚) if𝑚 = 𝑛

0 if𝑚 ≠ 𝑛

(Details in Exercise 24.) L5
End

Examples 2.1.6 We give two examples that illustrate how Proposition 2.1.4 fails to generalize.

(1) For 𝜆 ∈ C let Δ𝜆 = spanC{𝑣𝜆−2𝑘 | 𝑘 ∈ Z≥0} be the infinite-dimensional 𝔰𝔩(2,C)-representation defined by:

𝐹 (𝑣𝜇) = 𝑣𝜇−2

𝐻 (𝑣𝜇) = 𝜇𝑣𝜇

𝐸 (𝑣𝜆−2𝑘 ) = 𝑘 (𝜆 − 𝑘 + 1)𝑣𝜆−2𝑘+2

where 𝜇 ∈ C, 𝑘 ∈ Z≥0. (Compare with the uniqueness part of the proof of Theorem 2.1.2.) Then for 𝜆 ∈ Z≥0 we
have 𝐸 (𝑣−𝜆−2) = 0 and so we have found a subrepresentation Δ−𝜆−2 ⊂ Δ𝜆 such that Δ𝜆/Δ−𝜆−2 � 𝐿(𝜆), but we
do not have a direct sum decomposition. If 𝜆 ∉ Z≥0, then Δ𝜆 is simple.

(2) The adjoint representation of 𝔰𝔩(2, F2) has a simple subrepresentation 𝐿(0) � Fℎ with quotient isomorphic to
𝐿(0) ⊕ 𝐿(0), but this is not a direct sum.

Exercise 21 Consider 𝔰𝔩(2, F) over an arbitrary field Fwith standard basis 𝑒, ℎ, 𝑓 satisfying [ℎ, 𝑒] = 2𝑒 , [ℎ, 𝑓 ] = −2𝑓 ,
[𝑒, 𝑓 ] = ℎ. Let 𝜌 : 𝔰𝔩(2, F) → 𝔤𝔩(𝑉 ) be a finite-dimensional representation and set 𝐸 = 𝜌 (𝑒), 𝐻 = 𝜌 (ℎ), 𝐹 = 𝜌 (𝑓 ).
Show that the Casimir operator

𝐶 = 4𝐹𝐸 + 𝐻 (𝐻 + 2id) ∈ EndF(𝑉 )
is an endomorphism that commutes with 𝐸, 𝐻, 𝐹 , i.e. 𝐶 ∈ End𝔰𝔩 (2,F) (𝑉 ). For F = C show that 𝐶 acts as scalar
multiplication by𝑚(𝑚 + 2) on 𝐿(𝑚) (you may use the formulas from Remark 2.1.3). Casimir operators will later be
considered in greater generality, see Construction 4.2.6. End

Week 4
Exerc.Exercise 22 (may split) Let 𝑉 be a finite-dimensional 𝔰𝔩(2,C)-representation. Consider the eigenvalues of 𝐻 on 𝑉

and pick one with largest real part, call it 𝜆.

(1) For 𝑣 ∈ 𝑉 𝜆 show that 𝐸𝑣 = 0 and 𝐹𝑁 𝑣 = 0 for some 𝑁 > 0.

(2) Show that (𝐻 −𝑚)𝐹𝑛 = 𝐹𝑛 (𝐻 −𝑚 − 2𝑛) for 𝑛 ≥ 0 and𝑚 ∈ C and then show 𝐸𝐹𝑛𝑣 = 𝐹𝑛−1𝑛(𝐻 − 𝑛 + 1)𝑣 for
𝑛 ≥ 0 and 𝑣 ∈ 𝑉 with 𝐸𝑣 = 0.

(3) For 𝑣 ∈ 𝑉 such that 𝐸𝑣 = 0 and 𝑘 > 0, find a polynomial 𝑃𝑘 (𝑥) of degree 𝑘 , such that 𝐸𝑘𝐹𝑘𝑣 = 𝑃𝑘 (𝐻 )𝑣 . Hint:
aim to prove a more general statement using (2) and induction.

(4) Show that 𝐻 acts diagonalizably on the generalized eigenspace 𝑉 𝜆 , i.e. that 𝑉 𝜆 = 𝑉𝜆 . (Use that 𝑃𝑘 (𝑥) does not
have multiple roots.)

Exercise 23 (may split) Prove that every finite-dimensional representation 𝑉 of 𝔰𝔩(2,C) decomposes into a direct
sum of simple subrepresentations. Assume, one the contrary, that 𝑉 is an indecomposable, non-simple 𝔰𝔩(2,C)-
representation of smallest possible finite dimension.

(1) Show that the Casimir operator from Exercise 21 has only one eigenvalue on𝑉 , say𝑚(𝑚 +2) for some𝑚 ∈ Z≥0.

(2) Show that 𝑉 has a subrepresentation 𝐿(𝑚) such that 𝑉 /𝐿(𝑚) � 𝐿(𝑚)⊕𝑛 for some 𝑛 ∈ Z>0.

(3) Prove that the eigenspace 𝑉𝑚 of 𝐻 has dimension 𝑛 + 1. Pick a basis 𝑣1, . . . , 𝑣𝑛+1 and show that the 𝐹 𝑗 (𝑣𝑖) for
1 ≤ 𝑖 ≤ 𝑛 + 1 and 0 ≤ 𝑗 ≤ 𝑚 form a basis of 𝑉 . (Hint: if 𝐹 (𝑣) = 0 and 𝐻 (𝑣) = 𝜇𝑣 , then 𝐶 (𝑣) = 𝜇 (𝜇 − 2)𝑣 and so
𝜇 = −𝑚.)

(4) Set𝑊𝑖 = spanC{𝑣𝑖 , . . . , 𝐹𝑚 (𝑣𝑖)} and show that the𝑊𝑖 are subrepresentations of 𝑉 and deduce a contradiction
to the assumption that 𝑉 is indecomposable.

Exercise 24 Prove the statements of Consequences 2.1.5.(4) by computing the dimensions of the weight spaces of
𝑉 ∗ and 𝑉 ⊗𝑊 in terms of the dimensions of the weight spaces of 𝑉 and𝑊 . Then deduce Consequences 2.1.5.(5).
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Exercise 25 Consider the polynomial ringZ[𝑋 ]. The polynomials {𝑆𝑖}𝑖∈Z≥0 ⊂ Z[𝑋 ] that are recursively determined
by

𝑆0 = 1, 𝑆1 = 𝑋, 𝑆𝑛+1 = 𝑋𝑆𝑛 − 𝑆𝑛−1

are called Chebyshev polynomials of the second kind. Note that they form a basis of the free Z-module Z[𝑋 ].
Now show this basis is positive in the sense that the product of two such Chebyshev polynomials expands as a
linear combination of Chebyshev polynomials with nonnegative coefficients:

𝑆𝑖𝑆 𝑗 =
∑︁
𝑘

𝑐𝑘𝑖,𝑗𝑆𝑘 with 𝑐𝑘𝑖,𝑗 ∈ Z≥0

Hint: consider the ring homomorphism Z[𝑋 ] → Z[𝑞, 𝑞−1] defined by 𝑋 ↦→ 𝑞 +𝑞−1 and use Consequences 2.1.5. (This
is a basic example of a proof by categorification.) Is the analogous statement true for the Chebyshev polynomials
of the first kind, which are determined by

𝑇0 = 2, 𝑇1 = 𝑋, 𝑇𝑛+1 = 𝑋𝑇𝑛 −𝑇𝑛−1?

Exercise 26 Consider the vector representation 𝑉 := 𝐿(1) of 𝔰𝔩(2,C) and recall the exterior and symmetric power
representations from Exercise 19. Now prove for 𝑘 ≥ 0:

∧𝑘 𝑉 �


𝐿(0) if 𝑘 = 0, 2
𝐿(1) if 𝑘 = 1
0 if 𝑘 ≥ 3

, 𝑆𝑘 (𝑉 ) � 𝐿(𝑘)

2.2 Temperley–Lieb calculus

In this section we let𝑉 := 𝐿(1) = spanC{𝑤1,𝑤−1} denote the vector representation of 𝔰𝔩(2,C). We fix the isomorphism
𝜙 : 𝑉 �−→ 𝑉 ∗ sending 𝜙 (𝑤1) = −𝑤∗

−1 and 𝜙 (𝑤−1) = 𝑤∗
1 .

Definition 2.2.1 Let 𝑉 := 𝐿(1) denote the vector representation of 𝔰𝔩(2,C). Then we define two morphisms of
𝔰𝔩(2,C)-representations:

• ∪ : C → 𝑉 ⊗ 𝑉 is defined by 1 ↦→ 𝑤1 ⊗ 𝑤−1 − 𝑤−1 ⊗ 𝑤1 as the composition of the natural maps C →

End𝔰𝔩 (2,C) (𝑉 ) → 𝑉 ⊗𝑉 ∗ that send 1 ↦→ id𝑉 ↦→ 𝑤1⊗𝑤∗
1 +𝑤−1⊗𝑤∗

−1 with the isomorphism𝑉 ⊗𝑉 ∗ id⊗𝜙−1

−−−−−→ 𝑉 ⊗𝑉 .

• ∩ : 𝑉 ⊗ 𝑉 → C is defined as the composition of the isomorphism 𝑉 ⊗ 𝑉
𝜙⊗id
−−−−→ 𝑉 ∗ ⊗ 𝑉 and the natural pairing

𝑉 ∗ ⊗ 𝑉 → C. In formulas: ∩(𝑤∓1 ⊗𝑤±1) = ±1 and ∩(𝑤±1 ⊗𝑤±1) = 0.

Remarks 2.2.2 (1) The morphisms ∪ and ∩ span their respective spaces of 𝔰𝔩(2,C)-intertwiners, namely
Hom𝔰𝔩 (2,C) (C,𝑉 ⊗ 𝑉 ) and Hom𝔰𝔩 (2,C) (𝑉 ⊗ 𝑉 ,C), which are 1-dimensional by Consequences 2.1.5.(5) since
𝑉 ⊗ 𝑉 � 𝐿(2) ⊕ C.

(2) By induction, one can show from the Clebsch–Gordan rule that

𝑉 ⊗2𝑛 = 𝑉 ⊗ · · · ⊗ 𝑉 � C𝐶𝑛 ⊕
⊕
𝑖≥1

𝐿(2𝑖)𝑙𝑛+𝑖,𝑛−𝑖

where 𝐶𝑛 is the 𝑛th Catalan number and 𝑙𝑛+𝑖,𝑛−𝑖 ∈ Z≥0, see Exercise 27. In particular Hom𝔰𝔩 (2,C) (C,𝑉 ⊗2𝑛) �
(𝑉 ⊗2𝑛)𝔰𝔩 (2,C) � C𝐶𝑛 and we will describe a basis for this morphism space in terms of tensor products of 𝑛
copies of the map ∪.

(3) The Catalan number 𝐶𝑛 can be described as the count of Dyck paths of length 2𝑛. A Dyck path of length 2𝑛
is a tuple 𝑝 = (𝑝1, . . . , 𝑝2𝑛) ∈ {+,−}2𝑛 containing exactly 𝑛 symbols + and 𝑛 symbols −, such that any initial
subtuple (𝑝1, . . . , 𝑝𝑘 ) for 1 ≤ 𝑘 ≤ 2𝑛 contains at least as many + as −. Let 𝑃𝑛 denote the set of all Dyck paths of
length 2𝑛. For example 𝐶3 = 5 and

𝑃3 = { + + + − −− , + + − + −− , + + − − +− , + − + + −− , + − + − +− }.

Side note: Dyck paths are in bijection with valid placements of 𝑛 pairs of parentheses by simply replacing the
symbol + by ( and − by ).
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Construction 2.2.3 We will now inductively construct one 𝔰𝔩(2,C)-intertwiner ∪𝑝 : C→ 𝑉 ⊗2𝑛 for each 𝑝 ∈ 𝑃𝑛
and then show that these form a basis of Hom𝔰𝔩 (2,C) (C,𝑉 ⊗2𝑛). For 𝑛 = 1 and 𝑝 = +−, we set ∪𝑝 = ∪. Now suppose
that 𝑛 ≥ 1 and the maps ∪𝑝′ have already been constructed for 𝑝′ ∈ 𝑃𝑛−1. Given 𝑝 ∈ 𝑃𝑛 , we find the first occurrence
of a the substring +− in 𝑝 , i.e. where a − immediately follows a +. Let their positions in the Dyck path be 𝑎 + 1 and
𝑎 + 2. Furthermore, let 𝑝′ ∈ 𝑃𝑛−1 be the Dyck path obtained by removing this pair +− from 𝑝 . Then we define

∪𝑝 := (id𝑉 ⊗𝑎 ⊗ ∪ ⊗ id𝑉 ⊗2𝑛−2−𝑎 ) ◦ ∪𝑝′ : C→ 𝑉 ⊗2𝑛 . (3)

For example:

∪++−+−− = (id𝑉 ⊗ ∪ ⊗ id𝑉 ⊗3) ◦ ∪++−−

= (id𝑉 ⊗ ∪ ⊗ id𝑉 ⊗3) ◦ (id𝑉 ⊗ ∪ ⊗ id𝑉 ) ◦ ∪+−

= (id𝑉 ⊗ ∪ ⊗ id𝑉 ⊗3) ◦ (id𝑉 ⊗ ∪ ⊗ id𝑉 ) ◦ ∪

Remark 2.2.4 (String diagrams) In a monoidal category 𝐶 , i.e. a category with a tensor product, there are two
different ways in which morphisms can be “composed”: the categorical composition and the tensor product. In
this context, it is sometimes convenient to use the 2-dimensional notation of string diagrams instead of the usual
1-dimensional notation (sequences of symbols) that is common in algebra. Here a few pictures say more than a
thousand words:

usual notation string diagram

morphisms 𝑓 ∈ Hom𝐶 (𝑉1 ⊗ · · · ⊗ 𝑉𝑚,𝑊1 ⊗ · · · ⊗𝑊𝑛)
𝑉1

𝑊1

· · ·

· · ·

𝑉𝑚

𝑊𝑛

𝑓

identity morphisms id𝑉1⊗···⊗𝑉𝑚
𝑉1

· · ·

𝑉𝑚

composition 𝑓 ◦ 𝑔
· · ·

· · ·
𝑓 ◦ 𝑔 =

· · ·

· · ·

𝑔

𝑓

tensor product 𝑓 ⊗ 𝑔
·

·

·

·
𝑓 ⊗ 𝑔 =

·

·

·

·
𝑔𝑓

interchange law (id ⊗ 𝑔) (𝑓 ⊗ id) = 𝑓 ⊗ 𝑔 = (𝑓 ⊗ id) (id ⊗ 𝑔)
·

·

·

·
𝑔

𝑓
=

·

·

·

·

𝑔𝑓
=

·

·

·

·

𝑔

𝑓

For the composition we require that the target of 𝑔 is the source of 𝑓 . For the string diagrams this means that the
labels on the strings have to agree to glue them.

For maps between representations of 𝔰𝔩(2,C) we will use the following convenient shorthand for string diagrams
of ∪ and ∩:

:=
𝑉 𝑉

∩
, :=

𝑉 𝑉

∪

Here we use the (common) convention of not drawing strings that are labelled with the tensor unit. The maps ∪𝑝 for
𝑝 ∈ 𝑃𝑛 can now be given a very simple description. We again consider the example ∪++−+−− from above:

∪++−+−− = (id𝑉 ⊗ ∪ ⊗ id𝑉 ⊗3) ◦ (id𝑉 ⊗ ∪ ⊗ id𝑉 ) ◦ ∪ →
id𝑉 ⊗ ∪ ⊗ id

𝑉 ⊗3

id𝑉 ⊗ ∪ ⊗ id𝑉

∪

=

The picture on the right is called a cup diagram. More generally, if 𝑓 ∈ Hom𝔰𝔩 (2,C) (C,𝑉 ⊗2𝑛) is constructed as a
composition of morphisms of the form (id𝑉 ⊗𝑎 ⊗∪⊗ id𝑉 ⊗𝑏 ), then the associated string diagram is called a cup diagram.
By the graphical interpretation of the interchange law, the relative height of two un-nested cups in a cup diagram
can swapped. Thus, the only relevant information contained in a cup diagram is captured by the following notion.
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Definition 2.2.5 Let 𝑛 ∈ Z≥0. A crossingless matching of 2𝑛 points is a partition of {1, . . . , 2𝑛} into 𝑛 pairs (𝑖, 𝑗)
with 𝑖 < 𝑗 such that there is no quadruple 0 ≤ 𝑖 < 𝑗 < 𝑘 < 𝑙 ≤ 2𝑛 such that (𝑖, 𝑘) and ( 𝑗, 𝑙) are paired. The set of
crossingless matchings on 2𝑛 points will be denoted𝑀𝑛 .

Lemma 2.2.6 For 𝑛 ∈ Z≥0 we have bijections:

𝑃𝑛
�−→ {cup diagrams with 2𝑛 points} �−→ 𝑀𝑛

Proof sketch. The first map sends 𝑝 ∈ 𝑃𝑛 to the string diagram of ∪𝑝 . The second map sends a cup diagram to the
crossingless matching in which 1 ≤ 𝑖 < 𝑗 ≤ 2𝑛 are paired if and only if there exists a cup whose ends are the 𝑖th
and 𝑗th strand at the top. Finally, there is a map 𝑀𝑛 → 𝑃𝑛 which sends a crossingless matching to the Dyck path
obtained by starting with the tuple (1, . . . , 2𝑛) and replacing 𝑖 by + and 𝑗 by − whenever (𝑖, 𝑗) are paired. We leave it
to the reader to verify that these maps are well-defined and that any cyclic composition of these three maps is the
identity. □

Example 2.2.7 The identifications between Dyck paths, cup diagrams and crossingless matchings for 𝑛 = 3:

+ + + − − −
1 2 3 4 5 6

(1, 6), (2, 5), (3, 4)

,
+ + − + − −
1 2 3 4 5 6

(1, 6), (2, 3), (4, 5)

,
+ + − − + −
1 2 3 4 5 6

(1, 4), (2, 3), (5, 6)

,
+ − + + − −
1 2 3 4 5 6

(1, 2), (3, 6), (4, 5)

,
+ − + − + −
1 2 3 4 5 6

(1, 2), (3, 4), (5, 6)

Remarks 2.2.8 (1) Let 𝑝, 𝑞 ∈ {+,−}𝑛 , 𝑝 = (𝑝1, . . . , 𝑝𝑛) and 𝑞 = (𝑞1, . . . , 𝑞2). We write 𝑝 ≥ 𝑞 if
∑𝑘

𝑖=1 𝑝𝑖 ≥
∑𝑘

𝑖=1 𝑞𝑖
for all 1 ≤ 𝑘 ≤ 𝑛. This defines a partial order on {+,−}𝑛 .

(2) Define 𝐺𝑃𝑛 := {𝑝 = (𝑝1, . . . , 𝑝2𝑛) ∈ {+,−}2𝑛 | ∑2𝑛
𝑖=1 𝑝𝑖 = 0} and note 𝑃𝑛 ⊂ 𝐺𝑃𝑛 . The partial order from (1)

restricts to a partial order on𝐺𝑃𝑛 and we (arbitrarily) choose a refinement to a total order 𝐺𝑃𝑛 , again denoted
by ≥. L6

End
(3) For 𝑝 = (𝑝1, . . . , 𝑝2𝑛) ∈ {+,−}2𝑛 we define𝑤𝑝 := 𝑤𝑝1 ⊗ · · · ⊗𝑤𝑝2𝑛 ∈ 𝑉 ⊗2𝑛 where𝑤+ := 𝑤1 and𝑤− := 𝑤−1 are

the standard basis vectors of 𝑉 . Note that {𝑤𝑝 | 𝑝 ∈ {+,−}2𝑛} is a basis of 𝑉 ⊗2𝑛 and {𝑤𝑝 | 𝑝 ∈ 𝐺𝑃𝑛} is an
ordered basis of the degree zero weight space (𝑉 ⊗2𝑛)0.

Proposition 2.2.9 Let 𝑛 ∈ Z≥0

(1) For 𝑝 ∈ 𝑃𝑛 the map ∪𝑝 : C→ 𝑉 ⊗2𝑛 sends

C ∋ 1 ↦→ 𝑤𝑝 +
∑︁

𝑞∈𝐺𝑃𝑛
𝑝>𝑞

𝑐𝑝,𝑞𝑤𝑞

for some coefficients 𝑐𝑝,𝑞 ∈ {1, 0,−1} ∈ C.

(2) The set {∪𝑝 | 𝑝 ∈ 𝑃𝑛} is a basis for Hom𝔰𝔩 (2,C) (C,𝑉 ⊗2𝑛).

Proof. (1) Let 𝑀 be the crossingless matching corresponding to 𝑝 . From the definition of the map ∪, one deduces
that the summands 𝑤𝑞 that appear with non-zero coefficients in the expansion of ∪𝑝 (1) are exactly those where
𝑞 = (𝑞1, . . . , 𝑞2𝑛) ∈ {+,−}2𝑛 satisfies 𝑞𝑖 = −𝑞 𝑗 whenever (𝑖, 𝑗) ∈ 𝑀 are paired. This implies 𝑞 ∈ 𝐺𝑃𝑛 and 𝑐𝑝,𝑞 =∏

(𝑖, 𝑗 ) ∈𝑀 𝑞𝑖 ∈ {+1,−1}, and𝑤𝑝 appears with coefficient 1. Moreover, any 𝑞 ≠ 𝑝 with nonzero 𝑐𝑝,𝑞 can be obtained
from 𝑝 by successively swapping paired entries + and −. More precisely, if (𝑖, 𝑗) ∈ 𝑀 and 𝑞𝑖 = + and 𝑞 𝑗 = −, then
one can consider 𝑞′ ∈ 𝐺𝑃𝑛 with entries 𝑞′𝑖 = −, 𝑞′𝑗 = + and all other entries as in 𝑞. For this 𝑞′ we have 𝑐𝑝,𝑞′ = −𝑐𝑝,𝑞
and 𝑞 > 𝑞′. This shows (1).

(2) We have the isomorphism Hom𝔰𝔩 (2,C) (C,𝑉 ⊗2𝑛) �−→ (𝑉 ⊗2𝑛)𝔰𝔩 (2,C) ⊂ (𝑉 ⊗2𝑛)0 given by the map 𝑓 ↦→ 𝑓 (1)
that evaluates a morphism on 1 ∈ C. A set of such morphisms 𝑓 is linearly independent if and only if its images
𝑓 (1) are linearly independent. For the set {∪𝑝 | 𝑝 ∈ 𝑃𝑛} this now follows from (1). Moreover, since |𝑃𝑛 | = 𝐶𝑛 =

dimC(Hom𝔰𝔩 (2,C) (C,𝑉 ⊗2𝑛)) we have found a basis. □

Construction 2.2.10 Let 𝑅 be a commutative ring and 𝛿 ∈ 𝑅. The Temperley–Lieb category is the monoidal
𝑅-linear category 𝑇𝐿𝑅 (𝛿) described as follows:

• The set of objects is Ob(𝑇𝐿𝑅 (𝛿)) = Z≥0 = {0, 1, 2, 3, . . . }
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• For𝑚,𝑛 ∈ Ob(𝑇𝐿𝑅 (𝛿)), the morphisms from𝑚 to 𝑛 are

Hom𝑇𝐿𝑅 (𝛿 ) (𝑚,𝑛) = span𝑅{crossingless matchings of𝑚 + 𝑛 points},

the free 𝑅-module spanned by crossingless matchings of 𝑚 + 𝑛 points. In particular, if 𝑚 + 𝑛 is odd, then
Hom𝑇𝐿𝑅 (𝛿 ) (𝑚,𝑛) = 0. Conversely, if𝑚 + 𝑛 is even, then a morphism from𝑚 to 𝑛 is a 𝑅-linear combination of
crossingless matchings that we illustrate as string diagrams from𝑚 points to 𝑛 points, e.g. with 𝑟1, 𝑟2 ∈ 𝑅:

𝑟1 + 𝑟2 ∈ Hom𝑇𝐿𝑅 (𝛿 ) (4, 2)

Such string diagrams (without boxes) are called Temperley–Lieb diagrams. The exists a unique crossingless
matching on 0 points, whose corresponding Temperley–Lieb diagram ∅ is called the empty diagram. In
particular

Hom𝑇𝐿𝑅 (𝛿 ) (0, 0) = span𝑅{∅} � 𝑅

• The tensor product is defined on objects by𝑚 ⊗ 𝑛 :=𝑚 + 𝑛 and on morphisms by (the 𝑅-bilinear extension of)
putting string diagrams side-by-side, see Remark 2.2.4. For example, if also 𝑟3, 𝑟4 ∈ 𝑅:(
𝑟1 + 𝑟2

)
⊗

(
𝑟3 + 𝑟4

)
= 𝑟1𝑟3 + 𝑟1𝑟4 + 𝑟2𝑟3 + 𝑟2𝑟4

• The composition of morphisms is defined analogously, namely as the 𝑅-bilinear extension of stacking diagrams,
see Remark 2.2.4. The only subtlety here is that the stacking of two crossingless matchings does not always
produce a crossingless matching. This is exactly the case when the resulting string diagram contains closed
components, i.e. circles. In this case we remove the circle from the diagram and multiply the remaining diagram
by the scalar 𝛿 ∈ 𝑅. For example:

◦
(
𝑟1 + 𝑟2

)
= 𝑟1 + 𝑟2 := 𝑟1 + 𝑟2𝛿

We also emphasize here that the morphism encoded by a diagram depends only depends on the crossingless
matching represented by the diagram, not on how exactly the diagram is drawn (e.g. compare the first two
summands with coefficient 𝑟1 above). This means we consider string diagrams up to planar isotopy relative
to the boundary. Another example is:

◦ = =

For 𝑛 ∈ Z≥0 the nth Temperley–Lieb algebra is defined to be

TL𝑅𝑛 (𝛿) := EndTL𝑅 (𝛿 ) (𝑛) .

Remark 2.2.11 Abstractly, TL𝑅𝑛 (𝛿) can be defined as the unital associative 𝑅-algebra given by the presentation
with generators𝑈1, . . . ,𝑈𝑛−1 and relations:

𝑈𝑖𝑈𝑖 = 𝛿𝑈𝑖 , 𝑈𝑖𝑈𝑖±1𝑈𝑖 = 𝑈𝑖 , 𝑈𝑖𝑈 𝑗 = 𝑈 𝑗𝑈𝑖 if |𝑖 − 𝑗 | > 1

The generators𝑈𝑖 in this abstract description can be interpreted in terms of string diagrams as

𝑈𝑖 ↔ · · · · · ·

where the cup and cap involve the 𝑖th and (𝑖 + 1)st strand.

Theorem 2.2.12 There exists a fully faithful monoidal C-linear functor

𝐹 : TLC(−2) → Rep(𝔰𝔩(2,C))

(here Rep(𝔰𝔩(2,C)) denotes the monoidal, C-linear category of representations of 𝔰𝔩(2,C)) that satisfies

𝐹 (𝑛) = 𝑉 ⊗𝑛, 𝐹 ( ) = ∪, 𝐹 ( ) = ∩
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Proof sketch. If such a functor 𝐹 exists, then it is already completely determined by the required assignments. On
objects it is determined by sending 𝑛 ↦→ 𝑉 ⊗𝑛 . Since every morphism in TL is a linear combination of compositions of
tensor products of either or with identity morphisms, 𝐹 has to send this morphism to the corresponding linear
combination of compositions of tensor products of either ∪ or ∩ with identity morphisms.

To see that 𝐹 is well-definedwe need to check that all relations between (linear combinations of) such compositions
of tensor products in TL are also satisfied between their images under 𝐹 in Rep(𝔰𝔩(2,C)). One can prove (but we will
not do so) that the following three relations are sufficient:

𝐹 ( ) ◦ 𝐹 ( ) = (id𝑉 ⊗ ∩) ◦ (∪ ⊗ id𝑉 ) = id𝑉 = 𝐹

( )
= 𝐹

( )
,

𝐹 ( ) ◦ 𝐹 ( ) = (∩ ⊗ id𝑉 ) ◦ (id𝑉 ⊗ ∪) = id𝑉 = 𝐹

( )
= 𝐹

( )
,

𝐹 ( ) ◦ 𝐹 ( ) = ∩ ◦ ∪ = −2idC = −2𝐹 (∅) = 𝐹 ( )

The second equation in each line is easily verified using the definition of ∪ and ∩.
Next we need to show that 𝐹 induces isomorphisms on the level of morphism spaces 𝐹 : HomTL(𝑚,𝑛) �−→

Hom𝔰𝔩 (2,C) (𝑉 ⊗𝑚,𝑉 ⊗𝑛). In fact, it suffices to show this for 𝑚 = 0 because of the bending trick captured by the
following commutative diagram:

𝑓 HomTL(𝑚,𝑛) Hom𝔰𝔩 (2,C) (𝑉 ⊗𝑚,𝑉 ⊗𝑛) 𝑔

𝑓 HomTL(0, 𝑛 +𝑚) Hom𝔰𝔩 (2,C) (C,𝑉 ⊗(𝑛+𝑚) ) (𝑔 ⊗ id𝑉 ⊗𝑚 ) ◦ ∪+···+−···−

∈ 𝐹

� �

∈

∈ 𝐹 ∈

The two vertical maps are seen to be isomorphisms by explicitly specifying the inverses

𝑓 ′ ↦→ 𝑓 ′ , 𝑔′ ↦→ (id𝑉 ⊗𝑛 ⊗ ∩+···+−···−) ◦ (𝑔′ ⊗ id𝑉 ⊗𝑚 )

where ∩+···+−···− denotes the morphism defined analogously to ∪+···+−···− from (3), but using ∩ instead of ∪. The
diagram commutes because 𝐹 is a monoidal functor and ∩+···+−···− and ∪+···+−···− are exactly the images under 𝐹 of
configurations of nested caps and cups.

The top horizontal map induced by 𝐹 is an isomorphism if and only if the bottom horizontal map is an isomorphism.
By definition, HomTL(0, 𝑛 +𝑚) has a basis given by cup diagrams with𝑚 + 𝑛 endpoints. In Proposition 2.2.9 we
have seen that their images under 𝐹 , namely the ∪𝑝 for 𝑝 ∈ 𝑃 (𝑚+𝑛)/2 form a basis of Hom𝔰𝔩 (2,C) (C,𝑉 ⊗(𝑛+𝑚) ). Thus 𝐹
induces isomorphisms between morphism spaces, i.e. it is fully faithful. □ L7

End
Corollary 2.2.13 Let 𝑛 ∈ Z≥0. Then we have an isomorphism of associative C-algebras:

TLC𝑛 (−2) � End𝔰𝔩 (2,C) (𝑉 ⊗𝑛)

Remark 2.2.14 Theorem 2.2.12 has a long and complicated history dating back to (at least) the 1930s1. The theorem
actually holds in much greater generality, which makes the Tempereley–Lieb category useful for studying situations,
in which the Clebsch–Gordan rule does not hold as stated in Consequences 2.1.5.(5).

Exercise 27 This completes Remarks 2.2.2.(1). Show that the multiplicity of C = 𝐿(0) in 𝑉 ⊗2𝑛 is given by the
number of Dyck paths of length 2𝑛. Describe a generalization of Dyck paths that gives a combinatorial interpretation
of the multiplicities 𝑙 𝑛+𝑚

2 ,𝑛−𝑚2
in

𝑉 ⊗𝑛 = 𝑉 ⊗ · · · ⊗ 𝑉 �
⊕
𝑚≥0

𝐿(𝑚)𝑙 𝑛+𝑚2 , 𝑛−𝑚2

These are sometimes called Lobb numbers. Hint: deduce the first statement from the more general second statement;
the latter has an easier proof (induction in 𝑛).

Exercise 28 (Kauffman bracket, may split) (1) Compute the image of the morphism := + ∈ TLC2 (−2)
under the functor 𝐹 from Theorem 2.2.12.

1Weyl, H., Rumer, G., and Teller, E.. “Eine für die Valenztheorie geeignete Basis der binären Vektorinvarianten." Nachrichten von der
Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse 1932 (1932): 499-504.
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(2) Let 𝑅 = Z[𝐴,𝐴−1] denote the ring of Laurent polynomials in a variable 𝐴 with integer coefficients. Set
𝛿 = −𝐴2 −𝐴−2 and abbreviate TL := TL𝑅 (𝛿). Now we define

:= 𝐴 +𝐴−1 ∈ TL2, := 𝐴1 +𝐴−1

Compute the 𝑃,𝑄 ∈ 𝑅 such that:

= 𝑃 ∅ ∈ TL0 and = 𝑄 ∅ in TL0

More generally, for every link diagram 𝐿 one obtains an element ⟨𝐿⟩ ∈ 𝑅 called the Kauffman bracket of 𝐿.
It is a close relative of the Jones polynomial, an important invariant of knots and links.

(3) The Kauffman bracket is an invariant of framed links. This means that the element ⟨𝐿⟩ depends not on the
diagram 𝐿, but only on the framed link represented by the diagram. The proof (that we will not complete)
starts with the following verifications:

= , = , = −𝐴3 , = −𝐴−3 , = =

The first two relations are called the second and third Reidemeister move respectively.

Exercise 29 (Jones–Wenzl projectors, may split into three exercises) Set TL := TLC(−2). The goal of this exercise
is to prove that for every 𝑛 ∈ Z≥0 there exists a unique element JW𝑛 ∈ TL𝑛 , called the nth Jones–Wenzl projector,
satisfying the following properties:

• (JW𝑛)2 = JW𝑛 .

• JW𝑛 ∈ id𝑛 + ⟨𝑈1, . . . ,𝑈𝑛−1⟩ ⊂ TL𝑛 , where ⟨𝑈1, . . . ,𝑈𝑛−1⟩ denotes the ideal generated by the𝑈𝑖 .

• 𝑈𝑖 JW𝑛 = JW𝑛𝑈𝑖 = 0 for all 1 ≤ 𝑖 < 𝑛.

Jones–Wenzl projectors are commonly illustrated by boxes JW𝑛 =
· · ·

· · ·
𝑛 .

(1) Start by translating the desired properties into the graphical calculus using boxes. Then make the ansatz:

· · ·

· · ·
𝑛 =

· · ·

· · ·
𝑛 − 1 + 𝑐𝑛

· · ·

· · ·

· · ·

𝑛 − 1

𝑛 − 1
,

· · ·

· · ·
𝑛 = 𝑑𝑛

· · ·

· · ·
𝑛 − 1

for some scalars 𝑐𝑛, 𝑑𝑛 ∈ C. Use induction to compute the scalars 𝑐𝑛, 𝑑𝑛 under the assumption that the boxes
satisfy the desired properties.
Now define the boxes recursively starting from JW1 = id1 and using the relation involving 𝑐𝑛 . Finally check
that the thus defined boxes satisfy the three desired properties.

(2) Use the Clebsch–Gordan rule to prove that the decomposition of 𝑉 ⊗𝑛 into simples contains a unique direct
summand 𝐿(𝑛). Then use Consequences 2.1.5 and Theorem 2.2.12 to show that 𝐹 (JW𝑛) ∈ End𝔰𝔩 (2,C) (𝑉 ⊗𝑛) is
exactly the projection-inclusion 𝑉 ⊗𝑛 ↠ 𝐿(𝑛) ↩→ 𝑉 ⊗𝑛 . In particular, JW𝑛 is a symmetrization operator, see
Exercise 26.

(3) Can JW𝑛 be defined in TLF(−2) when char(F) = 𝑝 > 0?

(4) Now let 𝑅 = Q(𝐴), i.e. rational functions in 𝐴, and 𝑅′ = Q[𝐴,𝐴−1]], i.e. formal Laurent series in 𝐴−1. In
both cases we consider 𝛿 = −𝐴2 −𝐴−2. First, find JW2 ∈ TL𝑅2 (𝛿) (satisfying the three properties listed above).
Second, rewrite this as an element of TL𝑅′

2 (𝛿) by expanding the coefficients into Laurent series. Third, use
induction to compute the following elements of TL𝑅′

2 (𝛿) and compare them with JW∈TL𝑅
′

2 (𝛿):

𝐴−1 ,

(
𝐴−1

)2
= 𝐴−2 ,

(
𝐴−1

)𝑛
for 𝑛 ≥ 3

End
Week 5
Exerc.
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3 Nilpotent and solvable Lie algebras

3.1 A roadmap towards classification

Now that we’ve seen several examples of Lie algebras, one immediate question is that of classification. Put very
naively: “how many different Lie algebras do exist?”. This is a bit like asking “How many different molecules do
exist?”. First of all, we are not actually interested in the number. We are only interested in understanding Lie algebras
up to isomorphism. Second, we have already seen that some Lie algebras can constructed as an extension of one
Lie algebra by another one (Construction 1.3.9). A special case is that of a split extension, i.e. a semi-direct product
(Construction 1.3.1). Our task thus boils down to understanding simple Lie algebras (roughly “atoms”) and how they
fit together. We will focus on the ground field C. Lie algebras over C will be called complex Lie algebras.

The big milestones ahead of us are the following results. First, there is a notion of solvability for Lie algebras,
which is analogous to that of groups. This will be the subject of Section 3.2. Every finite-dimensional Lie algebra 𝔤
has a maximal solvable ideal, called its radical rad𝔤. Then one can prove:

Theorem 3.1.1 [Levi’s theorem] For every finite-dimensional complex Lie algebra 𝔤, the short exact sequence
rad𝔤 ↩→ 𝔤 ↠ 𝔤/rad𝔤 splits.

Thus 𝔤 is a semi-direct product of the solvable Lie algebra rad𝔤 and the Lie algebra 𝔤/rad𝔤. In Section 4 we will
see that the latter is a direct product of simple Lie algebras.

Understanding and classifying finite-dimensional complex Lie algebras thus splits into three problems:

• Understanding finite-dimensional solvable complex Lie algebras, towards we see some progress in Section 3.2.

• Classifying finite-dimensional complex simple Lie algebras, see Theorem 3.1.2.

• Understanding representations of semisimple Lie algebras by derivations on solvable Lie algebras (compare
with Example 1.5.6).

Theorem 3.1.2 [Killing classification] Every finite-dimensional simple complex Lie algebra is isomorphic to exactly
one from the following list

𝔰𝔩(𝑛 + 1,C) 𝑛 ≥ 1
𝔰𝔬(2𝑛 + 1,C) 𝑛 ≥ 2
𝔰𝔭(2𝑛,C) 𝑛 ≥ 3
𝔰𝔬(2𝑛,C) 𝑛 ≥ 4

(see Section 1.2) or one of the exceptional Lie algebras 𝔢6, 𝔢7, 𝔢8, 𝔣4, 𝔤2.

We will return to this theorem at a later stage.

3.2 Nilpotent and solvable Lie algebras

In this section we encounter the notions of nilpotent and solvable Lie algebras. However, before we get to this
Definition 3.2.5, we first study a certain case.

Lemma 3.2.1 Let 𝑉 be a vector space. If 𝑥 ∈ 𝔤𝔩(𝑉 ) is nilpotent, then ad𝑥 ∈ 𝔤𝔩(𝔤𝔩(𝑉 )) is also nilpotent.

Proof. For𝑚 ∈ N and any 𝑦 ∈ 𝔤𝔩(𝑉 ) an inductive argument shows

(ad𝑥 )𝑚 (𝑦) =
𝑚∑︁
𝑖=0

(
𝑚

𝑖

)
(−1)𝑚−𝑖𝑥𝑖 ◦ 𝑦 ◦ 𝑥𝑚−𝑖 .

Note that max(𝑖,𝑚 − 𝑖) ≥ ⌈𝑚2 ⌉, thus (ad𝑥 )
2𝑛 = 0 provided 𝑥𝑛 = 0. □

Theorem 3.2.2 [on Lie algebras of nilpotent endomorphisms] Let 𝑉 be a finite-dimensional vector space and
𝔤 ⊂ 𝔤𝔩(𝑉 ) a Lie subalgebra, such that every 𝑥 ∈ 𝔤 is nilpotent as an endomorphism of 𝑉 . (Recall this means there
exists an 𝑛 ∈ N such that 𝑥𝑛 := 𝑥 ◦ · · · ◦ 𝑥 : 𝑉 → 𝑉 is the zero map.) Then the following hold:

(1) If 𝑉 ≠ 0, then there exists 𝑣 ∈ 𝑉 , 𝑣 ≠ 0 such that 𝑥 (𝑣) = 0 for every 𝑥 ∈ 𝔤 (for this we will use the shorthand
𝔤𝑣 = 0).
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(2) There exists a chain of subspaces 0 = 𝑉0 ⊂ 𝑉1 ⊂ · · · ⊂ 𝑉𝑑 = 𝑉 with dim𝑉𝑖 = 𝑖 and 𝑥 (𝑣𝑖) ∈ 𝑉𝑖−1 for any 𝑥 ∈ 𝔤

and 𝑣𝑖 ∈ 𝑉𝑖 . (For this we write 𝔤𝑉𝑖 ⊂ 𝑉𝑖−1.)

(3) There exists a basis of 𝑉 , with respect to which all elements of 𝔤 are represented by strictly upper triangular
matrices.

A chain of subspaces as in Theorem 3.2.2.(2) is called a (complete) flag of𝑉 . Any ordered basis {𝑣1, . . . , 𝑣𝑑 } of𝑉
determines a flag with 𝑉𝑖 := span{𝑣1, . . . , 𝑣𝑖} and conversely, given a flag, one can find a corresponding ordered basis
(although usually not a unique one). Such a basis is called adapted to the flag.

Proof of Theorem 3.2.2. (1) The proof proceeds by induction on dim(𝔤). If dim(𝔤) = 1, then 𝔤 = span{𝑥} for a single
nilpotent endomorphism of 𝑉 . The statement then follows as we can find a vector 𝑣 ≠ 0 in the kernel ker(𝑥) ≠ 0,
which is nonzero since 𝑥 is nilpotent. For the induction step, we consider 𝔤 ⊂ 𝔤𝔩(𝑉 ) with dim(𝔤) = 𝑑 ≥ 2 and assume
that the statement has been proven for all smaller dimensions. More precisely, we will use:

Induction hypothesis: if 𝑈 ≠ 0 is a finite-dimensional vector space and 𝔤′ ⊂ 𝔤𝔩(𝑈 ) a Lie algebra with
dim(𝔤′) < dim(𝔤), then there exists 𝑢 ∈ 𝑈 , 𝑢 ≠ 0, such that 𝔤′𝑢 = 0.

Our goal is to prove the analogous statement for 𝔤: to find a vector 𝑣 ∈ 𝑉 , 𝑣 ≠ 0, such that 𝔤𝑣 = 0. To make use
of the induction hypothesis, we need to produce a smaller Lie algebra. We start by choosing a maximal proper Lie
subalgebra 𝔥 ⊂ 𝔤, i.e. a Lie subalgebra with 𝔥 ≠ 𝔤 that is maximal under inclusion with this property. To this we can
apply the induction hypothesis, and we will do so later. But first we study the relationship between 𝔥 and 𝔤.

Note that the composition
ad |𝔥 : 𝔥 ↩→ 𝔤

ad−→ 𝔤𝔩(𝔤)

defines a representation of 𝔥 on 𝔤 that has 𝔥 ad−→ 𝔤𝔩(𝔥) as a subrepresentation. Nowwe form the quotient representation

ad : 𝔥 → 𝔤𝔩(𝔤/𝔥)

where we note that 𝔤/𝔥 refers to the quotient vector space of 𝔤 by 𝔥. From Lemma 3.2.1 we deduce that ad acts
by nilpotent endomorphisms, i.e. ad𝑥 := ad(𝑥) is a nilpotent endomorphism of 𝔤 for every 𝑥 ∈ 𝔤. This property is
inherited by ad |𝔥 and ad: for every 𝑦 ∈ 𝔥, the endomorphism ad |𝔥 (𝑦) of 𝔤 and the endomorphism ad(𝑦) of 𝔤/𝔥 are
both nilpotent.

By the induction hypothesis (for𝑈 = 𝔤/𝔥 and 𝔤′ = ad(𝔥), noting 𝔤/𝔥 ≠ 0 and dim(ad(𝔥)) ≤ dim(𝔥) < dim(𝔤)),
we can find a vector 𝑙 ∈ 𝔤/𝔥, 𝑙 ≠ 0, such that ad(𝔥)𝑙 = 0. Let 𝑙 ∈ 𝔤 be a representative of 𝑙 (i.e. 𝑙 + 𝔥 = 𝑙), then 𝑙 ≠ 0
implies 𝑙 ∉ 𝔥 and we rewrite

ad(𝔥)𝑙 = 0 ⇐⇒ ∀𝑦 ∈ ad(𝔥) : 𝑦 (𝑙) = 0
⇐⇒ ∀𝑦 ∈ 𝔥 : ad𝑦 (𝑙) = 0
⇐⇒ ∀𝑦 ∈ 𝔥 : ad𝑦 (𝑙 + 𝔥) = 𝔥

⇐⇒ [𝔥, 𝑙] ⊂ 𝔥

The two properties 𝑙 ∉ 𝔥 and [𝔥, 𝑙] ⊂ 𝔥 imply that 𝔥 + span{𝑙} is a Lie subalgebra of 𝔤 that properly contains 𝔥.
However, since 𝔥 was chosen maximal, we must have

𝔥 + span{𝑙} = 𝔤.

Now we turn to locating a vector 𝑣 ∈ 𝑉 with 𝑣 ≠ 0 such that 𝔤𝑣 = 0. As space of candidates we use the subspace
𝑊 = {𝑣 ∈ 𝑉 | 𝔥𝑣 = 0}. By the induction hypothesis (for 𝑈 = 𝑉 and 𝔤′ = 𝔥, noting 𝑉 ≠ 0 by assumption and
dim(𝔥) < dim(𝔤)) we have that𝑊 ≠ 0.

Now make the claim that 𝑙 (𝑊 ) ⊂𝑊 . To see this we let𝑤 ∈𝑊 and 𝑦 ∈ 𝔥 and compute

𝑦 (𝑙 (𝑤)) = 𝑙 (𝑦 (𝑤)) + [𝑦, 𝑙] (𝑤) = 0 + 0 = 0

where we have used [𝔥, 𝑙] ⊂ 𝔥 in the last step. Now 𝑦 (𝑙 (𝑤)) = 0 for all 𝑦 ∈ 𝔥 implies 𝑙 (𝑤) ∈ 𝑊 and the claim is
verified

By assumption 𝑙 ∈ 𝔤 is a nilpotent endomorphism of 𝑉 , so now we deduce that 𝑙 |𝑊 is a nilpotent endomorphism
of𝑊 . This allows us to choose 𝑣 ∈ ker 𝑙 |𝑊 with 𝑣 ≠ 0. Now we have 𝑙 (𝑣) = 0 and 𝔥𝑣 = 0 since 𝑣 ∈ 𝑊 . Since
𝔥 + span{𝑙} = 𝔤, we deduce 𝔤𝑣 = 0.
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(2) Let 𝜌 : 𝔤 → 𝔤𝔩(𝑉 ) be a finite-dimensional representation by nilpotent endomorphisms (a more general setting
than in the statement). We will prove by induction on the dimension 𝑑 of 𝑉 that it admits a flag 0 = 𝑉0 ⊂ 𝑉1 ⊂
· · · ⊂ 𝑉𝑑 = 𝑉 with 𝔤𝑉𝑖 ⊂ 𝑉𝑖−1 for 1 ≤ 𝑖 ≤ 𝑑 . First we use (1) to find a non-zero vector 𝑣 ∈ 𝑉 such that 𝔤𝑣 = 0 and
set 𝑉1 = span{𝑣1}. If dim(𝑉 ) = 𝑑 = 1 we are done. Otherwise we note that 𝑉1 defines a subrepresentation and
we can form the quotient representation 𝑉 ′ := 𝑉 /𝑉1 and denote by 𝑞 : 𝑉 ↠ 𝑉 /𝑉1 the canonical projection. By the
induction hypothesis, 𝑉 ′ admits a flag 0 = 𝑉 ′

0 ⊂ 𝑉 ′
1 ⊂ · · · ⊂ 𝑉 ′

𝑑−1 = 𝑉 ′ with 𝔤𝑉 ′
𝑖 ⊂ 𝑉 ′

𝑖−1 for 1 ≤ 𝑖 ≤ 𝑑 − 1. Now we set
𝑉𝑖 = 𝑞−1(𝑉 ′

𝑖−1) for 𝑖 ≥ 1 to complete the desired flag for 𝑉 .
(3) is equivalent to (2), as already observed. □ L8

End
In Lemma 3.2.1 we have seen that ad𝑥 is nilpotent whenever 𝑥 ∈ 𝔤𝔩(𝑉 ) is nilpotent. For arbitrary Lie algebras,

the appropriate notion is the following.

Definition 3.2.3 An element 𝑥 of a Lie algebra 𝔤 is ad-nilpotent if ad𝑥 ∈ 𝔤𝔩(𝔤) is nilpotent.

Example 3.2.4 Let 𝑉 be a nonzero vector space and 𝑥 ∈ 𝔤𝔩(𝑉 ) nonzero. Let 𝔤 = span{𝑥} ⊂ 𝔤𝔩(𝑉 ) be the 1-
dimensional abelian Lie subalgebra spanned by 𝑥 . Then ad𝑥 ∈ 𝔤𝔩(𝔤) is nilpotent, and thus 𝑥 is ad-nilpotent in 𝔤. But
this holds regardless of whether 𝑥 is nilpotent in 𝔤𝔩(𝑉 ).

In Theorem 3.2.2 we have obtained a description of Lie algebras of nilpotent endomorphisms. The next theorem
concerns (abstract) Lie algebras whose elements are all ad-nilpotent. To state it, we need some notions.

In Example 1.3.7 we have introduced the derived Lie algebra [𝔤, 𝔤], which is an ideal in 𝔤. This can be extended
to two chains of nested ideals in 𝔤.

Definition 3.2.5 Let 𝔤 be a Lie algebra.

(1) The derived series of 𝔤 is defined as:

𝔤 (0) = 𝔤, 𝔤 (1) = [𝔤, 𝔤], 𝔤 (𝑖+1) = [𝔤 (𝑖 ) , 𝔤 (𝑖 ) ] for 𝑖 ≥ 0

(2) 𝔤 is called solvable (or soluble) if there exists an𝑚 ∈ N such that 𝔤 (𝑚) = 0 (and then 𝔤 (𝑛) = 0 for all 𝑛 ≥ 𝑚).

(3) The lower central series of 𝔤 is defined as:

𝔤0 = 𝔤, 𝔤1 = [𝔤, 𝔤], 𝔤𝑖+1 = [𝔤, 𝔤𝑖] for 𝑖 ≥ 0

(4) 𝔤 is called nilpotent if there exists an𝑚 ∈ N such that 𝔤𝑚 = 0 (and then 𝔤𝑛 = 0 for all 𝑛 ≥ 𝑚).

Remarks 3.2.6 (1) Using Remark 1.3.8 one checks inductively that all 𝔤 (𝑖 ) and 𝔤𝑖 are ideals in 𝔤 and 𝔤 (𝑖 ) ⊂ 𝔤𝑖 .
Thus, any nilpotent Lie algebra is solvable.

(2) If 𝔤 is simple, then 𝔤 (𝑖 ) = 𝔤𝑖 = 𝔤 for all 𝑖 ≥ 0. (Otherwise 𝔤 (1) = 𝔤1 = [𝔤, 𝔤] would be an ideal not equal to 𝔤. By
simplicity the only option is the zero ideal, but this would mean 𝔤 is abelian, a contradiction to simplicity.)
Thus, simple Lie algebras are neither solvable nor nilpotent.

(3) The upper triangular matrices 𝔱(𝑛, F) are solvable and the strictly upper triangular matrices 𝔫(𝑛, F) are nilpotent.

(4) Every quotient and every Lie subalgebra of a nilpotent Lie algebra is again nilpotent. Every quotient and every
Lie subalgebra of a solvable Lie algebra is again solvable. (Compare their lower central series and derived
series.)

(5) In the solvable case, a stronger statement holds. For a short exact sequence 𝔤1 ↩→ 𝔤 ↠ 𝔤2 of Lie algebras, 𝔤 is
solvable if and only if 𝔤1 and 𝔤2 are solvable.

(6) A Lie algebra 𝔤 is solvable if and only if there is a sequence

𝔤 = 𝐼0 ⊃ 𝐼1 ⊃ · · · ⊃ 𝐼𝑚 = 0

such that 𝐼𝑖+1 is an ideal in 𝐼𝑖 and 𝐼𝑖/𝐼𝑖+1 is abelian for all 0 ≤ 𝑖 < 𝑚.
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(7) The sum of two solvable ideals 𝐼 , 𝐽 in 𝔤 is again solvable. This follows from the short exact sequence:

𝐼 ↩→ 𝐼 + 𝐽 ↠ 𝐼 + 𝐽/𝐼 � 𝐽/(𝐼 ∩ 𝐽 )

and Remarks 3.2.6.(5). A finite-dimensional Lie algebra 𝔤 thus always has a maximal solvable ideal rad𝔤, the
radical of 𝔤, namely the sum of all solvable ideals.

Corollary 3.2.7 Let 𝑉 be a finite-dimensiona vector space and 𝔤 ⊂ 𝔤𝔩(𝑉 ) a Lie subalgebra of nilpotent endomor-
phisms of 𝑉 as in Theorem 3.2.2. Then 𝔤 is nilpotent in the sense of Definition 3.2.5.(4)

Proof. Theorem 3.2.2 implies that 𝔤 is isomorphic to a Lie subalgebra of strictly upper triangular matrices. By
Remarks 3.2.6.(3-4) 𝔤 is also nilpotent. □

Theorem 3.2.8 [Engel’s theorem] Let 𝔤 be a finite-dimensional Lie algebra. Then the following are equivalent:

(1) 𝔤 is nilpotent (in the sense of Definition 3.2.5.(4))

(2) Every element of 𝔤 is ad-nilpotent.

Proof. (1) ⇒ (2): Let 𝑥 ∈ 𝔤. Note that ad𝑥 : 𝔤𝑖 → 𝔤𝑖+1 for 𝑖 ≥ 0, thus if 𝔤𝑛 = 0, then (ad𝑥 )𝑛 = 0 and 𝑥 is ad-nilpotent.
(2) ⇒ (1): ad(𝔤) is a Lie subalgebra of nilpotent endomorphisms in 𝔤𝔩(𝔤) and thus nilpotent by Corollary 3.2.7.
Let 𝑖 ∈ N be sufficiently large, such that (ad(𝔤))𝑖 = 0. Since 𝑓 (𝔤𝑖) = 𝑓 (𝔤)𝑖 for every Lie algebra morphism with

source 𝔤, we have ad(𝔤𝑖) = (ad(𝔤))𝑖 = 0, so 𝔤𝑖 ⊂ ker(ad) = 𝑍 (𝔤), which implies 𝔤𝑖+1 = 0, so 𝔤 is nilpotent. □ L9
End

Next we turn our attention to solvable Lie algebras, first again in the linear setting. We work over C, but
everything in this subsection also works for an algebraically closed field of characteristic zero.

Theorem 3.2.9 [Lie’s theorem] Let 𝑉 be a non-zero, finite-dimensional vector space over C and 𝔤 a solvable Lie
subalgebra of 𝔤𝔩(𝑉 ). Then there exists a simultaneous eigenvector 𝑣 for all 𝑥 ∈ 𝔤. I.e. there exists 𝑣 ∈ 𝑉 with 𝑣 ≠ 0
and 𝔤𝑣 ⊂ C𝑣 .

Proof. Clearly 𝔤 is finite-dimensional and we proceed by induction in dim(𝔤), with the case dim(𝔤) = 0 being
immediate. For dim(𝔤) > 0 we claim that there exists an ideal 𝐼 ⊂ 𝔤 of codimension 1 (i.e. with dim(𝔤/𝐼 ) = 1). To see
this, consider the Lie algebra 𝔤/[𝔤, 𝔤] and note that it is abelian, which implies that every linear subspace is an ideal.
As 𝔤 is solvable, we must have 𝔤 ≠ 𝔤 (1) = [𝔤, 𝔤], and so dim(𝔤/[𝔤, 𝔤]) ≥ 1. Thus we can find a subspace 𝐼 ′ ⊂ 𝔤/[𝔤, 𝔤]
of codimension 1 and set 𝐼 = 𝑞−1(𝐼 ′). As preimage of an ideal under a Lie algebra morphism, 𝐼 is an ideal.

Now we can apply the induction hypothesis to 𝐼 , since it is still a Lie subalgebra of 𝔤𝔩(𝑉 ) and solvable by
Remarks 3.2.6.(4). Thus we find 𝑣 ′ ∈ 𝑉 . 𝑣 ′ ≠ 0 and 𝐼𝑣 ′ ⊂ C𝑣 ′. This determines a linear functional 𝜆 : 𝐼 → C that
satisfies 𝑥 · 𝑣 ′ = 𝜆(𝑥)𝑣 ′ for 𝑥 ∈ 𝐼 . We now consider the simultaneous eigenspace

𝑉𝜆 = {𝑤 ∈ 𝑉 | 𝑥 ·𝑤 = 𝜆(𝑥)𝑤 for all 𝑥 ∈ 𝐼 }

and note 𝑣 ′ ∈ 𝑉𝜆 . In Lemma 3.2.10 we will see that 𝔤𝑉𝜆 ⊂ 𝑉𝜆 . Now we choose 𝑦 ∈ 𝔤 \ 𝐼 and deduce that 𝑦 restricts to
an endomorphism on 𝑉𝜆 . As we are working over C, we can find an eigenvector 𝑣 ∈ 𝑉𝜆 of 𝑦. Since 𝔤 = 𝐼 + C𝑦, this 𝑣
is a simultaneous eigenvector for all endomorphisms in 𝔤. □

We have used the following lemma.

Lemma 3.2.10 Let 𝑉 be a finite-dimensional representation of a Lie algebra 𝔤, both over a field with char(F) = 0,
𝐼 ⊂ 𝔤 an ideal, and 𝜆 : 𝐼 → F a linear functional. Then the simultaneous eigenspace 𝑉𝜆 = {𝑤 ∈ 𝑉 | 𝑥 · 𝑤 =

𝜆(𝑥)𝑤 for all 𝑥 ∈ 𝐼 } is a subrepresentation of 𝑉 .

Proof. For any𝑦 ∈ 𝔤 and𝑤 ∈ 𝑉𝜆 we have to show that𝑦 ·𝑤 ∈ 𝑉𝜆 , i.e. that for every 𝑥 ∈ 𝐼 we have 𝑥 · (𝑦 ·𝑤) = 𝜆(𝑥) (𝑦 ·𝑤).
We compute the difference as

𝑥 · (𝑦 ·𝑤) − 𝜆(𝑥) (𝑦 ·𝑤) = 𝑥 · (𝑦 ·𝑤) − 𝑦 · (𝜆(𝑥)𝑤)
= 𝑥 · (𝑦 ·𝑤) − 𝑦 · (𝑥 ·𝑤)
= [𝑥,𝑦] ·𝑤
= 𝜆( [𝑥,𝑦])𝑤 (𝐼 is an ideal)
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If 𝑉𝜆 = 0, then the statement of the lemma follows trivially. If 𝑉𝜆 ≠ 0, we have to show that 𝜆( [𝑥,𝑦]) = 0 for all
𝑥 ∈ 𝐼 , 𝑦 ∈ 𝔤. Fix a 𝑦 ∈ 𝔤 and𝑤 ∈ 𝑉𝜆 ,𝑤 ≠ 0 and define a nested sequence of subspaces𝑊0 ⊂𝑊1 ⊂𝑊2 ⊂ · · · ⊂ 𝑉 by:

𝑊0 := span{𝑤}, 𝑊𝑖 := span{𝑤,𝑦 ·𝑤, . . . , 𝑦𝑖 ·𝑤}

(Strictly speaking, 𝑦𝑖 · 𝑤 is an abuse of notation, albeit a convenient one. Rigorously we should denote this as
(𝜌 (𝑦))𝑖 (𝑤) if the representation is given by 𝜌 : 𝔤 → 𝔤𝔩(𝑉 ), or via the awkward expression 𝑦 · (𝑦 · (· · · (𝑦 ·𝑤)) · · · ).)
Since 𝑉 is finite-dimensional, the sequence stabilizes𝑊0 ⊂ · · ·𝑊𝑛−1 ⊂𝑊𝑛 =𝑊𝑛+1 = · · · . Let 𝑛 ∈ N denote this this
index and set𝑊 :=𝑊𝑛 , which has {𝑤,𝑦 ·𝑤, . . . , 𝑦𝑛 ·𝑤} as basis and is stable under 𝑦.

Let 𝑥 ∈ 𝐼 . Using the equation 𝑥 · (𝑦𝑖 ·𝑤) = 𝑦 · (𝑥 · (𝑦𝑖−1 ·𝑤)) + [𝑥,𝑦] · (𝑦𝑖−1 ·𝑤) and𝑤 ∈ 𝑉𝜆 , one shows inductively
in 𝑖 that𝑊𝑖 is stable under 𝑥 . A second induction shows

𝑥 · (𝑦𝑖 ·𝑤) ∈ 𝑦𝑖 · (𝑥 ·𝑤) +𝑊𝑖−1 = 𝜆(𝑥)𝑦𝑖 ·𝑤 +𝑊𝑖−1

Thus 𝑥 acts on𝑊 as an endomorphism, represented by an upper triangular matrix with 𝜆(𝑥) on the diagonal, hence
has trace tr(𝑥 |𝑊 ) = (𝑛+1)𝜆(𝑥). Replacing 𝑥 by [𝑥,𝑦] and using that traces of the commutator of two endomorphisms
of𝑊 vanish, we get (𝑛 + 1)𝜆( [𝑥,𝑦]) = tr( [𝑥,𝑦] |𝑊 ) = 0 and hence 𝜆( [𝑥,𝑦]) = 0. □

Remark 3.2.11 The proof works equally well over an arbitrary field F with char(F) > dim(𝑉 ).

Corollary 3.2.12 [representations of solvable Lie algebras] Let 𝑉 be a finite-dimensional representation of a
complex solvable Lie algebra 𝔤. Then the following hold:

(1) 𝑉 admits a flag 0 = 𝑉0 ⊂ 𝑉1 ⊂ · · · ⊂ 𝑉𝑑 = 𝑉 of subrepresentations with dim(𝑉𝑖) = 𝑖 . Equivalently,𝑉 has a basis,
for which the action of 𝔤 is represented by upper triangular matrices.

(2) If 𝑉 is simple, then dim(𝑉 ) = 1.

Proof. Analogous to the proof of Theorem 3.2.2.(2-3), based on Lie’s Theorem 3.2.9 instead of Theorem 3.2.2.(1). □

Corollary 3.2.13 If 𝔤 is a finite-dimensional, solvable Lie algebra over C, then [𝔤, 𝔤] is nilpotent. Conversely, any
Lie algebra 𝔤 with nilpotent [𝔤, 𝔤] is solvable.

Proof. For the first statement, we use Corollary 3.2.12.(1) to see that ad(𝔤) ⊂ 𝔤𝔩(𝔤) consists of upper triangular
matrices (for some chosen basis). Thus [ad(𝔤), ad(𝔤)] = ad( [𝔤, 𝔤]) consists of strictly upper triangular matrices.
This implies (ad( [𝔤, 𝔤]))𝑖 = 0 for 𝑖 ≫ 0 and thus [𝔤, 𝔤]𝑖 ⊂ 𝑍 ( [𝔤, 𝔤]) (as in the proof of Theorem 3.2.8) and then
[𝔤, 𝔤]𝑖+1 = [[𝔤, 𝔤], [𝔤, 𝔤]𝑖] = 0, so [𝔤, 𝔤] is nilpotent.

Conversely, suppose 𝔥 = [𝔤, 𝔤] is nilpotent. Then 𝔤 (𝑖+1) ⊂ 𝔥𝑖 for all 𝑖 ≥ 0. For 𝑖 = 0, this is immediate from the
definition. For 𝑖 > 0 we compute inductively:

𝔤 (𝑖+1) = [𝔤 (𝑖 ) , 𝔤 (𝑖 ) ] ⊂ [𝔥𝑖−1, 𝔥𝑖−1] ⊂ [𝔥, 𝔥𝑖−1] = 𝔥𝑖

Thus nilpotency for 𝔥 implies the solvability of 𝔤. □ L10
End

Exercise 30 Verify Remark 3.2.6.(1).

Exercise 31 Verify Remark 3.2.6.(4).

Exercise 32 Verify Remark 3.2.6.(5).

Exercise 33 Verify Remark 3.2.6.(6).

Exercise 34 Let F be a field of characteristic char(F) = 𝑝 ≠ 0. Consider the 𝑝 × 𝑝-matrices 𝑥 and 𝑦 with
𝑥𝑖, 𝑗 = 𝛿𝑖+1, 𝑗 + 𝛿𝑖,𝑝𝛿 𝑗,1 and 𝑦𝑖, 𝑗 = 𝛿𝑖, 𝑗 (𝑖 − 1) for 1 ≤ 𝑖, 𝑗 ≤ 𝑝 . Compute the commutator [𝑥,𝑦] and deduce that these
matrices span a 2-dimensional solvable Lie subalgebra of 𝔤𝔩(𝑝, F). Show that 𝑥,𝑦 have no common eigenvector and
discuss this from the perspective of Lie’s theorem.

End
Week 6
Exerc.
End
Week 7
Exerc.
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3.3 Cartan’s criterion of solvability

Here we work towards a criterion for solvability in Theorem 3.3.6 whose proof requires some preparation.

Definition 3.3.1 An endomorphism 𝜑 ∈ EndF(𝑉 ) of a finite-dimensional vector space over F is called semisimple
if it is diagonalizable over the algebraic closure F of F, i.e. if

𝜑 : F ⊗F 𝑉 → F ⊗F 𝑉
𝜆 ⊗ 𝑣 ↦→ 𝜆 ⊗ 𝜑 (𝑣)

is diagonalizable.

We recall an important result from linear algebra.

Lemma 3.3.2 [Jordan decomposition] Let𝑉 be a finite-dimensional vector space over C and 𝑥 ∈ EndC(𝑉 ). Then
there exists a unique decomposition 𝑥 = 𝑥𝑠 +𝑥𝑛 . into a diagonalizable (semisimple) part 𝑥𝑠 ∈ EndC(𝑉 ) and a nilpotent
part 𝑥𝑛 ∈ EndC(𝑉 ) such that 𝑥𝑠𝑥𝑛 = 𝑥𝑛𝑥𝑠 .

Remarks 3.3.3 Let 𝑉 ,𝑊 be finite-dimensional vector spaces over C and 𝑥 ∈ EndC(𝑉 ).

(1) Choose a basis of 𝑉 , such that 𝑥 is represented by a matrix in Jordan normal form. Then 𝑥𝑠 is represented by
the diagonal part and 𝑥𝑛 by the strictly upper triangular part of the matrix for 𝑥 . E.g. for a single Jordan block
of size 3, the splitting is:

𝑥 =
©­«
𝜆 1 0
0 𝜆 1
0 0 𝜆

ª®¬ =⇒ 𝑥𝑠 =
©­«
𝜆 0 0
0 𝜆 0
0 0 𝜆

ª®¬ , 𝑥𝑛 =
©­«
0 1 0
0 0 1
0 0 0

ª®¬
More intrinsically, one defines 𝑥𝑠 by declaring the generalized eigenspaces of 𝑥 to be eigenspaces of 𝑥𝑠 with
corresponding eigenvalue. I.e. for any 𝜆 ∈ C, the endomorphism 𝑥𝑠 will act by the scalar 𝜆 on the subspace

𝑉𝜆 (𝑥) :=
⋃
𝑛≥0

ker(𝑥 − 𝜆id𝑉 )𝑛

The nilpotent part is then defined as the difference 𝑥𝑛 = 𝑥 − 𝑥𝑠 .

(2) The Jordan decomposition is functorial in the following sense. If a linear map 𝜑 : 𝑉 →𝑊 intertwines two
endomorphisms 𝑥 ∈ End(𝑉 ) and 𝑦 ∈ End(𝑊 ), then it also intertwines their semisimple and nilpotent parts,
respectively. I.e. if the first square commutes, then so do the other two:

𝑉 𝑊

𝑉 𝑊

𝜑

𝑥 𝑦

𝜑

𝑉 𝑊

𝑉 𝑊

𝜑

𝑥𝑠 𝑦𝑠

𝜑

𝑉 𝑊

𝑉 𝑊

𝜑

𝑥𝑛 𝑦𝑛

𝜑

This is a consequence of 𝜑 (𝑉𝜆 (𝑥)) ⊂𝑊𝜆 (𝑦). It follows that an endomorphism 𝑦 ∈ EndC(𝑉 ) commutes with
𝑥 if and only if 𝑦 commutes with 𝑥𝑠 and 𝑥𝑛 . (The “only if” direction uses functoriality; the “if” direction is
elementary.) Another consequence is that if 𝑥 (𝐵) ⊂ 𝐴 for subspaces 𝐴 ⊂ 𝐵 ⊂ 𝑉 , then also 𝑥𝑠 (𝐵) ⊂ 𝐴 and
𝑥𝑛 (𝐵) ⊂ 𝐴.

Lemma 3.3.4 Let𝑉 be a finite-dimensional vector space over C. If 𝑥 ∈ 𝔤𝔩(𝑉 ) has Jordan decomposition 𝑥 = 𝑥𝑠 +𝑥𝑛 ,
then

ad𝑥 = ad𝑥𝑠 + ad𝑥𝑛
is the Jordan decomposition of ad𝑥 ∈ End(𝔤𝔩(𝑉 )). I.e. we have (ad𝑥 )𝑠 = ad𝑥𝑠 and (ad𝑥 )𝑛 = ad𝑥𝑛 .

Proof. Since ad is a Lie algebra morphism we have [ad𝑥𝑠 , ad𝑥𝑛 ] = ad[𝑥𝑠 ,𝑥𝑛 ] = 0, i.e. ad𝑥𝑠 and ad𝑥𝑛 commute. In
Lemma 3.2.1 we have seen that ad𝑥𝑛 is nilpotent. We thus only need to show that ad𝑥𝑠 is diagonalizable to conclude
the stated result using the uniqueness of the Jordan decomposition.

To this end, let {𝑣𝑖}1≤𝑖≤dim(𝑉 ) be a basis of 𝑉 consisting of eigenvectors of 𝑥𝑠 , i.e. 𝑥𝑠𝑣𝑖 = 𝜆𝑖𝑣𝑖 for some 𝜆𝑖 ∈ C.
Then 𝔤𝔩(𝑉 ) � 𝑉 ⊗ 𝑉 ∗ has a basis consisting of the endomorphisms

𝑣 𝑗 ⊗ 𝑣∗𝑖 : 𝑣 ↦→ 𝑣∗𝑖 (𝑣)𝑣 𝑗
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and we claim that these are eigenvectors of ad𝑥𝑠 . To see this, we compute for all 𝑣𝑘 :

ad𝑥𝑠 (𝑣 𝑗 ⊗ 𝑣∗𝑖 ) (𝑣𝑘 ) = (𝑥𝑠 ◦ (𝑣 𝑗 ⊗ 𝑣∗𝑖 )) (𝑣𝑘 ) − ((𝑣 𝑗 ⊗ 𝑣∗𝑖 ) ◦ 𝑥𝑠) (𝑣𝑘 )
= 𝛿𝑖,𝑘𝑥𝑠 (𝑣 𝑗 ) − 𝜆𝑘 (𝑣 𝑗 ⊗ 𝑣∗𝑖 ) (𝑣𝑘 )
= 𝛿𝑖,𝑘 (𝜆 𝑗 − 𝜆𝑘 ) (𝑣 𝑗 )
= (𝜆 𝑗 − 𝜆𝑖) (𝑣 𝑗 ⊗ 𝑣∗𝑖 ) (𝑣𝑘 )

Thus ad𝑥𝑠 (𝑣 𝑗 ⊗ 𝑣∗𝑖 ) = (𝜆 𝑗 − 𝜆𝑖) (𝑣 𝑗 ⊗ 𝑣∗𝑖 ). □

The following somewhat contrived lemma serves as a tool to detect nilpotent endomorphisms.

Lemma 3.3.5 Let 𝑉 be a finite-dimensional vector space over C. Let 𝐴 ⊂ 𝐵 ⊂ EndC(𝑉 ) be subspaces and
𝑥 ∈ EndC(𝑉 ) with [𝑥, 𝐵] ⊂ 𝐴. Suppose tr(𝑥 ◦ 𝑧) = 0 for all 𝑧 ∈ EndC(𝑉 ) with [𝑧, 𝐵] ⊂ 𝐴, then 𝑥 is nilpotent.

Proof. By Lemma 3.3.4 we have the compatible Jordan decompositions 𝑥 = 𝑥𝑠 + 𝑥𝑛 and ad𝑥 = ad𝑥𝑠 + ad𝑥𝑛 . Then
Remarks 3.3.3.(2) implies:

ad𝑥𝑠 (𝐵) ⊂ 𝐴 , ad𝑥𝑛 (𝐵) ⊂ 𝐴.

In particular, the eigenspaces of ad𝑥𝑠 : 𝐵 → 𝐵 for non-zero eigenvalues are contained in 𝐴. Choose a basis of 𝑉
consisting of eigenvectors 𝑣𝑖 for 𝑥𝑠 and then define a semisimple endomorphism 𝑧 ∈ EndC(𝑉 ) by the matrix (with
respect to the chosen basis) given by the complex conjugate of the (diagonal) matrix of 𝑥𝑠 . A computation as in the
proof of Lemma 3.3.4 shows that {𝑣 𝑗 ⊗ 𝑣∗𝑖 } is an eigenbasis of𝑉 ⊗𝑉 ∗ � EndC(𝑉 ) for ad𝑥𝑠 and for ad𝑧 with eigenvalues
𝜆 𝑗 − 𝜆𝑖 and 𝜆 𝑗 − 𝜆𝑖 respectively. The eigenspace for ad𝑥𝑠 for eigenvalue 𝜆 ∈ C thus equals the eigenspace of ad𝑧 for 𝜆.
This implies [𝑧, 𝐵] ⊂ 𝐴. By assumption we have 0 = tr(𝑥𝑠 ◦ 𝑧), but 𝑥𝑠 ◦ 𝑧 is represented by a diagonal matrix with
entries |𝜆𝑖 |2, so all 𝜆𝑖 = 0, thus 𝑥𝑠 = 0 and 𝑥 = 𝑥𝑛 is nilpotent. □

Theorem 3.3.6 [Cartan’s criterion of solvability] Let𝑉 be a finite-dimensional vector space over C and 𝔤 a Lie
subalgebra of 𝔤𝔩(𝑉 ). Then 𝔤 is solvable if and only if tr(𝑥 ◦ 𝑦) = 0 for all 𝑥 ∈ [𝔤, 𝔤] and 𝑦 ∈ 𝔤.

Proof. Suppose that 𝔤 is solvable, then Corollary 3.2.12 says that all 𝑦 ∈ 𝔤 act on 𝑉 by upper triangular matrices with
respect to some fixed basis. Consequently, any 𝑥 ∈ [𝔤, 𝔤] acts by a strictly upper triangular matrix, and so does 𝑥 ◦ 𝑦,
but these have trace zero.

Conversely, suppose that tr(𝑥 ◦ 𝑦) = 0 for all 𝑥 ∈ [𝔤, 𝔤] and 𝑦 ∈ 𝔤. We prove that 𝔤 is solvable by showing that
[𝔤, 𝔤] is nilpotent (Corollary 3.2.13). It is enough to show that all 𝑥 ∈ [𝔤, 𝔤] act by nilpotent endomorphisms of 𝑉
(Corollary 3.2.7). For this we would like to use the technical Lemma 3.3.5 with 𝐴 = [𝔤, 𝔤] and 𝐵 = 𝔤. To do so, let
𝑧 ∈ EndC(𝑉 ) with [𝑧, 𝔤] ⊂ [𝔤, 𝔤] and expand 𝑥 =

∑
𝑖 [𝑐𝑖 , 𝑑𝑖] as a sum of Lie brackets (note that 𝑥 ∈ [𝔤, 𝔤] need not be

a single Lie bracket!). Then we compute:

tr(𝑥 ◦ 𝑧) =
∑︁
𝑖

tr( [𝑐𝑖 , 𝑑𝑖] ◦ 𝑧)

=
∑︁
𝑖

tr(𝑐𝑖 ◦ 𝑑𝑖 ◦ 𝑧 − 𝑑𝑖 ◦ 𝑐𝑖 ◦ 𝑧)

=
∑︁
𝑖

tr(𝑐𝑖 ◦ 𝑑𝑖 ◦ 𝑧 − 𝑐𝑖 ◦ 𝑧 ◦ 𝑑𝑖)

=
∑︁
𝑖

tr(𝑐𝑖 ◦ [𝑑𝑖 , 𝑧]) = 0

where we have used tr(𝑦 ◦ 𝑥) = tr(𝑥 ◦ 𝑦) = 0 for all 𝑥 ∈ [𝔤, 𝔤] and 𝑦 ∈ 𝔤 in the last line. Now the assumptions of
Lemma 3.3.5 are satisfied, its conclusion completes the proof. □

Definition 3.3.7 Let 𝔤 be a finite-dimensional Lie algebra over F. The Killing form of 𝔤 is the bilinear form:

𝜅 = 𝜅𝔤 : 𝔤 × 𝔤 → F,
(𝑥,𝑦) ↦→ tr(ad𝑥 ◦ ad𝑦) .

A bilinear form 𝑏 : 𝔤 × 𝔤 → F is called invariant if 𝑏 ( [𝑥,𝑦], 𝑧) = 𝑏 (𝑥, [𝑦, 𝑧]) for all 𝑥,𝑦, 𝑧 ∈ 𝔤.

Note that the Killing form is symmetric and invariant (a computation analogous to the end of the proof of
Theorem 3.3.6).
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Corollary 3.3.8 Let 𝔤 be a finite-dimensional Lie algebra over C. Then 𝔤 is solvable if and only if 𝔤 ⊥ [𝔤, 𝔤] with
respect to the Killing form, i.e. 𝜅 (𝑥, [𝑦, 𝑧]) = 0 for all 𝑥,𝑦, 𝑧 ∈ 𝔤.

Proof. Note that 𝜅 (𝑥, [𝑦, 𝑧]) = tr(ad𝑥 ◦ ad[𝑦,𝑧 ]) = tr(ad𝑥 ◦[ad𝑦, ad𝑧]) = tr( [ad𝑦, ad𝑧] ◦ ad𝑥 ). By Cartan’s criterion
Theorem 3.3.6 the second condition is equivalent to ad(𝔤) being solvable. But this holds if and only if 𝔤 is solvable, as
seen from the short exact sequence 𝑍 (𝔤) ↩→ 𝔤 ↠ ad(𝔤) and Remark 3.2.6.(5). □ L11

End
In particular, if the Killing form vanishes identically, 𝔤 must be solvable.

Remark 3.3.9 Using a slighly more careful proof, Lemma 3.3.5 and then also Theorem 3.3.6 and Corollary 3.3.8
extend to an arbitrary field of characteristic zero.

Lemma 3.3.10 Let 𝔤 be a finite-dimensional Lie algebra and 𝐼 ⊂ 𝔤 and ideal. Then the Killing form of 𝐼 is the
restriction of the Killing form of 𝔤, i.e. 𝜅𝐼 = 𝜅𝔤 |𝐼×𝐼 .

Proof. More generally, if 𝐼 ⊂ 𝔤 are finite-dimensional vector spaces and 𝑎 ∈ EndF(𝔤) with 𝑎(𝔤) ⊂ 𝐼 , then tr(𝑎) =
tr(𝑎 |𝐼 ) for the restriction 𝑎 |𝐼 : 𝐼 → 𝐼 . This we apply to 𝑎 = ad𝑥 ◦ ad𝑦 for 𝑥,𝑦 ∈ 𝐼 . □

Exercise 35 Let 𝑥 ∈ EndC(𝑉 ) be an endomorphism of a finite-dimensional vector space over C. Show that there
exist polynomials 𝑃,𝑄 ∈ C[𝑋 ] without constant term (i.e. 𝑃 (0) = 𝑄 (0) = 0) such that 𝑥𝑠 = 𝑃 (𝑥) and 𝑥𝑛 = 𝑄 (𝑥).
(Hint: use the Chinese Remainder Theorem.) Now deduce the statements of Remarks 3.3.3.(2).
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4 Complex semisimple Lie algebras

In this section we work over a field F of characteristic zero.

4.1 Characterization

Definition 4.1.1 A Lie algebra is called semisimple if it is isomorphic to a finite product of finite-dimensional
simple Lie algebras. A Lie algebra is called reductive if it is isomorphic to a product of a semisimple and a finite-
dimensional abelian Lie algebra.

Remarks 4.1.2 (1) Any semisimple Lie algebra is also reductive.

(2) The Lie algebra 𝔤 = 0 is semisimple. Abelian Lie algebras 𝔤 ≠ 0 are not semisimple but reductive.

(3) If 𝔤 is finite-dimensional and simple, then 𝔤 is semisimple. However, there are also infinite-dimensional simple
Lie algebras, so semisimplicity is not a generalization of simplicity.

Theorem 4.1.3 [Characterization of semisimple Lie algebras] Let 𝔤 be a finite-dimensional Lie algebra over
F of characteristic zero. Then the following are equivalent:

(1) 𝔤 is a direct sum of its simple ideals;

(2) 𝔤 is semisimple;

(3) 𝔤 has no abelian ideal except 0;

(4) 𝔤 has no solvable ideal except 0 (i.e. rad(𝔤) = 0);

(5) 𝔤 has a non-degenerate Killing form.

If 𝔤 is a Lie algebra and 𝔤1, . . . , 𝔤𝑛 Lie subalgebras, then we say 𝔤 decomposes into the product of the 𝔤𝑖 and write
𝔤 = 𝔤1 × · · · × 𝔤𝑛 if the map 𝔤1 × · · · × 𝔤𝑛 → 𝔤 given by addition is an isomorphism of Lie algebras. This is equivalent
to the 𝔤𝑖 being ideals of 𝔤 and the map 𝔤1 × · · · × 𝔤𝑛 → 𝔤 an isomorphism of vector spaces.

Proof. (1) ⇒ (2): directly from the definition. (2) ⇒ (3): a nontrivial abelian ideal would have nontrivial intersection
with at least one simple factor of 𝔤, in contradiction to simplicity. (3) ⇒ (4): Any nontrivial solvable ideal contains a
nontrivial abelian ideal at the end of of its derived series (all entries of this derived series are ideals of 𝔤 because of
Remark 1.3.8). (4) ⇒ (3): an nontrivial abelian ideal would also be solvable.

(4) ⇒ (5): We construct a candidate solvable ideal, namely the radical of the Killing form 𝜅 = 𝜅𝔤:

rad𝜅 := {𝑥 ∈ 𝔤 | 𝜅 (𝑥,𝑦) = 0 for all 𝑦 ∈ 𝔤}

One easily checks that this is an ideal because the Killing form is invariant. The restriction of 𝜅 to rad𝜅 , i.e. the
Killing form of rad𝜅 (Lemma 3.3.10) is zero, thus rad𝜅 is solvable by Corollary 3.3.8. Now (4) implies that rad𝜅 = 0,
i.e. that 𝜅 is non-degenerate, which is (5).

(5) ⇒ (3): Let 𝐼 ⊂ 𝔤 be an abelian ideal. We claim that 𝐼 ⊂ rad𝜅 . If the latter is zero by (5), then also the
former (3). To verify the claim, we need to check that for any 𝑥 ∈ 𝔤 and 𝑦 ∈ 𝐼 we have 𝜅 (𝑥,𝑦) = tr(ad𝑥 ◦ ad𝑦) = 0.
The latter holds because ad𝑥 ◦ ad𝑦 is nilpotent, in fact (ad𝑥 ◦ ad𝑦)2 = 0. To see this, note that for 𝑧 ∈ 𝔤 we have
(ad𝑥 ◦ ad𝑦)2(𝑧) = [𝑥, [𝑦, [𝑥, [𝑦, 𝑧]]]]. Now [𝑥, [𝑦, 𝑧]] ∈ 𝐼 since 𝐼 is an ideal and then [𝑦, [𝑥, [𝑦, 𝑧]]] = 0 since 𝐼 is
abelian.

(4) ⇒ (1): If 𝐼 ⊂ 𝔤 is an ideal, then so is 𝐼⊥ := {𝑦 ∈ 𝔤 | 𝜅 (𝑦, 𝐼 ) = 0} because 𝜅 is invariant. Furthermore, 𝜅
vanishes on the ideal 𝐼 ∩ 𝐼⊥, which is thus solvable by Corollary 3.3.8 (and Lemma 3.3.10). Now assume that (4)
holds. This implies 𝐼 ∩ 𝐼⊥ = 0 and then [𝐼 , 𝐼⊥] = 0 (both are ideals). Comparing dimensions we see 𝔤 = 𝐼 ⊕ 𝐼⊥ and
thus 𝔤 = 𝐼 × 𝐼⊥. Any ideal 𝐽 of 𝐼 or 𝐼⊥ would also be an ideal of 𝔤, thus (4) applies to 𝐼 and 𝐼⊥ and we can iterate
the argument. If in each step we choose a proper, nontrivial ideal, then this process will terminate when we have
written 𝔤 = 𝐼1 × · · · × 𝐼𝑟 for simple ideals 𝐼 𝑗 . This decomposition is unique, since for any other simple ideal 𝐽 , one has
𝐽 = [𝐽 , 𝔤] = [𝐽 , 𝐼1] × · · · × [𝐽 , 𝐼𝑟 ], so 𝐽 = [𝐽 , 𝐼 𝑗 ] = 𝐼 𝑗 for some 𝑗 . □

Remarks 4.1.4 (1) Every ideal in a complex semisimple Lie algebra is a product of simple ideals. Every quotient
and every homomorphic image of a complex semisimple Lie algebra is semisimple.
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(2) A reductive Lie algebra 𝔤 decomposes uniquely as 𝔤 = [𝔤, 𝔤] × 𝑍 (𝔤) into semisimple and abelian parts.

(3) If 𝔤 is semisimple, then 𝔤 = [𝔤, 𝔤]. Such Lie algebras are called perfect. There are perfect Lie algebras that are
not semisimple and not reductive.

Now we can supply one result that was missing during the discussion of classification problems in Section 3.1.

Lemma 4.1.5 Let 𝔤 be a finite-dimensional Lie algebra. If 𝔤 is solvable, then 𝔤/rad𝔤 = 0. Conversely, if 𝔤 is not
solvable, then 𝔤/rad𝔤 ≠ 0 is semisimple.

Proof. The first statement is immediate since rad𝔤 = 𝔤 for solvable 𝔤. For the second, suppose 𝐼 ≠ 0 is a solvable
ideal in 𝔤/rad. Then the short exact sequence

rad𝔤 ↩→ 𝔤 ↠ 𝔤/rad𝔤

contains the short exact sequence of ideals

rad𝔤 ↩→ 𝑞−1(𝐼 ) ↠ 𝐼

where 𝑞 again denotes the quotient morphism. By Remarks 3.2.6.(5) 𝑞−1(𝐼 ) is again solvable but it properly contains
rad𝔤, a contradiction to maximality. □ L12

End

Exercise 36 Prove Remarks 4.1.4.(1).

Exercise 37 Prove Remarks 4.1.4.(2) and deduce that [𝔤, 𝔤] = 𝔤 for semisimple 𝔤, as stated in Remarks 4.1.4.(3). End
Week 8
Exerc.4.2 Weyl’s theorem

Recall the notation Hom𝔤 (𝑉 ,𝑊 ) and End𝔤 (𝑉 ) from Remarks 1.4.5 for spaces of intertwiners of 𝔤-representations.

Lemma 4.2.1 [Schur’s Lemma] If 𝔤 is a Lie algebra over C and 𝐿 a finite-dimensional simple representation, then
End𝔤 (𝐿) = Cid𝐿 .

Proof. Any 𝜙 ∈ EndC(𝐿) has at least one eigenvalue 𝜆 since 𝐿 ≠ 0. If furthermore 𝜙 ∈ End𝔤 (𝐿), then the eigenspace
𝐿𝜆 of 𝜙 for the eigenvalue 𝜆 is a nontrivial subrepresentation of 𝐿. To see this, note that for 𝑥 ∈ 𝔤 and 𝑣 ∈ 𝐿𝜆 :

𝜙 (𝑣) = 𝜆𝑣 =⇒ 𝜙 (𝑥 · 𝑣) = 𝑥 · (𝜙 (𝑣)) = 𝜆(𝑥 · 𝑣)

Since 𝐿 is simple, we have 𝐿 = 𝐿𝜆 and so 𝜙 = 𝜆id𝐿 . □

Remark 4.2.2 Slightly more general, we get the following: let 𝑉 ,𝑊 be representations of a Lie algebra over F, not
necessarily algebraically closed, and 𝜙 ∈ Hom𝔤 (𝑉 ,𝑊 ).

(1) If 𝑉 is simple, then 𝜙 is injective or zero, since ker(𝜙) is a subrepresentation of 𝑉 .

(2) If𝑊 is simple, then 𝜙 is surjective or zero, since im(𝜙) is a subrepresentation of𝑊 .

(3) End𝔤 (𝑉 ) is a division algebra over F since any 𝜙 ∈ End𝔤 (𝑉 ) is either zero or an isomorphism.

Definition 4.2.3 A Lie algebra representation 𝑉 is called semisimple if it is a direct sum of simple subrepresenta-
tions, 𝑉 =

⊕
𝑖 𝑉𝑖 with 𝑉𝑖 ⊂ 𝑉 simple. The zero representation 𝑉 = 0 is semisimple.

Remarks 4.2.4 (1) A finite-dimensional Lie algebra is reductive if and only if its adjoint representation is
semisimple in the sense of Definition 4.2.3, i.e. a direct sum of its simple representations. This follows directly
from Remarks 1.5.2.

(2) Every subrepresentation and quotient of a semisimple representation is again semisimple.

(3) For a representation 𝑉 the following are equivalent:

• 𝑉 is semisimple,
• 𝑉 is a sum (not necessarily a direct sum) of simple subrepresentations,
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• every subrepresentation of 𝑉 has a complement that is a representation.

Theorem 4.2.5 [Weyl’s Theorem] Every finite-dimensional representation of a complex semisimple Lie algebra
is semisimple.

The proof appears below and requires a bit of preparation.

Construction 4.2.6 Let 𝔤 be a finite-dimensional Lie algebra over F and 𝑏 : 𝔤 × 𝔤 → F a non-degenerate invariant
bilinear form. For any 𝔤-representation 𝑉 we define a linear map

𝐶𝑏 = 𝐶𝑉
𝑏
: 𝑉 → 𝑉

as follows. Choose a basis {𝑥1, . . . , 𝑥𝑛} of 𝔤 and let {𝑥1, . . . , 𝑥𝑛} the basis dual with respect to 𝑏, i.e. the basis
determined by 𝑏 (𝑥𝑖 , 𝑥 𝑗 ) = 𝛿𝑖, 𝑗 . Now set

𝐶𝑏 (𝑣) =
𝑛∑︁
𝑖=1

𝑥𝑖 · (𝑥𝑖 · 𝑣).

(In fact, this does not depend on the choice of basis.)

Example 4.2.7 Consider 𝔤 = 𝔰𝔩(2,C) and 𝑏 = 8𝜅 the scaled Killing form, then one can check that𝐶𝑏 is the Casimir
operator from Exercise 21.

Lemma 4.2.8 The map 𝐶𝑏 commutes with the action of 𝔤, i.e. 𝐶𝑏 ∈ End𝔤 (𝑉 ).

Proof. Let 𝑦 ∈ 𝔤 and expand [𝑥𝑖 , 𝑦] =
∑𝑛

𝑗=1 𝑎𝑖, 𝑗𝑥 𝑗 and [𝑦, 𝑥 𝑗 ] = ∑𝑛
𝑖=1 𝑏 𝑗,𝑖𝑥

𝑖 , then the invariance of the bilinear form
𝑏 ( [𝑥𝑖 , 𝑦], 𝑥 𝑗 ) = 𝑏 (𝑥𝑖 , [𝑦, 𝑥 𝑗 ]) implies 𝑎𝑖, 𝑗 = 𝑏 𝑗,𝑖 . Thus for 𝑣 ∈ 𝑉 we have

𝑦 ·𝐶𝑏 (𝑣) −𝐶𝑏 (𝑦 · 𝑣) =
∑︁
𝑖

[𝑦, 𝑥𝑖] · (𝑥𝑖 · 𝑣) +
∑︁
𝑖

𝑥𝑖 · ( [𝑦, 𝑥𝑖] · 𝑣)

=
∑︁
𝑖, 𝑗

−𝑎𝑖, 𝑗𝑥 𝑗 · (𝑥𝑖 · 𝑣) +
∑︁
𝑖, 𝑗

𝑏𝑖, 𝑗𝑥𝑖 · (𝑥 𝑗 · 𝑣) = 0 □

Remark 4.2.9 The Casimir operator also admits a basis-independent definition as a composition of 𝔤-intertwiners

𝑉 → 𝔤 ⊗ 𝔤∗ ⊗ 𝑉 → 𝔤 ⊗ 𝔤 ⊗ 𝑉 → 𝑉 ,

where the first map is induced by the image of id𝔤 ∈ EndF(𝔤) � 𝔤 ⊗ 𝔤∗, namely
∑

𝑖 𝑥𝑖 ⊗ 𝑥∗𝑖 (where 𝑥∗𝑖 denotes the
elements of the dual basis), the second map is built using the inverse to the map 𝔤 → 𝔤∗, 𝑥𝑖 ↦→ 𝑥∗𝑖 induced by the
non-degenerate bilinear form 𝑏, and the third map is given by using the action twice. We leave the details to the
reader.

Lemma 4.2.10 Let 𝑉 be a finite-dimensional vector space over F of char(F) = 0 and 𝔤 ⊂ 𝔤𝔩(𝑉 ) a semisimple Lie
subalgebra. Then:

(1) (𝑥,𝑦) ↦→ tr(𝑥 ◦ 𝑦) is a nondegenerate, invariant, symmetric bilinear form 𝑏 = 𝑏𝑉 on 𝔤.

(2) For 𝐶 = 𝐶𝑉
𝑏
we have tr(𝐶) = dim(𝔤).

Proof. The bilinear form is clearly symmetric and also invariant, as a short computation (see end of proof of
Theorem 3.3.6) shows. In particular, rad𝑏 is an ideal, that is solvable by Theorem 3.3.6 (see 3.3.9) and thus zero by
Theorem 4.1.3 since 𝔤 is semisimple. Now rad𝑏 = 0 just says that 𝑏 is non-degenerate. For the second assertion,
consider a basis {𝑥1, . . . , 𝑥𝑛} of 𝔤 and the basis {𝑥1, . . . , 𝑥𝑛} that is dual with respect to the trace pairing on 𝑉 , i.e.
tr(𝑥𝑖 ◦ 𝑥 𝑗 ) = 𝛿𝑖, 𝑗 . Since 𝔤 ⊂ 𝔤𝔩(𝑉 ), we have the simple formula 𝐶𝑉

𝑏
=

∑𝑛
𝑖=1 𝑥𝑖 ◦ 𝑥𝑖 : 𝑉 → 𝑉 , and by linearity of the

trace

tr(𝐶𝑉
𝑏
) =

𝑛∑︁
𝑖=1

tr(𝑥𝑖 ◦ 𝑥𝑖) = 𝑛 = dim(𝔤) □

Lemma 4.2.11 Every finite-dimensional representation 𝑉 of a complex semisimple Lie algebra decomposes as
𝑉 � 𝑉 𝔤 ⊕ 𝔤 ·𝑉 . In particular, one can identify the invariants 𝑉 𝔤 with the coinvariants 𝑉 /𝔤 ·𝑉 .

Here 𝔤 ·𝑉 denotes the subspace of 𝑉 spanned by all 𝑥 · 𝑣 for 𝑥 ∈ 𝔤, 𝑣 ∈ 𝑉 , which is clearly a subrepresentation.
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Proof. We proceed by induction on the dimension of𝑉 , with the cases dim(𝑉 ) = 0, 1 being straightforward. If𝑉 𝔤 = 𝑉 ,
then we are done as 𝔤 ·𝑉 = 0. Thus suppose that 𝑉 𝔤 ≠ 𝑉 . This implies that the Lie algebra morphism 𝜌 : 𝔤 → 𝔤𝔩(𝑉 )
defining the representation is nonzero, giving us a nontrivial Lie subalgebra 𝜌 (𝔤) ⊂ 𝔤𝔩(𝑉 ) that is again semisimple
by Remarks 4.1.4.(1). Let 𝐶 ∈ End𝜌 (𝔤) (𝑉 ) be the associated intertwiner from Lemma 4.2.10. By Lemma 1.4.6 𝑉
decomposes as the direct sum of the generalized eigenspaces of 𝐶 . If 𝐶 has more than one eigenvalue, then we could
write 𝑉 = 𝑉1 ⊕ 𝑉2 for subrepresentations with dim(𝑉1) < dim(𝑉 ) > dim(𝑉2) and then use (𝑉1 ⊕ 𝑉2)𝔤 = 𝑉

𝔤

1 ⊕ 𝑉
𝔤

2 and
𝔤 · (𝑉1 ⊕ 𝑉2) = 𝔤 ·𝑉1 ⊕ 𝔤 ·𝑉2 to conclude the statement from the induction hypothesis. Thus suppose that 𝐶 has a
single eigenvalue, which has to be nonzero since tr(𝐶) = dim(𝜌 (𝔤)) ≠ 0 by Lemma 4.2.10. Thus we have 𝑉 = im(𝐶)
and 𝑉 𝔤 ⊂ ker(𝐶) = 0, and then 𝑉 = 𝔤 ·𝑉 = 𝑉 𝔤 ⊕ 𝔤 ·𝑉 . □ L13

End
Remark 4.2.12 As mentioned in the proof, the statement of the lemma is straightforward for 1-dimensional 𝑉 ,
since either all of 𝔤 acts trivially on a spanning vector of 𝑉 , and then 𝑉 = 𝑉 𝔤, or not, in which case 𝑉 = 𝔤 ·𝑉 . In fact,
for semisimple 𝔤 only the former occurs, since by Example 1.4.7 the 1-dimensional representations are classified, up
to isomorphism, by (𝔤/[𝔤, 𝔤])∗, which is trivial since 𝔤 = [𝔤, 𝔤].

Proof of Weyl’s Theorem 4.2.5. We need to show that every finite-dimensional representation𝑉 of a complex semisim-
ple Lie algebra is semisimple. If 𝑈 ⊂ 𝑉 is a subrepresentation, then restriction of linear maps provides a surjec-
tive morphism HomC(𝑉 ,𝑈 ) ↠ HomC(𝑈 ,𝑈 ) of 𝔤-representations. By Lemma 4.2.11 and since 𝔤 · HomC(𝑉 ,𝑈 ) is
mapped to 𝔤 · HomC(𝑈 ,𝑈 ), this induces a surjection HomC(𝑉 ,𝑈 )𝔤 ↠ HomC(𝑈 ,𝑈 )𝔤. After choosing a preimage
𝑓 ∈ Hom𝔤 (𝑉 ,𝑈 ) = HomC(𝑉 ,𝑈 )𝔤 of id𝑈 ∈ HomC(𝑈 ,𝑈 )𝔤 we decompose the representation 𝑉 as 𝑉 � 𝑈 ⊕ ker(𝑓 ).
Induction completes the proof. □

Proposition 4.2.13 A finite-dimensional complex Lie algebra is reductive if and only if every solvable ideal is
contained in the center.

Proof. By Remarks 4.2.4.(1) a finite-dimensional Lie algebra 𝔤 is reductive if and only if its adjoint representation
is semisimple. The latter implies that every ideal of 𝔤 is a direct sum of simple or abelian ideals and every ideal
has a vector space complement that is again an ideal. Then every 1-dimensional ideal is contained in 𝑍 (𝔤) and
every solvable ideal is a sum of 1-dimensional ideals, thus also central. Conversely, if every solvable ideal is central,
then ad(𝔤) ⊂ 𝔤𝔩(𝔤) is semisimple (because rad(𝔤) = 𝑍 (𝔤) and Lemma 4.1.5) and by Theorem 4.2.5 𝔤 is a semisimple
representation of ad(𝔤). In other words, the adjoint representation of 𝔤 is semisimple, and thus 𝔤 is reductive. □

Theorem 4.2.14 [Sufficient condition for semisimplicity] Let 𝔤 be a finite-dimensional Lie algebra over C .

(1) If 𝔤 admits a faithful, simple, finite-dimensional representation 𝑉 , then 𝔤 is reductive and dim(𝑍 (𝔤)) ≤ 1.

(2) If 𝔤 acts on this 𝑉 by endomorphisms of trace zero, then 𝔤 is semisimple.

Proof. Using Proposition 4.2.13 it suffices to prove that every solvable ideal 𝐼 ⊂ 𝔤 is central. By Lie’s Theorem 3.2.9,
there exists a 𝑣 ∈ 𝑉 , 𝑣 ≠ 0 such that 𝐼 · 𝑣 ⊂ C𝑣 . This determines a linear form 𝜆 ∈ 𝐼 ∗ with 𝑥 · 𝑣 = 𝜆(𝑥)𝑣 for all
𝑥 ∈ 𝐼 . By Lemma 3.2.10 the corresponding simultaneous eigenspace 𝑉𝜆 = {𝑤 ∈ 𝑉 | 𝑥 ·𝑤 = 𝜆(𝑥)𝑤 for all 𝑥 ∈ 𝐼 } is a
subrepresentation of 𝑉 , but since 0 ≠ 𝑣 ∈ 𝑉 and 𝑉 was simple we deduce 𝑉 = 𝑉𝜆 . This means a solvable ideal 𝐼 ⊂ 𝔤

acts on𝑉 by scalar multiples of the identity map. If the representation is faithful, then dim(𝐼 ) ≤ 1 and [𝐼 , 𝔤] = 0, i.e. 𝐼
is central. Since 𝑍 (𝔤) is an abelian (and thus solvable) ideal in 𝔤, the dimension constraint follows. If the action is by
trace zero matrices, then any solvable 𝐼 acts by the zero multiple of the identity matrix, hence 𝐼 = 0 by faithfulness,
and 𝔤 is semisimple. □

Example 4.2.15 We deduce that 𝔤𝔩(𝑛,C) is reductive and 𝔰𝔩(𝑛,C) is semisimple.

Exercise 38 Verify Remarks 4.2.4.(2)-(3). End
Week 9
Exerc.4.3 Jordan decomposition in semisimple Lie algebras

Theorem 4.3.1 [Jordan decomposition in semisimple Lie algebras] Let 𝔤 be a complex semisimple Lie algebra.

(1) Every 𝑥 ∈ 𝔤 admits a unique decomposition 𝑥 = 𝑠 + 𝑛 with ad𝑠 diagonalizable, ad𝑛 nilpotent, and [𝑠, 𝑛] = 0.
This is called the absolute Jordan decomposition of 𝒙 in 𝐠.

(2) If 𝜌 : 𝔤 → 𝔤𝔩(𝑉 ) is a finite-dimensional representation and 𝑥 = 𝑠 + 𝑛 is the absolute Jordan decomposition of 𝑥
in 𝔤, then 𝜌 (𝑥) = 𝜌 (𝑠) + 𝜌 (𝑛) is the Jordan decomposition of 𝜌 (𝑥) ∈ End(𝑉 ) in the sense of Lemma 3.3.2.
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(3) If 𝜙 : 𝔤 → 𝔤′ is a morphism of Lie algebras with 𝔤′ semisimple and 𝑥 = 𝑠 +𝑛 the absolute Jordan decomposition
of 𝑥 in 𝔤, then 𝜙 (𝑥) = 𝜙 (𝑠) + 𝜙 (𝑛) is the absolute Jordan decomposition of 𝜙 (𝑥) in 𝔤′.

The proof appears below after two preparatory results.

Lemma 4.3.2 Every semisimple ideal 𝐼 of a finite-dimensional Lie algebra 𝔤 over C has a vector space complement
that is itself an ideal.

An ideal is called semisimple if it is semisimple as Lie algebra.

Proof. The proof is reminiscent of the part (4) ⇒ (1) in Theorem 4.1.3. As candidate for the complement we
consider the orthogonal complement of 𝐼 with respect to the Killing form of 𝔤. In formulas, 𝐼⊥ = {𝑥 ∈ 𝔤 | 𝜅𝔤 (𝑥,𝑦) =
0 for all 𝑦 ∈ 𝐼 }. By invariance of the Killing form, 𝐼⊥ is an ideal of 𝔤. Since 𝐼 ∩ 𝐼⊥ is an ideal of 𝐼 , it is semisimple, but
its Killing form vanishes, forcing 𝐼 ∩ 𝐼⊥ = 0 by Theorem 4.1.3. Comparing dimension, using the non-degeneracy of
the Killing form on 𝐼 , we see 𝔤 � 𝐼 × 𝐼⊥. □

Lemma 4.3.3 Let 𝑉 be a finite-dimensional complex vector space and 𝔤 ⊂ 𝔤𝔩(𝑉 ) a semisimple Lie subalgebra. If
𝑥 ∈ 𝔤 has the Jordan decomposition 𝑥 = 𝑥𝑠 + 𝑥𝑛 , then 𝑥𝑠 , 𝑥𝑛 ∈ 𝔤.

Proof. The proof relies on a characterization of 𝔤 as Lie subalgebra of 𝔤𝔩(𝑉 ), namely by identifying it with:

𝑁 := 𝑁𝔤𝔩 (𝑉 ) (𝔤) ∩
⋂
𝑊 ⊂𝑉
𝔤-subrep

𝑆𝑁𝔤𝔩 (𝑉 ) (𝑊 )

where

𝑁𝔤𝔩 (𝑉 ) (𝔤) := {𝑦 ∈ 𝔤𝔩(𝑉 ) | [𝑦, 𝔤] ⊂ 𝔤}
𝑆𝑁𝔤𝔩 (𝑉 ) (𝑊 ) := {𝑦 ∈ 𝔤𝔩(𝑉 ) |𝑦 ·𝑊 ⊂𝑊 and tr(𝑦 |𝑊 ) = 0}.

The inclusion 𝔤 ⊂ 𝑁 follows from the general fact 𝔤 ⊂ 𝑁𝔤𝔩 (𝑉 ) (𝔤) together with the observations that each 𝑦 ∈ 𝔤

maps 𝑦 ·𝑊 ⊂ 𝑊 if𝑊 ⊂ 𝑉 is a 𝔤-subrepresentation and tr(𝑦 |𝑊 ) = 0 since 𝔤 = [𝔤, 𝔤] and the traces of (linear
combinations of) commutators vanish. Conversely, 𝑁 ⊂ 𝑁𝔤𝔩 (𝑉 ) (𝔤) now implies that 𝑁 contains 𝔤 as ideal. By
Lemma 4.3.2 this has a complement 𝔤⊥ with [𝔤, 𝔤⊥] = 0. In particular, every 𝑦 ∈ 𝔤⊥ gives rise to an intertwiner
𝑦 |𝑊 of any 𝔤-subrepresentation𝑊 of 𝑉 . If𝑊 is simple, then 𝑦 |𝑊 acts as a scalar by Schur’s Lemma 4.2.1. But since
tr(𝑦 |𝑊 ) = 0 we deduce 𝑦 |𝑊 = 0. Now Theorem 4.2.5 implies that𝑉 is a direct sum of simple 𝔤-representations and so
𝑦 = 0 and hence 𝔤⊥ = 0 and 𝑁 = 𝔤.

Next we show the implication 𝑥 ∈ 𝑁𝔤𝔩 (𝑉 ) (𝔤) ⇒ 𝑥𝑠 , 𝑥𝑛 ∈ 𝑁𝔤𝔩 (𝑉 ) (𝔤). In fact 𝑥 ∈ 𝑁𝔤𝔩 (𝑉 ) (𝔤) is equivalent to
ad𝑥 (𝔤) ⊂ 𝔤, and then Lemma 3.3.4 and Remarks 3.3.3.(2) imply (ad𝑥𝑠 ) (𝔤) = (ad𝑥 )𝑠 (𝔤) ⊂ 𝔤, which again is equivalent
to 𝑥𝑠 ∈ 𝑁𝔤𝔩 (𝑉 ) (𝔤). The argument for 𝑥𝑛 is parallel.

Finally we need to prove 𝑥 ∈ 𝑆𝑁𝔤𝔩 (𝑉 ) (𝑊 ) ⇒ 𝑥𝑠 , 𝑥𝑛 ∈ 𝑆𝑁𝔤𝔩 (𝑉 ) (𝑊 ) for every 𝔤-subrepresentation 𝑊 ⊂ 𝑉 .
Recall from Exercise 35 that 𝑥𝑠 and 𝑥𝑛 can be written as polynomials without constant term, evaluated on 𝑥 . Thus
𝑥 ·𝑊 ⊂𝑊 implies 𝑥𝑠 ·𝑊 ⊂𝑊 and 𝑥𝑛 ·𝑊 ⊂𝑊 . Furthermore, by nilpotency tr(𝑥𝑛 |𝑊 ) = 0. If tr(𝑥 |𝑊 ) = 0, then also
tr(𝑥𝑠 |𝑊 ) = tr(𝑥 |𝑊 ) − tr(𝑥𝑛 |𝑊 ) = 0.

This finishes the proof since we have shown the implication 𝑥 ∈ 𝑁 ⇒ 𝑥𝑠 , 𝑥𝑛 ∈ 𝑁 and 𝑁 = 𝔤. □

Proof of Theorem 4.3.1. (1) Consider the Jordan decomposition ad𝑥 = (ad𝑥 )𝑠 + (ad𝑥 )𝑛 of ad𝑥 in 𝔤𝔩(𝔤). By Lemma 4.3.3,
applied to ad(𝔤) ⊂ 𝔤𝔩(𝔤), there exist 𝑠, 𝑛 ∈ 𝔤, such that ad𝑠 = (ad𝑥 )𝑠 and ad𝑛 = (ad𝑥 )𝑛 . Now 𝑥 = 𝑠 + 𝑛 since
𝑥 − 𝑠 −𝑛 ∈ ker(ad) = 𝑍 (𝔤) = 0 as 𝔤 is semisimple. This shows the existence of an absolute Jordan decomposition. The
uniqueness of the absolute Jordan decomposition is also a consequence of the faithfulness of the adjoint representation,
because the concrete Jordan decomposition ad𝑥 = ad𝑠 + ad𝑛 is unique.

(2) Let 𝜌 : 𝔤 → 𝔤𝔩(𝑉 ) be a finite-dimensional representation. Consider the commutative diagram

𝔤 𝜌 (𝔤) 𝔤𝔩(𝑉 )

𝔤 𝜌 (𝔤) 𝔤𝔩(𝑉 )
ad𝔤𝑥 ad𝜌 (𝔤)

𝜌 (𝑥 ) ad𝔤𝔩 (𝑉 )
𝜌 (𝑥 )
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where we have placed superscripts to distinguish the different adjoint actions. By Remarks 3.3.3.(2) we obtain
analogous commutative diagrams for the semisimple parts. By definition of 𝑠 we have (ad𝔤𝑥 )𝑠 = ad𝔤𝑠 and Lemma 3.3.4
implies (ad𝔤𝔩 (𝑉 )

𝜌 (𝑥 ) )𝑠 = ad𝔤𝔩 (𝑉 )
𝜌 (𝑥 )𝑠 . The commutative diagram of semisimple parts thus takes the form

𝔤 𝜌 (𝔤) 𝔤𝔩(𝑉 )

𝔤 𝜌 (𝔤) 𝔤𝔩(𝑉 )
ad𝔤𝑠 ad𝔤𝔩 (𝑉 )

𝜌 (𝑥 )𝑠

and the middle vertical arrow is determined as ad𝜌 (𝔤)
𝜌 (𝑠 ) = ad𝜌 (𝔤)

𝜌 (𝑥 )𝑠 . Since ad𝜌 (𝔤) : 𝜌 (𝔤) → 𝔤𝔩(𝜌 (𝔤)) is injective, we
deduce 𝜌 (𝑠) = 𝜌 (𝑥)𝑠 . Similarly one proves 𝜌 (𝑛) = 𝜌 (𝑥)𝑛 .

(3) Let 𝜙 : 𝔤 → 𝔤′ be a morphism between semisimple Lie algebras and let 𝑥 ∈ 𝔤 with absolute Jordan decompo-
sition 𝑥 = 𝑠 + 𝑛. Consider the adjoint representation ad𝔤′ : 𝔤′ → 𝔤𝔩(𝔤′) and apply (2) to 𝜌 := ad𝔤′ ◦𝜙 . This implies
that ad𝔤′ (𝜙 (𝑠)) is semisimple and ad𝔤′ (𝜙 (𝑛)) is nilpotent. Clearly the other conditions 𝜙 (𝑥) = 𝜙 (𝑠) + 𝜙 (𝑛) and
[𝜙 (𝑠), 𝜙 (𝑛)] = 0 for the absolute Jordan decomposition of 𝜙 (𝑥) in 𝔤′ are also satisfied by 𝜙 (𝑠) and 𝜙 (𝑛). □

Definition 4.3.4 Let 𝔤 be a Lie algebra. An element 𝑥 ∈ 𝔤 is ad-semisimple resp. ad-nilpotent if ad𝑥 ∈ End(𝔤)
is semisimple resp. nilpotent. If 𝔤 is semisimple, then these get abbreviated to semisimple resp. nilpotent. For the
Jordan decomposition 𝑥 = 𝑠 + 𝑛 in a semisimple Lie algebra, 𝑠 is called the semisimple part and 𝑛 the nilpotent
part of 𝑥 . L14

End
4.4 Root space decomposition

Lemma 4.4.1 Let𝑉 be a vector space and𝑇 ⊂ End(𝑉 ) a finite-dimensional subspace of diagonalizable and pairwise
commuting endomorphisms. Then 𝑉 decomposes into simultaneous eigenspaces:

𝑉 =
⊕
𝜆∈𝑇 ∗

𝑉𝜆 where 𝑉𝜆 = {𝑣 ∈ 𝑉 | 𝑥 (𝑣) = 𝜆(𝑥)𝑣 for all 𝑥 ∈ 𝑇 }

Proof. The proof proceeds by induction on dim(𝑇 ) = 𝑛, with the case 𝑛 = 0 being vacuous. For 𝑛 ≥ 1, let {𝑥1, . . . , 𝑥𝑛}
be a basis of 𝑇 . Since 𝑥1 is diagonalizable, 𝑉 decomposes into eigenspaces for 𝑥1. Since 𝑥2, . . . , 𝑥𝑛 commute with 𝑥1,
they stabilize these eigenspaces, which we then decompose using the induction hypothesis. □

In the situation of the lemma, the set 𝑃 (𝑉 ) := {𝜆 ∈ 𝑇 ∗ | 𝑉𝜆 ≠ 0} ⊂ 𝑇 ∗ is called the set of weights of 𝑉 and 𝑉𝜆 is
called the weight space for 𝜆.

Example 4.4.2 For 𝔤 = 𝔤𝔩(𝑛, F) consider the abelian Lie subalgebra 𝔥 ⊂ 𝔤 of diagonal matrices. Then the image of
𝔥 ⊂ 𝔤 under ad𝔤 is an abelian Lie subalgebra of 𝔤𝔩(𝔤), i.e. a subspace of pairwise commuting endomorphisms of 𝔤,
which are also diagonalizable (compare with the proof of Lemma 3.3.4). To see this concretely, let 𝐸𝑖, 𝑗 ∈ 𝔤 denote the
standard matrix with a single nonzero entry 1 in the 𝑖th row and 𝑗th column. Further, let ℎ = diag(ℎ1, . . . , ℎ𝑛) ∈ 𝔥 be
the diagonal matrix with entries ℎ1, . . . , ℎ𝑛 ∈ F. Then we compute:

adℎ (𝐸𝑖, 𝑗 ) = [ℎ, 𝐸𝑖, 𝑗 ] = (ℎ𝑖 − ℎ 𝑗 )𝐸𝑖, 𝑗 .

So adℎ is diagonal in the standard basis for 𝔤. Lemma 4.4.1 now yields a decomposition:

𝔤 =
⊕
𝜆∈𝔥∗

𝔤𝜆 where 𝔤𝜆 = {𝑥 ∈ 𝔤 | [ℎ, 𝑥] = 𝜆(ℎ)𝑥 for all ℎ ∈ 𝔥}

Let 𝜖𝑖 ∈ 𝔥∗ denote the linear form which extracts the 𝑖th diagonal entry from a matrix in 𝔥. Then we have

[ℎ, 𝐸𝑖, 𝑗 ] = ((𝜖𝑖 − 𝜖 𝑗 ) (ℎ))𝐸𝑖, 𝑗

and so 𝑃 (𝔤) = {𝜖𝑖 − 𝜖 𝑗 | 1 ≤ 𝑖, 𝑗 ≤ 𝑛} is the set of weights of 𝔤. As weight spaces we have 𝔤0 = 𝔥 and for 𝑖 ≠ 𝑗 we
have 𝔤𝜖𝑖−𝜖 𝑗 = F𝐸𝑖, 𝑗 if char(F) ≠ 2 and 𝔤𝜖𝑖−𝜖 𝑗 = F𝐸𝑖, 𝑗 ⊕ F𝐸 𝑗,𝑖 if char(F) = 2.

Definition 4.4.3 A Lie subalgebra 𝔥 ⊂ 𝔤 of a semisimple Lie algebra over C is a Cartan subalgebra if it is abelian,
contains only semisimple elements of 𝔤, and is maximal under inclusion of Lie subalgebras with respect to the first
two properties.
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Example 4.4.4 In 𝔰𝔩(𝑛,C) the diagonal matrices of trace zero form a Cartan subalgebra.

Remarks 4.4.5 (1) The action of elements of a Cartan subalgebra act by diagonalizable matrices in any represen-
tation, see Theorem 4.3.1. If the elements are observables of a quantum theory, then a Cartan subalgebra chooses
a maximal number of commuting observables, for which one can find eigenbases in every representation.

(2) In general Lie algebras one defines the Cartan subalgebras to be the nilpotent, self-normalizing subalgebras.
One can show that this agrees with the definition given here in the complex semisimple case.

(3) In Definition 4.4.3 we required a Cartan algebra to be abelian. This is superfluous, as it already follows from
the other conditions. To see this, suppose we have a Lie algebra 𝔥 whose elements are ad-semisimple, but
which is not abelian. In this case, we could find 𝑥 ∈ 𝔥 with ad𝑥 ≠ 0, so there would be a 𝑦 ∈ 𝔥 and 𝜆 ∈ F with
ad𝑥 (𝑦) = 𝜆𝑦 ≠ 0. Then:

ad𝑦 (𝑥) = [𝑦, 𝑥] = −[𝑥,𝑦] = − ad𝑥 (𝑦) = −𝜆𝑦 ≠ 0, (ad𝑦)2(𝑥) = −𝜆[𝑦,𝑦] = 0

But then 𝑦 would not be ad-semisimple, a contradiction.

Using Cartan subalgebras, we now obtain decompositions analogous to those from Example 4.4.2 for 𝔤𝔩(𝑛, F).

Definition 4.4.6 (Root space decomposition) Let 𝔤 be a complex semisimple Lie algebra and 𝔥 ⊂ 𝔤 a Cartan
subalgebra. The pairing of 𝜆 ∈ 𝔥∗ withℎ ∈ 𝔥will be denoted ⟨𝜆, ℎ⟩ := 𝜆(ℎ). By Lemma 4.4.1 we obtain a decomposition:

𝔤 =
⊕
𝜆∈𝔥∗

𝔤𝜆 where 𝔤𝜆 = {𝑥 ∈ 𝔤 | [ℎ, 𝑥] = ⟨𝜆, ℎ⟩𝑥 for all ℎ ∈ 𝔥}

and if we set 𝑅(𝔤, 𝔥) := {𝛼 ∈ 𝔥∗ | 𝛼 ≠ 0 and 𝔤𝛼 ≠ 0} = 𝑃 (𝔤) \ {0}, then this is written as:

𝔤 = 𝔤0 ⊕
⊕

𝛼∈𝑅 (𝔤,𝔥)
𝔤𝛼

The finite set 𝑅(𝔤, 𝔥) ⊂ 𝔥∗ is called the root system of 𝔤 with respect to 𝔥. Its elements are the roots and the
simultaneous eigenspaces 𝔤𝛼 are the root spaces. Note that 𝔤0 = 𝐶𝔤 (𝔥) is the centralizer of the Cartan subalgebra 𝔥
in 𝔤.

Remark 4.4.7 A word of warning. The root space decompositions from Definition 4.4.6 give isomorphisms of
vector spaces and, more specifically, representations of ad𝔤 (𝔥) ⊂ 𝔤𝔩(𝔤), but not (!) isomorphisms of Lie algebras.
Root spaces 𝔤𝛼 are not ideals in 𝔤.

Example 4.4.8 Let 𝔤 = 𝔰𝔩(𝑛,C) and denote by 𝔥 ⊂ 𝔤 the Lie subalgebra of diagonal matrices of trace zero. As
before 𝜖𝑖 : 𝔥 → C is the linear form that extracts the 𝑖th entry of a diagonal matrix. We have 𝑅(𝔤, 𝔥) = {𝜖𝑖 −𝜖 𝑗 | 𝑖 ≠ 𝑗},
𝔤0 = 𝔥, and 𝔤𝛼 = C𝐸𝑖, 𝑗 for 𝛼 = 𝜖𝑖 − 𝜖 𝑗 . Note that the 𝜖𝑖 are not linearly dependent in 𝔥∗, since dim(𝔥) = 𝑛 − 1.

Theorem 4.4.9 [on root space decompositions] Let 𝔤 be a complex semisimple Lie algebra with Cartan subal-
gebra 𝔥 ⊂ 𝔤 and root system 𝑅 := 𝑅(𝔤, 𝔥) ⊂ 𝔥∗. For any 𝜆 ∈ 𝔥∗, recall that 𝔤𝜆 denotes the corresponding weight space.
Then we have:

(1) The Cartan subalgebra is its own centralizer 𝔥 = 𝔤0 = 𝐶𝔤 (𝔥).

(2) For every 𝛼 ∈ 𝑅, the root space 𝔤𝛼 is 1-dimensional and there exists an injective morphism of Lie algebras
𝔰𝔩(2,C) ↩→ 𝔤 mapping

C

(
0 1
0 0

)
�−→ 𝔤𝛼 , C

(
0 0
1 0

)
�−→ 𝔤−𝛼 , C

(
1 0
0 −1

)
�−→ [𝔤𝛼 ,−𝔤𝛼 ] ⊂ 𝔥

(3) The negative of a root is again a root, but not other scalar multiples of a root are roots. In formulas, if 𝛼 ∈ 𝑅

then 𝑅 ∩ C𝛼 = {𝛼,−𝛼}.

(4) If 𝛼, 𝛽 ∈ 𝑅 such that 𝛼 + 𝛽 ∈ 𝑅, then [𝔤𝛼 , 𝔤𝛽 ] = 𝔤𝛼+𝛽 .

The proof is spread over the following lemmas. We retain the notation throughout.
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Lemma 4.4.10 (1) For 𝜆, 𝜇 ∈ 𝔥∗ we have [𝔤𝜆, 𝔤𝜇] ⊂ 𝔤𝜆+𝜇 .

(2) The Killing form 𝜅 of 𝔤 satisfies 𝜅 (𝔤𝜆, 𝔤𝜇) = 0 if 𝜆 ≠ −𝜇.

(3) The restriction of the Killing form 𝜅 to 𝔤0 is nondegenerate.

Proof. (1) If 𝑥 ∈ 𝔤𝜆 and 𝑦 ∈ 𝔤𝜇 this means [ℎ, 𝑥] = 𝜆(ℎ)𝑥 and [ℎ,𝑦] = 𝜇 (ℎ)𝑦 for all ℎ ∈ 𝔥. Then the Jacobi identity
and antisymmetry imply

[ℎ, [𝑥,𝑦]] = [[ℎ, 𝑥], 𝑦] + [𝑥, [ℎ,𝑦]] = (𝜆(ℎ) + 𝜇 (ℎ)) [𝑥,𝑦] for all ℎ ∈ 𝔥

and thus [𝑥,𝑦] ∈ 𝔤𝜆+𝜇 .
(2) With 𝜈 ∈ 𝔥∗ part (1) further implies (ad𝑥 ◦ ad𝑦) (𝔤𝜈 ) ⊂ 𝔤𝜈+𝜆+𝜇 . If 𝜆 + 𝜇 ≠ 0, then ad𝑥 ◦ ad𝑦 is nilpotent (already

because only finitely weight spaces of 𝔤 are nonzero) and thus 𝜅 (𝑥,𝑦) = tr(ad𝑥 ◦ ad𝑦) = 0.
(3) For 𝑧 ∈ 𝔤0 we have 𝜅 (𝑧, 𝔤𝛼 ) = 0 for all 𝛼 ∈ 𝑅 by (2). If additionally 𝜅 (𝑧, 𝔤0) = 0, then 𝜅 (𝑧, 𝔤) = 0, and thus 𝑧 = 0

by the nondegeneracy of 𝜅 on 𝔤, which holds since 𝔤 is semisimple, see Theorem 4.1.3. Thus 𝜅 is also nondegenerate
when restricted to 𝔤0. □ L15

End
Proof of Theorem 4.4.9.(1). We immediately have 𝔥 ⊂ 𝔤0 and need to show the opposite inclusion.

For 𝑥 ∈ 𝔤0 note that ad𝑥 vanishes on 𝔥. Let 𝑥 = 𝑠 + 𝑛 be the Jordan decomposition, then ad𝑠 = (ad𝑥 )𝑠 and
ad𝑛 = (ad𝑥 )𝑛 vanish on 𝔥 by Remarks 3.3.3.(2), and so 𝑠, 𝑛 ∈ 𝔤0 by definition of 𝔤0. Now 𝑠 is semisimple and [𝑠, 𝔥] = 0,
so by maximality of 𝔥 we must have 𝑠 ∈ 𝔥. (C ad𝑠 + ad(𝔥) is a subspace of commuting diagonalizable endomorphisms
of 𝔤, thus simulatenously diagonalizable. So C𝑠 + 𝔥 is an abelian subalgebra of semisimple elements, which must be 𝔥
by maximality.)

Continuing with 𝑥 = 𝑠 + 𝑛 from above, 𝑠 ∈ 𝔥 implies ad𝔤0𝑠 = 0 by definition of 𝔤0, thus ad𝔤0𝑥 = ad𝔤0𝑛 is nilpotent. As
𝑥 ∈ 𝔤0 was arbitrary, all elements of 𝔤0 are ad-nilpotent and so Engel’s Theorem 3.2.8 implies that 𝔤0 is a nilpotent Lie
algebra and, in particular, solvable. Now we apply Corollary 3.2.12 to the representation ad𝔤 |𝔤0 : 𝔤0 → 𝔤𝔩(𝔤) to find a
basis of 𝔤, such that ad𝑥 for 𝑥 ∈ 𝔤0 are represented by upper triangular matrices. If 𝑧 ∈ 𝔤0 is ad-nilpotent, then ad𝑧
would be represented by a strictly upper triangular matrix, and thus 𝜅 (𝑧, 𝔤0) = 0 and finally 𝑧 = 0 by Lemma 4.4.10.
We conclude that 𝔤0 contains only ad-semisimple elements, but these are all contained in 𝔥, as observed in the first
part of the proof. □

Lemma 4.4.11 For every root 𝛼 ∈ 𝑅, we have dim( [𝔤𝛼 , 𝔤−𝛼 ]) = 1 and 𝛼 does not vanish on the line [𝔤𝛼 , 𝔤−𝛼 ] ⊂ 𝔥.

Proof. For 𝑥 ∈ 𝔤𝛼 , 𝑦 ∈ 𝔤−𝛼 , and ℎ ∈ 𝔥 we compute

𝜅 (ℎ, [𝑥,𝑦]) = 𝜅 ( [ℎ, 𝑥], 𝑦]) = 𝛼 (ℎ)𝜅 (𝑥,𝑦) (4)

and so ker(𝛼) ⊂ [𝔤𝛼 , 𝔤−𝛼 ]⊥, where the orthogonal complement is taken with respect to the restriction of the Killing
form 𝜅 to 𝔥 = 𝔤0. Since this is nondegenerate by Lemma 4.4.10, dim(ker(𝛼)) = dim(𝔤0)−1 implies dim( [𝔤𝛼 , 𝔤−𝛼 ]) ≤ 1.
Equality holds if we can find 𝑥 ∈ 𝔤𝛼 , 𝑦 ∈ 𝔤−𝛼 with [𝑥,𝑦] ≠ 0. As the Killing form of 𝔤 in non-degenerate, for a given
0 ≠ 𝑥 ∈ 𝔤𝛼 we can find 𝑦 ∈ 𝔤 such that 𝜅 (𝑥,𝑦) ≠ 0. By Lemma 4.4.10, we must have 𝑦 ∈ 𝔤−𝛼 . Now we choose ℎ ∈ 𝔥

such that 𝛼 (ℎ) ≠ 0, Then the right-hand side of (4) is non-zero, so also the left-hand side, which implies [𝑥,𝑦] ≠ 0
and hence [𝔤𝛼 , 𝔤−𝛼 ] is 1-dimensional. We still need to check that 𝛼 does not vanish on this space. Set ℎ := [𝑥,𝑦] ≠ 0
and suppose that 𝛼 (ℎ) = 0. Then we have

[ℎ, 𝑥] = 𝛼 (ℎ)𝑥 = 0, [ℎ,𝑦] = −𝛼 (ℎ)𝑦 = 0

which implies that the 3-dimensional Lie subalgebra of 𝔤 spanned by 𝑥,𝑦, ℎ is nilponent and thus solvable. In a suitable
basis, ad𝔤𝑥 , ad𝔤𝑦 and ad𝔤

ℎ
would be given by upper triangular matrices. Moreover, ad𝔤

ℎ
= ad𝔤[𝑥,𝑦 ] = [ad𝔤𝑥 , ad𝔤𝑦] would be

strictly upper triangular, hence nilpotent. Now ℎ ∈ 𝔥 is nonzero and a nilpotent element of 𝔤, in contradiction to the
requirement that the Cartan subalgebra consists of semisimple elements of 𝔤.

□

Definition 4.4.12 Let 𝔤 be a complex semisimple Lie algebra with Cartan subalgebra 𝔥 ⊂ 𝔤. For every root
𝛼 ∈ 𝑅(𝔤, 𝔥) we define an element 𝛼∨ ∈ 𝔥 by the two conditions 𝛼∨ ∈ [𝔤𝛼 , 𝔤−𝛼 ] and ⟨𝛼, 𝛼∨⟩ = 2.

Proof of Theorem 4.4.9.(2-3). Note that (−𝛼)∨ = −𝛼∨ directly from the definition. Now we can find 𝑥 ∈ 𝔤𝛼 and
𝑦 ∈ 𝔤−𝛼 such that [𝑥,𝑦] = 𝛼∨. Then we also have:

[𝛼∨, 𝑥] = 𝛼 (𝛼∨)𝑥 = 2𝑥, [𝛼∨, 𝑦] = (−𝛼) (𝛼∨)𝑦 = −2𝑦
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Thus 𝑥, 𝛼∨, 𝑦 span a Lie subalgebra 𝔤𝛼 ⊂ 𝔤, which is isomorphic to 𝔰𝔩(2,C) via(
0 1
0 0

)
↦→ 𝑥,

(
0 0
1 0

)
↦→ 𝑦,

(
1 0
0 −1

)
↦→ 𝛼∨

Next we consider only roots 𝛼 such that 𝛼/2 is not a root. (If there is a root, then there is at least such a special
root, since 𝑅 is finite.) The subalgebra 𝑔𝛼 acts on 𝔤 by the restriction of ad𝔤. This contains the subrepresentation
𝑈 := C𝛼∨⊕

⊕
𝑡≠0 𝔤𝑡𝛼 , which contains 𝔤𝛼 and, byWeyl’s theorem, its complement that we denote by𝑉 . Suppose𝑉 ≠ 0,

then the element 𝛼∨ acts on 𝑉 by an invertible map since 𝑉 ⊂
⊕

𝑡≠0 𝔤𝑡𝛼 . By our classification result Theorem 2.1.2,
we deduce that 𝑉 must be isomorphic to a direct sum of simple 𝔰𝔩(2,C)-representations 𝐿(𝑚) with all𝑚 odd (for
even𝑚, we would have a non-trivial weight space 𝐿(𝑚)0 on which 𝛼∨ = ℎ does not act invertibly). In particular, if
𝑉 ≠ 0, then the weight space𝑉1 ≠ 0. In other words, the eigenspace in𝑉 for 𝛼∨ and the eigenvalue 1 is nonzero; thus
𝔤𝛼/2 ≠ 0, a contradiction to our assumption. Thus we have 𝑉 = 0 and (2) and (3) follow for our special choice of 𝛼 .
But by (3), this actually covers all roots. □

Definition 4.4.13 Let 𝑉 be a vector space over F of char(F) = 0. A subset 𝑅 ⊂ 𝑉 is an abstract root system if
the following conditions are satisfied:

(1) The set 𝑅 is finite, spans 𝑉 , and 0 ∉ 𝑅.

(2) For every 𝛼 ∈ 𝑅 there exists a linear map 𝑠𝛼 : 𝑉 → 𝑉 satisfying:

• 𝑠𝛼 (𝛼) = −𝛼 ,
• 𝑠𝛼 (𝑅) ⊂ 𝑅,
• 𝑠𝛼 (𝛽) − 𝛽 ∈ Z𝛼 for all 𝛽 ∈ 𝑅.

In this case the elements 𝛼 ∈ 𝑅 are called roots. An abstract root system is reduced if F𝛼 ∩ 𝑅 = {𝛼,−𝛼}, i.e. if 𝑅
contains no nontrivial multiples of roots, except negatives.

The maps 𝑠𝛼 are in fact uniquely determined by the required properties. To see this, let 𝑡 : 𝑉 → 𝑉 denote another
candidate. Then (𝑡𝑠𝛼 − id) (𝛽) =

(
𝑡 (𝑠𝛼 (𝛽)) − 𝑠𝛼 (𝛽)

)
+

(
𝑠𝛼 (𝛽) − 𝛽

)
∈ F𝛼 , and so im(𝑡𝑠𝛼 − id) ⊂ F𝛼 since 𝑅 spans 𝑉 .

This implies (𝑡𝑠𝛼 − id)2 = 0 and 𝑡𝑠𝛼 is invertible. For 𝑛 ≥ 1 we have (𝑡𝑠𝛼 )𝑛 = (id + (𝑡𝑠𝛼 − id))𝑛 = id + 𝑛(𝑡𝑠𝛼 − id)
by the binomial theorem and 𝑡𝑠𝛼 has finite order, since it permutes the roots, so 𝑡𝑠𝛼 = id. In particular, we deduce
𝑠2𝛼 = id and thus 𝑠𝛼 = 𝑡 . L16

End
Definition 4.4.14 We call 𝑠𝛼 the reflection associated to 𝛼 . The fixed point set of 𝑠𝛼 is called the reflecting
hyperplane, it can also be described as the kernel of the coroot 𝛼∨ ∈ 𝑉 ∗ for 𝛼 , which is determined the equation
𝑠𝛼 (𝑣) = 𝑣 − ⟨𝑣, 𝛼∨⟩𝛼 for all 𝑣 ∈ 𝑉 (here we write ⟨𝑣, 𝛼∨⟩ := 𝛼∨(𝑣)). The subgroup𝑊 ⊂ GL(𝑉 ) generated by the
reflections 𝑠𝛼 for 𝛼 ∈ 𝑅 is called theWeyl group of the root system.

Remark 4.4.15 We record two important observations: First, for roots 𝛼, 𝛽 ∈ 𝑅 we have ⟨𝛽, 𝛼∨⟩ ∈ Z by the third
condition in Definition 4.4.13.(2). Second, the Weyl group𝑊 is finite since its elements permute the finite spanning
set 𝑅.

Theorem 4.4.16 Let 𝑅 ⊂ 𝑉 be an abstract (reduced) root system.

(1) The set 𝑅∨ = {𝛼∨ | 𝛼 ∈ 𝑅} forms an abstract (reduced) root system in 𝑉 ∗ and the canonical isomorphism
𝑉 → 𝑉 ∗∗ maps 𝛼 ↦→ (𝛼∨)∨.

(2) If 𝛼1, . . . , 𝛼𝑛 ∈ 𝑅 form a basis of 𝑉 and 𝛽 ∈ 𝑅, then 𝛽 ∈ spanQ{𝛼1, . . . , 𝛼𝑛}.

Proof. Suppose first that F = Q and let𝑊 be the Weyl group of 𝑅. Next we construct a𝑊 -invariant inner product on
𝑉 by first choosing an arbitrary inner product 𝑏 and then averaging over𝑊 . Namely, for 𝑣,𝑤 ∈ 𝑉 we define:

(𝑣,𝑤) :=
∑︁
𝑔∈𝑊

𝑏 (𝑔(𝑣), 𝑔(𝑤))

This inner product is𝑊 -invariant in the sense that it satisfies (𝑔(𝑣), 𝑔(𝑤)) = (𝑣,𝑤) for every 𝑔 ∈𝑊 . It follows that
the reflecting hyperplane for 𝑠𝛼 is perpendicular to 𝛼 . To see this, suppose 𝑠𝛼 (𝑣) = 𝑣 , then (𝛼, 𝑣) = (𝛼, 𝑠𝛼 (𝑣)) =

(𝑠𝛼 (𝛼), 𝑣) = −(𝛼, 𝑣) and so (𝛼, 𝑣) = 0. In particular, the reflection 𝑠𝛼 can now be expressed by the usual formula for
orthogonal reflections:
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𝑠𝛼 (𝑣) = 𝑣 − 2 (𝑣, 𝛼)(𝛼, 𝛼)𝛼 (5)

For all 𝑣 ∈ 𝑉 we now have
⟨𝑣, 𝛼∨⟩ = 2(𝑣, 𝛼)

(𝛼, 𝛼) (6)

since both linear forms (in 𝑣) agree on 𝛼 and its orthogonal complement. The inner product defines the isomorphism

𝑉
�−→ 𝑉 ∗, 𝑣 ↦→ (−, 𝑣)

under which 2𝛼/(𝛼, 𝛼) ↦→ 𝛼∨. This shows that𝑉 ∗ is generated by the coroots 𝑅∨. We also need to provide reflections
and verify the properties from Definition 4.4.13.(2). We define the reflection 𝑠𝛼∨ : 𝑉 ∗ → 𝑉 ∗ by conjugating 𝑠𝛼 by the
above isomorphism. For 𝛽 ∈ 𝑅 we have:

𝛽
(𝛽,𝛽 )
2 𝛽∨

𝑠𝛼 (𝛽) (𝑠𝛼 (𝛽 ),𝑠𝛼 (𝛽 ) )
2 (𝑠𝛼 (𝛽))∨

𝑠𝛼 𝑠𝛼∨

and since (𝛽, 𝛽) = (𝑠𝛼 (𝛽), 𝑠𝛼 (𝛽)), we see that 𝑠𝛼∨ must send 𝛽∨ ↦→ (𝑠𝛼 (𝛽))∨. This immediately implies 𝑠𝛼∨ (𝛼∨) = −𝛼∨

and 𝑠𝛼∨ (𝑅∨) ⊂ 𝑅∨. Moreover, we claim 𝑠𝛼∨ (𝛽∨) − 𝛽∨ = −⟨𝛼, 𝛽∨⟩𝛼∨ ∈ Z𝛼∨. To see this, we pull back along the
isomorphism and use (6) to obtain the equivalent equation:

2𝑠𝛼 (𝛽)
(𝑠𝛼 (𝛽), 𝑠𝛼 (𝛽))

− 2𝛽
(𝛽, 𝛽) = −2(𝛼, 𝛽)(𝛽, 𝛽)

2𝛼
(𝛼, 𝛼)

This holds because of (𝛽, 𝛽) = (𝑠𝛼 (𝛽), 𝑠𝛼 (𝛽)) and (5). Thus we have shown (1) for F = Q.
Now let F be arbitrary (of char(F) = 0) and let 𝑉Q := spanQ 𝑅. Then 𝑅 ⊂ 𝑉Q is an abstract root system and the

coroot 𝛼∨
Q
∈ 𝑉 ∗
Q
is the restriction to𝑉Q of 𝛼∨ ∈ 𝑉 ∗. (This linear form is already determined by its (integral!) values on

a generating set 𝑅 of 𝑉 , and thus by its values on 𝑉Q.) Now we have dimQ(𝑉Q) ≥ dimF(𝑉 ) since every Q-basis of
𝑉Q still spans 𝑉 over F. Now let {𝛼1, . . . , 𝛼𝑛} ⊂ 𝑅 be a Q-basis of 𝑉Q and {𝛽∨1 , . . . , 𝛽∨𝑛 } a Q-basis of 𝑉 ∗

Q
consisting of

(restrictions of) coroots.
The matrix with entries ⟨𝛼𝑖 , 𝛽∨𝑗 ⟩ ∈ Z for 1 ≤ 𝑖, 𝑗 ≤ 𝑛 is non-singular, hence invertible over Q and then also

over F. Thus the families {𝛼1, . . . , 𝛼𝑛} and {𝛽∨1 , . . . , 𝛽∨𝑛 } are both linearly independent over F as well and we deduce
dimQ(𝑉Q) = dimF(𝑉 ). In particular spanF{𝛽∨1 , . . . , 𝛽∨𝑛 } = 𝑉 ∗, which completes the proof of (1). Finally, any F-basis of
𝑉 consisting of {𝛼1, . . . , 𝛼𝑛} ∈ 𝑅 still spans over Q and hence is a basis of 𝑉Q. In particular, every 𝛽 ∈ 𝑅 ⊂ 𝑉Q can
then be written as a Q-linear combination of the 𝛼𝑖 . □

Remark 4.4.17 The zero vector is the only vector in 𝑉 that is fixed by the Weyl group of a root system in 𝑉 . To
see this, note that such a vector must be fixed by all reflections, hence must lie in the intersection of all reflecting
hyperplanes. However, since the coroots 𝑅∨ span 𝑉 ∗, the intersection of their kernels is the zero vector space.

Theorem 4.4.18 [root systems of a semisimple Lie algebra] Let 𝔤 be a complex semisimple Lie algebra with
Cartan subalgebra 𝔥. Then 𝑅(𝔤, 𝔥) ⊂ 𝔥∗ is a reduced abstract root system in the sense of Definition 4.4.13 and for
every 𝛼 ∈ 𝑅(𝔤, 𝔥), the 𝛼∨ ∈ 𝔥 from Definition 4.4.12 maps to the coroot 𝛼∨ ∈ 𝔥∗∗ from Definition 4.4.14 under the
canonical isomorphism 𝔥 → 𝔥∗∗.

Proof. We first show that 𝑅 := 𝑅(𝔤, 𝔥) spans 𝔥∗. This follows if we prove ⋂
𝛼∈𝑅 ker(𝛼) = 0. So, given ℎ ∈ 𝔥 with

𝛼 (ℎ) = 0 for all 𝛼 ∈ 𝑅, we get [ℎ, 𝔤𝛼 ] = 0 for all 𝛼 ∈ 𝑅. We also have [ℎ, 𝔥] = 0, and thus ℎ ∈ 𝑍 (𝔤) = 0 since 𝔤 is
semisimple.

Next we fix 𝛼 ∈ 𝑅 and a linearly independent root 𝛽 ≠ ±𝛼 . Consider the subspace 𝑇 =
⊕

𝑖∈Z 𝔤𝛽+𝑖𝛼 ⊂ 𝔤 and note
that this provides a 𝔤𝛼 -subrepresentation of 𝔤, the 𝔤𝛽+𝑖𝛼 are eigenspaces of 𝛼∨ with eigenvalue ⟨𝛽, 𝛼∨⟩ + 2𝑖 , and they
are at most 1-dimensional by Theorem 4.4.9.(2). By our classification of finite-dimensional 𝔰𝔩(2,C)-representations
(Consequences 2.1.5) we know that the eigenvalues of 𝛼∨ on 𝑇 must be integers and symmetric about zero. Thus
⟨𝛽, 𝛼∨⟩ ∈ Z and −⟨𝛽, 𝛼∨⟩ is another eigenvalue. Now set 𝑠𝛼 (𝜆) := 𝜆 − ⟨𝜆, 𝛼∨⟩𝛼 , then all requirements of an abstract
root system are satisfied and 𝛼∨ corresponds to the coroot of 𝛼 under 𝔥 � 𝔥∗∗. We already know that the root system
is reduced from Theorem 4.4.9.(3). □ L17

End
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Now we are ready to complete the proof of Theorem 4.4.9.

Proof of Theorem 4.4.9.(4). Retain notation from the proof of Theorem 4.4.18. Since all eigenspaces of 𝛼∨ in 𝑇 are
1-dimensional and since all eigenvalues are even or odd, Consequences 2.1.5.(2) implies that 𝑇 must be a simple
representation of 𝔤𝛼 � 𝔰𝔩(2,C). From the explicit description of such simple representations in Theorem 2.1.2 it
follows that [𝔤𝛼 , 𝔤𝛽 ] = 𝔤𝛼+𝛽 if 𝛼, 𝛽, 𝛼 + 𝛽 ∈ 𝑅. □

Proposition 4.4.19 In the setting of Theorem 4.4.18 we further have:

(1) The coroots 𝛼∨ for 𝛼 ∈ 𝑅 span the Cartan subalgebra 𝔥.

(2) Consider the vector space
𝔥Q = spanQ{𝛼∨ | 𝛼 ∈ 𝑅}

over Q. Then on 𝑡1, 𝑡2 ∈ 𝔥Q the Killing form takes rational values 𝜅𝔤 (𝑡1, 𝑡2) ∈ Q. Moreover 𝜅 |𝔥Q is positive
definite. The analogous results also hold for R in place of Q.

Proof. (1) Let ℎ ∈ 𝔥 be in orthogonal complement of spanC{𝛼∨ | 𝛼 ∈ 𝑅} with respect to the Killing form. Then for
𝛼 ∈ 𝑅 and standard generators 𝑥 ∈ 𝔤𝛼 and 𝑦 ∈ 𝔤−𝛼 for 𝔤𝛼 with [𝑥,𝑦] = 𝛼∨ we have:

0 = 𝜅 (ℎ, 𝛼∨) = 𝜅 (ℎ, [𝑥,𝑦]) = 𝜅 ( [ℎ, 𝑥], 𝑦) = 𝛼 (ℎ)𝜅 (𝑥,𝑦).

Since 𝜅 is non-degenerate, we must have 𝜅 (𝑥,𝑦) ≠ 0 by Lemma 4.4.10.(2), and thus 𝛼 (ℎ) = 0. This holds for all 𝛼 ∈ 𝑅,
so ℎ ∈ 𝑍 (𝔤) = 0.

(2) For ℎ,ℎ′ ∈ 𝔥, we have 𝜅𝔤 (ℎ,ℎ′) = tr(adℎ ◦ adℎ′) = ∑
𝛼∈𝑅 𝛼 (ℎ)𝛼 (ℎ′) which implies the claims. □

This result, together with Theorem 4.4.16 motivate the study of root systems over Q and, after extending to R, in
Euclidean vector spaces. We will do so in Section 4.5. Before moving on, we take a look ahead.

Definition 4.4.20 Amorphism of root systems over a fixed field F is a linear map between the associated vector
spaces that maps every root to a root or to zero. An isomorphism of root systems is thus an isomorphism of the
associated vector spaces that maps roots to roots.

Theorem 4.4.21 [Classification of complex semisimple Lie algebras] Given a complex semisimple Lie algebra
𝔤, then the choice of a Cartan subalgebra 𝔥 ∈ 𝔤 determines a complex root system 𝑅(𝔤, 𝔥) ⊂ 𝔥∗. This map{

complex semisimple
Lie algebras

}
→

{
complex reduced
root systems

}
𝔤 ↦→ 𝑅(𝔤, 𝔥) ⊂ 𝔥∗

induces a bijection between isomorphism classes of complex semisimple Lie algebras and isomorphism classes of
complex reduced root systems.

We will discuss selected aspects of the proof of this theorem in the following subsections.

Exercise 39 Let 𝑅 ⊂ 𝑉 be an abstract root system. For 𝛼, 𝛽 ∈ 𝑅 show that 𝑠𝛼𝑠𝛽𝑠𝛼 = 𝑠𝑠𝛼 (𝛽 ) and then deduce
𝑤𝑠𝛽𝑤

−1 = 𝑠𝑤 (𝛽 ) for all𝑤 ∈𝑊 .

Exercise 40 (root system of type 𝐷𝑛) Let 𝔤 = 𝔰𝔬(2𝑛,C) as presented in Example 1.2.9 and consider the Cartan
subalgebra 𝔥 of diagonal matrices of the form diag(ℎ1, . . . , ℎ𝑛,−ℎ1, . . . ,−ℎ𝑛). Let 𝜖𝑖 : 𝔥 → C denote the linear form
extracting the 𝑖th diagonal entry. Compute the root system 𝑅(𝔤, 𝔥) ⊂ 𝔥∗ in terms of the 𝜖𝑖 and describe the associated
Weyl group. How does it compare to the Weyl group of 𝔰𝔩(2𝑛,C)?

End
W.10
Exerc.4.5 Finite reflection groups

Definition 4.5.1 Let 𝑉 be a finite-dimensional vector space over a field F of characteristic char(F) ≠ 2.

(1) A reflection is a linear map 𝑠 : 𝑉 → 𝑉 whose set of fixed points

𝑉 𝑠 := {𝑣 ∈ 𝑉 | 𝑠 (𝑣) = 𝑣}

is a hyperplane, i.e. dimF(𝑉 𝑠) = dimF(𝑉 ) − 1, and 𝑠2 = 1. The hyperplane 𝑉 𝑠 is called the reflecting
hyperplane of 𝑠 .
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(2) If furthermore F is ordered (and hence char(F) = 0), then a finite reflection group is a finite subgroup
𝑊 ⊂ GL(𝑉 ) that is generated by reflections.

Remarks 4.5.2 Retain the setting of Definition 4.5.1

(1) If two reflections in a finite reflection group𝑊 have the same hyperplane, they are equal. Hint: use that𝑊 is
finite and char(F) = 0.

(2) The (−1)-eigenspace of 𝑠 is 1-dimensional, spanned by some eigenvector 𝛼 ∈ 𝑉 . We can find 𝛼∨ ∈ 𝑉 ∗ such
that 𝛼∨(ℎ) = 0 for all ℎ ∈ 𝑉 𝑠 and ⟨𝛼, 𝛼∨⟩ := 𝛼∨(𝛼) = 2. I.e. 𝛼∨ is the equation describing the hyperplane 𝑉 𝑠 .
Then we can express the reflection as:

𝑠 (𝜆) = 𝜆 − ⟨𝜆, 𝛼∨⟩𝛼

Conversely, every pair of 𝛼 ∈ 𝑉 and 𝛼∨ ∈ 𝑉 ∗ with ⟨𝛼, 𝛼∨⟩ = 2 defines a reflection by this formula. (Here we
only use char(F) ≠ 2)

(3) For any finite reflection group𝑊 ⊂ 𝐺𝐿(𝑉 ) the vector space𝑉 can be equipped with a𝑊 -invariant inner product
(positive definite, symmetric, bilinear form), as demonstrated in the proof of Theorem 4.4.16. In particular, all
reflections 𝑠 ∈𝑊 are then orthogonal with respect to this scalar product, in formulas (𝑠 (𝑣), 𝑠 (𝑤)) = (𝑣,𝑤).
As consequences, the reflecting hyperplane𝑉 𝑠 is exactly the orthogonal complement 𝛼⊥ = {𝑣 ∈ 𝑉 | (𝑣, 𝛼) = 0}
of 𝛼 , for every 𝑣 ∈ 𝑉 we have

⟨𝑣, 𝛼∨⟩ = 2(𝑣, 𝛼)
(𝛼, 𝛼)

as in (6) and the isomorphism
𝑉
�−→ 𝑉 ∗, 𝑣 ↦→ (., 𝑣)

induced by the inner product sends 2𝛼/(𝛼, 𝛼) ↦→ 𝛼∨. If F = R and𝑉 is equipped with such a𝑊 -invariant inner
product, then we call𝑊 ⊂ GL(𝑉 ) a Euclidean finite reflection group.

Definition 4.5.3 Let 𝑉 be a vector space over an ordered field F. For 𝑣,𝑤 ∈ 𝑉 , we define the subsets

[𝑣,𝑤] := {𝑡𝑣 + (1 − 𝑡)𝑤 | 0 ≤ 𝑡 ≤ 1}, (𝑣,𝑤] := {𝑡𝑣 + (1 − 𝑡)𝑤 | 0 < 𝑡 ≤ 1}.

Recall that a subset 𝐴 ⊂ 𝑉 of a vector space 𝑉 over an ordered field F is convex if 𝑣,𝑤 ∈ 𝑆 implies [𝑣,𝑤] ⊂ 𝐴. This
means that for every two points in 𝐴, the entire line segment between 𝑣 and𝑤 is also contained in 𝐴.

Definition 4.5.4 Let 𝑉 be a finite-dimensional vector space over an ordered field F and𝑊 ⊂ GL(𝑉 ) a finite
reflection group. The maximal convex subsets of

𝑉 \
⋃
𝑠∈𝑊

𝑠 is a reflection

𝑉 𝑠

are calledWeyl chambers or alcoves. If F = R and𝑉 is equipped with the usual topology, then the alcoves can also
be described as the connected components of the complement of the hyperplanes. A hyperplane 𝑉 𝑠 is called a wall
of an alcove 𝐴 if there exists a 𝑣 ∈ 𝑉 𝑠 and 𝑎 ∈ 𝐴, such that (𝑣, 𝑎] ⊂ 𝐴 and 𝑣 is not contained in any other reflecting
hyperplane 𝑉 𝑡 for 𝑡 ≠ 𝑠 .

Examples 4.5.5 (1) The Weyl group (Definition 4.4.14) associated to an abstract root system for 𝑉 over an
ordered field F is an example of a finite reflection group. The alcoves in 𝑉Q are calledWeyl chambers.

(2) If𝑉 is 1-dimensional, then there exists only one nontrivial finite reflection group, namely the one generated by
the reflection in the origin. This group is isomorphic to Z2.

(3) If 𝑉 is 2-dimensional vector space R2 and 𝑟 ≥ 1, then we consider 𝑟 distinct lines through the origin, separated
by angles 𝜋𝑛/𝑟 for 𝑛 ∈ Z. The reflections in these lines generate a finite reflection group 𝐷𝑟 called a dihedral
group, which also describes the symmetries of a regular 𝑟 -gon: the 𝑟 reflections in our 𝑟 lines and the 𝑟
rotations in an angle 2𝜋𝑛/𝑟 for 0 ≤ 𝑛 < 𝑟 .

(4) Let 𝑛 ≥ 1 and consider in R𝑛 the hyperplanes 𝐻𝑖, 𝑗 := {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 | 𝑥𝑖 = 𝑥 𝑗 } for 1 ≤ 𝑖 < 𝑗 ≤ 𝑛. The
reflection in𝐻𝑖, 𝑗 is the linear map which swaps the 𝑖th and 𝑗 th coordinates of a vector. These reflection generate
a finite reflection group that is isomorphic to the symmetric group 𝑆𝑛 .
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(5) The reflections in the coordinate hyperplanes 𝐻𝑖 = {(𝑥1, . . . , 𝑥𝑛) ∈ R𝑛 | 𝑥𝑖 = 0} for 1 ≤ 𝑖 ≤ 𝑛 generate a finite
reflection group of order 2𝑛 . It is isomorphic to Z2 × · · · × Z2.

Theorem 4.5.6 Let 𝑉 be a Euclidean vector space and𝑊 ⊂ GL(𝑉 ) a finite reflection group. Consider the set of
reflecting hyperplanes of𝑊 and the corresponding set of alcoves. Let 𝐴 be an alcove.

(1) The reflections on the walls of 𝐴 generate𝑊 .

(2) If 𝑤 = 𝑠𝑖1𝑠𝑖2 · · · 𝑠𝑖𝑟 is a shortest possible expression of 𝑤 ∈ 𝑊 as product of reflections in walls of 𝐴, i.e. a
reduced expression of𝑤 , then there exist exactly 𝑟 reflecting hyperplanes that separate 𝐴 from𝑤 (𝐴). We
write 𝑙 (𝑤) := 𝑟 for the length of𝑤 .

(3) The group𝑊 acts freely and transitively on the set of alcoves.

(4) If 𝑆 ⊂𝑊 is a set of reflections that generates𝑊 , then every reflection 𝜎 ∈𝑊 is conjugate to an element in 𝑆 .
I.e. there exist𝑤 ∈𝑊 and 𝑠 ∈ 𝑆 , such that 𝜎 = 𝑤𝑠𝑤−1.

(5) The alcove 𝐴 is the intersection of those half spaces defined by its walls, which contain 𝐴.

Proof. Omitted. □

Corollary 4.5.7 Let𝑊 be the Weyl group of an abstract root system 𝑅 over R, then every reflection 𝑠 ∈𝑊 is of
the form 𝑠𝛼 for an 𝛼 ∈ 𝑅.

Proof. By Theorem 4.5.6.(4), there exists𝑤 ∈𝑊 and 𝛽 ∈ 𝑅 with 𝑠 = 𝑤𝑠𝛽𝑤
−1 and𝑤𝑠𝛽𝑤−1 = 𝑠𝑤 (𝛽 ) by Exercise 39, and

𝑤 (𝛽) ∈ 𝑅. □

Lemma 4.5.8 Let 𝑉 be a Euclidean vector space and 𝛾 ∈ 𝑉 nonzero, then we denote by 𝛾⊥ the hyperplane
perpendicular to 𝛾 . Suppose that 𝛼1, . . . , 𝛼𝑛 ∈ 𝑉 satisfy (𝛼𝑖 , 𝛾) > 0 for all 𝑖 and (𝛼𝑖 , 𝛼 𝑗 ) ≤ 0 for 𝑖 ≠ 𝑗 , then the
𝛼1, . . . , 𝛼𝑛 are linearly independent.

The two conditions express that the 𝛼𝑖 all lie on one side of the hyperplane 𝛾⊥ and form obtuse angles among
each other.

Proof. Suppose 0 =
∑

𝑖 𝑐𝑖𝛼𝑖 and set 𝐼+ := {𝑖 | 𝑐𝑖 ≥ 0} and 𝐼− := {𝑖 | 𝑐𝑖 < 0}, then we have:

𝑥 =
∑︁
𝑖∈𝐼+

𝑐𝑖𝛼𝑖 =
∑︁
𝑖∈𝐼−

(−𝑐𝑖)𝛼𝑖

and
(𝑥, 𝑥) =

∑︁
𝑖∈𝐼+, 𝑗∈𝐼−

𝑐𝑖 (−𝑐 𝑗 ) (𝛼𝑖 , 𝛼 𝑗 ) ≤ 0

which implies 𝑥 = 0 and thus
0 = (𝑥,𝛾) =

∑︁
𝑖∈𝐼+

𝑐𝑖 (𝛼𝑖 , 𝛾)

so all 𝑐𝑖 = 0 for all 𝑖 ∈ 𝐼+. Similarly one shows 𝐼− = ∅. □

Theorem 4.5.9 Let𝑉 be a finite-dimensional vector space over an ordered field F and𝑊 ⊂ GL(𝑉 ) a finite reflection
group. Fix an an alcove𝐴, and denote by𝐻1, . . . , 𝐻𝑛 its walls and by 𝑠𝑖 : 𝑣 ↦→ 𝑣−⟨𝑣, 𝛼∨

𝑖 ⟩𝛼𝑖 the corresponding reflections.
Then we have:

(1) The families {𝛼𝑖} ⊂ 𝑉 and {𝛼∨
𝑖 } ⊂ 𝑉 ∗ are linearly independent.

(2) If 𝛼𝑖 is on the same side of 𝐻𝑖 as 𝐴, then ⟨𝛼𝑖 , 𝛼∨
𝑗 ⟩ ≤ 0 if 𝑖 ≠ 𝑗 .

L18
End

Proof. We equip 𝑉 with an inner product as in Remarks 4.5.2.(3). We have

⟨𝛼 𝑗 , 𝛼
∨
𝑖 ⟩ =

2(𝛼 𝑗 , 𝛼𝑖)
(𝛼𝑖 , 𝛼𝑖)

. (7)

Without loss of generality, we may assume that all 𝛼𝑖 are chosen to lie on the same side of 𝐻𝑖 as 𝐴 (in formulas:
⟨𝐴, 𝛼∨

𝑖 ⟩ ≥ 0), otherwise we replace 𝛼𝑖 ↦→ −𝛼𝑖 and 𝛼∨
𝑖 ↦→ −𝛼∨

𝑖 .
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Now we claim (𝛼𝑖 , 𝛼 𝑗 ) ≤ 0 if 𝑖 ≠ 𝑗 . To prove the claim, let 𝑖 ≠ 𝑗 . Consider the subgroup𝑊 ′ ⊂𝑊 generated by
the reflections in 𝐻𝑖 and 𝐻 𝑗 , and let 𝐴′ denote the alcove for𝑊 ′ that contains 𝐴. Let 𝑣 ∈ 𝐻𝑖 such that (𝛼 𝑗 , 𝑣) < 0. By
invariance of the scalar product, this implies (𝛼 𝑗 , 𝑠 𝑗 (𝑣)) > 0. Now suppose (𝛼𝑖 , 𝛼 𝑗 ) > 0, then we would have

(𝛼𝑖 , 𝑠 𝑗 (𝑣)) = (𝑠 𝑗 (𝛼𝑖), 𝑣) = (𝛼𝑖 , 𝑣) − ⟨𝛼𝑖𝛼∨
𝑗 ⟩(𝛼 𝑗 , 𝑣)

= −⟨𝛼𝑖 , 𝛼∨
𝑗 ⟩(𝛼 𝑗 , 𝑣) > 0.

Thus we have (𝛼𝑖 , 𝑠 𝑗 (𝑣)) > 0 and (𝛼 𝑗 , 𝑠 𝑗 (𝑣)) > 0, which means 𝑠 𝑗 (𝑣) ∈ 𝐴′. On the other hand, 𝑠 𝑗 (𝑣) lies on the
hyperplane 𝑠 𝑗 (𝐻𝑖), a contradiction and the claim is verified.

By Lemma 4.5.8 and choosing 𝛾 ∈ 𝐴, the claim implies the linear independence of the 𝛼𝑖 and with (7) the statement
of (2). The linear independence of the 𝛼∨

𝑗 also follows since the isomorphism 𝑉 ∗ → 𝑉 induced by the scalar product
sends 𝛼∨

𝑖 ↦→ 2
(𝛼𝑖 ,𝛼𝑖 )𝛼𝑖 . □

Lemma 4.5.10 Let 𝑅 ⊂ 𝑉 be an abstract root system and 𝛼, 𝛽 ∈ 𝑅 such that 𝛼 ∉ F𝛽 , then ⟨𝛼, 𝛽∨⟩⟨𝛽, 𝛼∨⟩ ∈ {0, 1, 2, 3}.
If F = R and 𝑉 is equipped with an inner product invariant under the Weyl group of 𝑅, then the angle 𝜙𝛼,𝛽 between
the roots 𝛼 and 𝛽 satisfies:

4 cos2(𝜙𝛼,𝛽 ) = ⟨𝛼, 𝛽∨⟩⟨𝛽, 𝛼∨⟩

For (𝛼, 𝛽) ≠ 0 we further have:
∥𝛼 ∥2

∥𝛽 ∥2
=

⟨𝛼, 𝛽∨⟩
⟨𝛽, 𝛼∨⟩

Proof. Wemay consider the root system on𝑉Q and then extend to real coefficients, so without loss of generality F = R
and we are in the Euclidean situation. Recall ⟨𝛼, 𝛽∨⟩ = 2(𝛼,𝛽 )

(𝛽,𝛽 ) ∈ Z, which immediately implies the two equations.
Since cos2 takes values in the interval [0, 1], the only possible values for ⟨𝛼, 𝛽∨⟩⟨𝛽, 𝛼∨⟩ ∈ Z are {0, 1, 2, 3, 4}, with
value 4 if and only if 𝜙𝛼,𝛽 ∈ {0, 𝜋}, so if and only if the roots are proportional. □

Example 4.5.11 Given roots 𝛼 ∉ R𝛽 and suppose ∥𝛽 ∥ ≥ ∥𝛼 ∥, then the following table lists all possibilities allowed
by Lemma 4.5.10:

⟨𝛼, 𝛽∨⟩ ⟨𝛽, 𝛼∨⟩ 𝜙𝛼,𝛽 ∥𝛽 ∥2 /∥𝛼 ∥2
0 0 𝜋/2 ?
1 1 𝜋/3 1
−1 −1 2𝜋/3 1
1 2 𝜋/4 2
−1 −2 3𝜋/4 2
1 3 𝜋/6 3
−1 −3 5𝜋/6 3

This gives four options of 2-dimensional root systems:

𝛼

𝛽𝐴1 × 𝐴1

, 𝛼

𝛽
𝐴2

, 𝛼

𝛽𝐵2

,

𝛽

𝛼

𝐺2

where we have only labeled the versions in which 𝛼 and 𝛽 form an obtuse angle, i.e. the versions with ⟨𝛽, 𝛼∨⟩ ≤ 0.
Every arrow points to a root. The reflecting hyperplanes are drawn as dotted lines perpendicular to the roots. In each
case, the grey shading indicates the unique alcove (Weyl chamber, when working over Q) which lies in both of the
positive half spaces specified by the labelled roots. The associated Weyl groups are the dihedral groups 𝐷2, 𝐷3, 𝐷4,
and 𝐷6. The dihedral groups 𝐷5 and 𝐷𝑟 for 𝑟 ≥ 7 are finite reflection groups, but they do not come from root systems.

Exercise 41 Let 𝑅 be a root system. For 𝛼, 𝛽 ∈ 𝑅 with 𝛼 ≠ ±𝛽 show that ⟨𝛽, 𝛼∨⟩ > 0 =⇒ 𝛽 − 𝛼 ∈ 𝑅 and
⟨𝛽, 𝛼∨⟩ < 0 =⇒ 𝛽 + 𝛼 ∈ 𝑅. Hint: ⟨𝛽, 𝛼∨⟩ > 0 and Lemma 4.5.10 implies that ⟨𝛽, 𝛼∨⟩ = 1 or ⟨𝛼, 𝛽∨⟩ = 1.

Exercise 42 Let 𝑅 be a root system. For 𝛼, 𝛽 ∈ 𝑅 with 𝛼 ≠ ±𝛽 show that 𝐼 = {𝑖 ∈ Z | 𝛽 + 𝑖𝛼 ∈ 𝑅} is an interval in Z.
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Exercise 43 Classify up to isomorphism all groups generated by two elements 𝑠 and 𝑡 that square to the identity,
i.e. 𝑠2 = 𝑒 = 𝑡2. Which if of them arise as finite reflection groups?

4.6 Bases of root systems, positive roots, and alcove combinatorics

Here we use the convention that by a root system we mean an abstract reduced root system in the sense of
Definition 4.4.13.

Definition 4.6.1 Let𝑉 be a vector space over F of char(F) = 0 and 𝑅 ⊂ 𝑉 a root system. A subset Π ⊂ 𝑅 is a basis
of the root system 𝑅 if:

(1) Π is a basis for the vector space 𝑉 .

(2) For any 𝛽 ∈ 𝑅, the expansion 𝛽 =
∑

𝛼∈Π 𝑛𝛽,𝛼𝛼 has all coefficients 𝑛𝛽,𝛼 ∈ Z≥0 or all coefficients 𝑛𝛽,𝛼 ∈ Z≤0.

The elements of Π are called simple roots.

Any basis Π of a root system 𝑅 thus determines a partition 𝑅 = 𝑅+(Π) ⊔𝑅− (Π) into sets of positive and negative
roots. The positive roots are 𝑅+(Π) := {𝛽 ∈ 𝑅 | 𝛽 =

∑
𝛼∈Π 𝑛𝛽,𝛼𝛼 with 𝑛𝛽,𝛼 ∈ Z≥0}, i.e. those which are linear

combinations of simple roots with exclusively non-negative coefficients. This is formalized in the following definition.

Definition 4.6.2 A subset 𝑅+ of a root system 𝑅 is system of positive roots if the following conditions are
satisfied:

(1) For every root 𝛼 ∈ 𝑅 we have 𝛼 ∈ 𝑅+ if and only if −𝛼 ∉ 𝑅+.

(2) If 𝛼, 𝛽 ∈ 𝑅+ and 𝛼 + 𝛽 ∈ 𝑅, then 𝛼 + 𝛽 ∈ 𝑅+.

An element 𝛾 ∈ 𝑅+ is called indecomposable, if it cannot be written as 𝛾 = 𝛼 + 𝛽 for 𝛼, 𝛽 ∈ 𝑅+.
L19
End

Remark 4.6.3 For two simple roots 𝛼, 𝛽 ∈ Π we have ⟨𝛽, 𝛼∨⟩ ∈ Z≤0. Otherwise the root 𝑠𝛼 (𝛽) = 𝛽 − ⟨𝛽, 𝛼∨⟩𝛼
would have an expansion with both positive and negative coefficients, in contradiction to the requirements of a basis.
In this sense, 𝛼 and 𝛽 form an obtuse angle.

Lemma 4.6.4 Let 𝑅 be a root system, Π ⊂ 𝑅 a basis, and 𝑅+ = 𝑅+(Π) the set of positive roots. Then for every 𝛼 ∈ Π
we have:

𝑠𝛼 (𝑅+) = (𝑅+ \ {𝛼}) ∪ {−𝛼}.

Proof. Clearly 𝑠𝛼 (𝛼) = −𝛼 . If 𝛽 ∈ 𝑅+ \ {𝛼}, then we claim that

𝑠𝛼 (𝛽) = 𝛽 − ⟨𝛽, 𝛼∨⟩𝛼

is again positive. To see this, note that 𝑠𝛼 (𝛽) expands either positively or negatively in Π. But 𝛽 contains at least one
positive multiple of a simple root distinct from 𝛼 , which then also contributes a positive coefficient in the expansion
of 𝑠𝛼 (𝛽). □

Theorem 4.6.5 Let 𝑅 ⊂ 𝑉 be a root system. Then we have a commutative diagram of bijections:

{Weyl chambers in 𝑉 ∗
Q
} {Weyl chambers in 𝑉Q}

{Bases of 𝑅} {Bases of 𝑅∨}

{Systems of positive roots in 𝑅} {Systems of positive roots in 𝑅∨}

(6)

(3)∨ (3)

(5)

(1)

(4)∨

(1)∨

(4)

(5)
(2) (2)∨

with maps as follows:

(1) sends a basis 𝑅 ⊂ 𝑉 to its set of positive roots Π+(𝑅).

(2) sends a system of positive roots to its subset of indecomposable elements.
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(3) sends a Weyl chamber 𝐴 ⊂ 𝑉Q to Π(𝐴) := {𝛼∨ ∈ 𝑅∨ | ker(𝛼∨) is a wall of 𝐴 and ⟨𝐴, 𝛼∨⟩ ⊂ Q>0}

(4) sends a basis Π of 𝑅∨ to 𝐴(Π) := {𝜆 ∈ 𝑉Q | ⟨𝜆, 𝛼∨⟩ > 0 for all 𝛼∨ ∈ Π}, the dominant Weyl chamber.

(5) sends a set of roots to the corresponding set of coroots.

(6) sends an alcove to its image under any isomorphism 𝑉 ∗
Q

�−→ 𝑉Q induced by a𝑊 -invariant inner product.

Proof. For the maps (1) and (6) we know that they have the indicated target. Next we check this for (3), which will
also prove that every root system has a basis. In Theorem 4.5.9 it was deduced from Lemma 4.5.8 that the set Π(𝐴) is
linearly independent in𝑉 ∗

Q
, and thus also in𝑉 ∗ by Theorem 4.4.16.(2). Theorem 4.5.6 shows that the reflections 𝑠𝛼 for

𝛼∨ ∈ Π(𝐴) generate the Weyl group. As in Remark 4.4.17, this implies that the intersection of the kernels of the
𝛼∨ ∈ Π(𝐴) is zero, so they span 𝑉 ∗ and hence form a basis.

Next we need to check for every 𝛽∨ ∈ 𝑅∨ that 𝛽∨ =
∑

𝛼∨∈Π (𝐴) 𝑛𝛼,𝛽𝛼
∨ has only nonnegative or only nonpositive

integral coefficients. By Theorem 4.4.16.(2) the coefficients are rational 𝑛𝛼,𝛽 ∈ Q. First we claim that the 𝑛𝛼,𝛽 for
fixed 𝛽 all have the same sign. Consider the basis {Λ𝛼 }𝛼∨∈Π (𝐴) ⊂ 𝑉Q dual to Π(𝐴), consisting of the so called
fundamental (dominant) weights. I.e. the vectors determined by

⟨Λ𝛼 , 𝛽
∨⟩ = 𝛽∨(Λ𝛼 ) = 𝛿𝛼∨,𝛽∨ for 𝛼∨, 𝛽∨ ∈ Π(𝐴) .

The Weyl chamber 𝐴 can now be described as

𝐴 =
∑︁

𝛼∨∈Π (𝐴)
Q>0Λ𝛼 , 𝐴 :=

∑︁
𝛼∨∈Π (𝐴)

Q≥0Λ𝛼

and we call 𝐴 its closure. The coroot ⟨−, 𝛽∨⟩ takes either positive or negative values on 𝐴, depending on whether 𝐴
is contained in the positive or negative half space defined by the hyperplane ker(𝛽∨). Thus ⟨−, 𝛽∨⟩ takes either non-
negative or non-positive values on 𝐴, and in particular on Λ𝛼 for 𝛼∨ ∈ Π(𝐴). The claim follows from 𝑛𝛼,𝛽 = ⟨Λ𝛼 , 𝛽

∨⟩.
Next we need to show that the 𝑛𝛼,𝛽 ∈ Z. By Theorem 4.5.6 every Weyl chamber is conjugate to 𝐴 under some

element of𝑊 . Thus every coroot in 𝑅∨ is conjugate to a coroot in Π(𝐴). Since𝑊 maps the lattice ZΠ(𝐴) to ZΠ(𝐴),
we also have 𝑅∨ ⊂ ZΠ(𝐴), so the coefficients 𝑛𝛼,𝛽 are indeed integral. This finishes the proof of the claim that (3)
maps a Weyl chamber 𝐴 to a basis Π(𝐴) of 𝑅∨.

Next we consider the map (4) in the opposite direction. Given a basis Π of 𝑅∨, the set𝐴(Π) := {𝜆 ∈ 𝑉Q | ⟨𝜆, 𝛼∨⟩ >
0 for all 𝛼∨ ∈ Π} is an indeed a Weyl chamber: The condition ⟨𝐴(Π), 𝛼∨) > 0 for all 𝛼∨ ∈ Π implies ⟨(𝐴(Π), 𝛽∨) > 0
for all 𝛽∨ ∈ 𝑅+(Π), and this in turn means that 𝐴(Π) is disjoint from all reflecting hyperplanes. Further, it is an
intersection of half spaces cut out by the reflecting hyperplanes, hence convex.

Next we check that (3) and (4) are mutually inverse. Every Weyl chamber 𝐵 is the intersection of the half spaces
cut out by its walls that contain 𝐵 by Theorem 4.5.6.(5), so 𝐴(Π(𝐵)) = 𝐵. Conversely, if Ψ ⊂ 𝑅∨ is a basis with
𝐴 = 𝐴(Ψ), then 𝑅+(Ψ) = {𝛼∨ ∈ 𝑅∨ | ⟨𝐴, 𝛼∨⟩ > 0} and hence the basis Π(𝐴(Ψ)) ⊂ 𝑅+(Ψ). But Ψ is the only subset of
𝑅+(Ψ) that is a basis, so Π(𝐴(Ψ)) = Ψ.

Now we consider the maps (1) and (2). We first argue that (1), which sends Π ↦→ 𝑅+(Π) is injective since Π
contains exactly those elements of 𝑅+(Π) that cannot be written as a sum of two elements of 𝑅+(Π). To see this, on
the one hand, no 𝛼 ∈ Π can be written as a sum in 𝑅+(Π). Conversely, if 𝛽 ∈ 𝑅+(Π) \ Π, then by Lemma 4.6.4 we
have for all 𝛼 ∈ Π

𝑠𝛼 (𝛽) = 𝛽 − ⟨𝛽, 𝛼∨⟩𝛼 ∈ 𝑅+(Π)

Since ⟨𝛽, 𝛼∨⟩ ≥ 0 is nonzero for at least one 𝛼 ∈ Π, we get the expression 𝛽 = ⟨𝛽, 𝛼∨⟩𝛼 + 𝑠𝛼 (𝛽) of 𝛽 as sum of two
elements in 𝑅+(Π).

The map (1) is also surjective: given a system of positive roots 𝑅+ we pick a basis Π of 𝑅 (which exists by (3)), for
which 𝑅+∩𝑅+(Π) has a the maximal possible number of elements. If 𝑅+ ≠ 𝑅+(Π), then there exists 𝛼 ∈ Π with 𝛼 ∉ 𝑅+.
But then Lemma 4.6.4 implies that 𝑅+(𝑠𝛼 (Π)) ∩𝑅+ would have more elements than 𝑅+ ∩𝑅+(Π), a contradiction. Thus
(1) is surjective, hence a bijection, and its inverse is the map (2).

Now we pick a𝑊 -invariant inner product and consider the corresponding isomorphism 𝑖 : 𝑉 ∗
Q

�−→ 𝑉Q. If a basis Π
corresponds to the alcove 𝐴 ⊂ 𝑉 ∗

Q
, then Π∨ corresponds to 𝑖 (𝐴) ⊂ 𝑉Q. The commutativity of the diagram is left to

the reader. □

Corollary 4.6.6 (1) Every root of a root system 𝑅 is contained in at least one basis of 𝑅, because every reflecting
hyperplane is the wall of at least one Weyl chamber. In particular, every root system 𝑅 has a basis.
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(2) Given two bases Π,Π′ of a root system 𝑅, there exists a unique element𝑤 ∈𝑊 with𝑤Π = Π′ because𝑊 acts
free and transitively on its Weyl chambers by Theorem 4.5.6.(3).

Lemma 4.6.7 Let 𝑅 be a root system in𝑉 , Π ⊂ 𝑅 a basis, and 𝑅+ = 𝑅+(Π) the set of positive roots. Then the vector

𝜌 =
1
2

∑︁
𝛼∈𝑅+

𝛼 ∈ 𝑉

lies in the dominant Weyl chamber and is called the Weyl vector. For all 𝛼 ∈ Π one has 𝑠𝛼 (𝜌) = 𝜌 − 𝛼 and thus
⟨𝜌, 𝛼∨⟩ = 1 for all 𝛼 ∈ Π.

Proof. From Lemma 4.6.4 we immediately obtain 𝑠𝛼 (𝜌) = 𝜌 − 𝛼 for 𝛼 ∈ Π. Now we compare this with 𝑠𝛼 (𝜌) =

𝜌 − ⟨𝜌, 𝛼∨⟩𝛼 to deduce ⟨𝜌, 𝛼∨⟩ = 1 for 𝛼 ∈ Π. □

Exercise 44 Let 𝑅 ⊃ 𝑅+ ⊃ Π be a root system with a system of positive roots and the corresponding basis. Show
that for any positive root 𝛽 ∈ 𝑅+ there exists a sequence of simple roots 𝛼1, . . . , 𝛼𝑛 with 𝛽 = 𝛼1 + · · · + 𝛼𝑛 such that
every partial sum 𝛼1 + · · · + 𝛼𝑖 is also a root. Hint: aim to use Lemma 4.5.8.

End
W.11
Exerc.4.7 Classification of root systems

Definition 4.7.1 For a root system 𝑅 with basis Π, the Cartan matrix is the Π × Π-matrix

𝐶 (𝑅) := (⟨𝛼, 𝛽∨⟩)𝛼,𝛽∈Π

Because of Corollary 4.6.6.(2) this is independent of the chosen basis Π.

Remark 4.7.2 Cartan matrices have the following properties:

• The diagonal elements are equal to 2 = ⟨𝛼, 𝛼∨⟩.

• The off-diagonal entries are non-positive (see Remark 4.6.3) and integral (see Remark 4.4.15).

• By (7) we have ⟨𝛼, 𝛽∨⟩ = 0 if and only if ⟨𝛽, 𝛼∨⟩ = 0.

• Since we may assume 𝑉 to be a Euclidean vector space, det(𝐶 (𝑅)) > 0.

Cartan matrices can be encoded graphically as Dynkin diagrams: the elements of Π are nodes of a graph, and
between the 𝛼- and 𝛽-nodes one draws ⟨𝛼, 𝛽∨⟩⟨𝛽, 𝛼∨⟩-many edges (i.e. between 0 and 3 for a reduced root system).
If two roots of different length are connected, the edge is oriented to the shorter root.

Examples 4.7.3 (1) The single entry Cartan matrix (2) has the corresponding Dynkin diagram • and it describes
the root system of 𝔰𝔩(2,C).

(2) For the root system for 𝔰𝔩(𝑛 + 1,C) from Example 4.4.8 we can choose as simple roots:

Π = {𝜖𝑖 − 𝜖𝑖+1 | 1 ≤ 𝑖 ≤ 𝑛}

The corresponding Cartan matrix and Dynkin diagram are:

©­­­­­­­­«

2 −1 0 . . . 0

−1 2 . . .
. . .

...

0 . . .
. . .

. . . 0
...

. . .
. . . 2 −1

0 . . . 0 −1 2

ª®®®®®®®®¬
, • • . . . • •

(3) The Cartan matrices and Dynkin diagrams of the root systems 𝐴1 ×𝐴1, 𝐴2,𝐵2, and 𝐺2 from Example 4.5.11 are
as follows: (

2 0
0 2

)
, • • ,

(
2 −1
−1 2

)
, • • ,

(
2 −2
−1 2

)
, • • ,

(
2 −3
−1 2

)
, • •
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Definition 4.7.4 If 𝑅1 ⊂ 𝑉1 and 𝑅2 ⊂ 𝑉2 are root systems over the same field, then we defined their sum:

𝑅1 ⊕ 𝑅2 = (𝑅1 × {0}) ∪ ({0} × 𝑅2) ⊂ 𝑉1 ⊕ 𝑉2

This is again a root system.
A root system is indecomposable if it is nonempty and not isomorphic to a sum of nonempty root systems.

Otherwise it is said to be decomposable.

Proposition 4.7.5 Every root system 𝑅 ⊂ 𝑉 has a unique decomposition 𝑅 = 𝑅1 ⊔ · · · ⊔ 𝑅𝑛 such that 𝑅𝑖 is an
indecomposable root system in span(𝑅𝑖) and 𝑅 � 𝑅1⊕ · · · ⊕𝑅𝑛 . This decomposition corresponds to the decomposition
of the Dynkin diagram into its connected components.

Proof. Define on 𝑅 the smallest equivalence relation for which 𝛼 ∼ 𝛽 if ⟨𝛼, 𝛽∨⟩ ≠ 0. The corresponding equivalence
classes provide the desired partition. □

Theorem 4.7.6 [Cartan, Killing] Let F be a field of characteristic char(F) = 0. The Dynkin diagrams of indecom-
posable root systems over F (up to isomorphism) are classified by the following list.

The four classical series:

𝐴𝑛 • • . . . • • with 𝑛 ≥ 1 nodes.

𝐵𝑛 • • . . . • • with 𝑛 ≥ 2 nodes.

𝐶𝑛 • • . . . • • with 𝑛 ≥ 3 nodes.

𝐷𝑛 • • . . . •
•

•
with 𝑛 ≥ 4 nodes.

The five exceptional root systems:

𝐸6 • • •
•

• • 𝐹4 •• • •

𝐸7 • • •
•

• • • 𝐺2 • •

𝐸8 • • •
•

• • • •

Proof. Omitted. □

Remark 4.7.7 Together with Theorem 4.4.21 we will obtain a classification of complex simple Lie algebras via
Dynkin diagrams. The classical series correspond to the classical Lie algebras from Section 1.2. In particular, Dynkin
diagrams are a great way to remember the exceptional isomorphisms from Remarks 1.2.10, namely 𝐴1 � 𝐵1 � 𝐶1,
𝐵2 � 𝐶2, 𝐷1 = ∅, 𝐷2 � 𝐴1 ×𝐴1 and 𝐷3 � 𝐴3.

L20
End

4.8 Cartan subalgebras are conjugate

Definition 4.8.1 An endomorphism 𝛿 of an abelian group 𝑉 is locally nilpotent if for every 𝑣 ∈ 𝑉 there exists
𝑁 ∈ N such that 𝛿𝑁 (𝑣) = 0. If 𝑉 is a vector spaces over F of char(F) = 0, then we define for each locally nilpotent
linear map 𝛿 : 𝑉 → 𝑉 another linear endomorphism exp(𝛿) : 𝑉 → 𝑉 by:

exp(𝛿) (𝑣) :=
∑︁
𝑛≥0

𝛿𝑛 (𝑣)
𝑛! = 𝑣 + 𝛿 (𝑣) + 𝛿2(𝑣)

2 + 𝛿3(𝑣)
3! + · · ·

Lemma 4.8.2 Let 𝑉 ,𝑊 be vector spaces over F of char(F) = 0.

(1) For 0 ∈ End(𝑉 ) we have exp(0) = id𝑉 . If 𝛿, 𝛿 ′ are commuting locally nilpotent endomorphisms of 𝑉 , then
𝛿 + 𝛿 ′ is also locally nilpotent and exp(𝛿 + 𝛿 ′) = exp(𝛿) ◦ exp(𝛿 ′). In particular, exp(−𝛿) = exp(𝛿)−1.

(2) If the first of the following squares of linear maps commutes and 𝛿, 𝛿 ′ are locally nilpotent, then the second
square also commutes:

𝑉 𝑊

𝑉 𝑊

𝑓

𝛿 𝛿 ′

𝑓

𝑉 𝑊

𝑉 𝑊

𝑓

exp(𝛿 ) exp(𝛿 ′ )
𝑓

If 𝑓 is invertible, this implies exp(𝑓 ◦ 𝛿 ◦ 𝑓 −1) = 𝑓 ◦ exp(𝛿) ◦ 𝑓 −1.

(3) If 𝛿 : 𝑉 → 𝑉 is nilpotent (!), then 𝛿𝑡 : 𝑉 ∗ → 𝑉 ∗ is nilpotent and exp(𝛿𝑡 ) = exp(𝛿)𝑡 .
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Proof. Exercise. □

Lemma 4.8.3 [Exponential of locally nilpotent derivation] Let 𝐴 be an algebra over F of char(F) = 0 and
𝛿 : 𝐴 → 𝐴 a locally nilpotent derivation. Then exp(𝛿) : 𝐴 → 𝐴 is an algebra automorphism.

Proof. Let 𝑎, 𝑏 ∈ 𝐴. By the defining property of a derivation we have 𝛿 (𝑎𝑏) = 𝛿 (𝑎)𝑏 + 𝑎𝛿 (𝑏) and by induction
𝛿𝑛 (𝑎𝑏) = ∑

𝑖

(
𝑛
𝑖

)
𝛿𝑖 (𝑎)𝛿𝑛−𝑖 (𝑏). This implies:

exp(𝛿) (𝑎𝑏) =
∑︁
𝑛≥0

𝛿𝑛 (𝑎𝑏)
𝑛! =

∑︁
𝑖, 𝑗≥0

𝛿𝑖 (𝑎)
𝑖!

𝛿 𝑗 (𝑏)
𝑗 ! = (exp(𝛿) (𝑎)) (exp(𝛿) (𝑏)) □

If 𝐴 = 𝔤 is a Lie algebra, then we denote by 𝐺 the subgroup of Aut(𝔤) that is generated by the exp(ad𝑥 ) for all
ad-nilpotent 𝑥 ∈ 𝔤.

Theorem 4.8.4 [Cartan subalgebras are conjugate] Let 𝔤 be a complex semisimple Lie algebra and 𝔥, 𝔥′ ⊂ 𝔤

two Cartan subalgebras. Then there exists a Lie algebra automorphism 𝜎 ∈ Aut(𝔤) that sends 𝜎 (𝔥) = 𝔥′.

Proof sketch. Consider 𝔥reg := 𝔥 \ ⋃
𝛼∈𝑅 (𝔤,𝔥) ker(𝛼) which is Zariski-open in 𝔥. We have 𝔥 = ker(adℎ : 𝔤 → 𝔤) for all

ℎ ∈ 𝔥reg. Now consider the map:

𝔤𝛼 × · · · 𝔤𝛽 × 𝔥reg → 𝔤

(𝑥, . . . , 𝑦, ℎ) ↦→ (exp(ad𝑥 ) ◦ · · · ◦ exp(ad𝑦)) (ℎ)

where the product runs over all roots in some fixed order. This map has surjective differential at every tuple
(0, . . . , 0, ℎ) and its image thus (here we use a special case of the differential dominance criterion from algebraic
geometry) contains a Zariski-open set in 𝔤. The same holds for 𝔥′ and so their images intersect. This means we
can find ℎ ∈ 𝔥reg and ℎ′ ∈ 𝔥′reg as well as 𝜏1, 𝜏2 ∈ 𝐺 (as defined before the theorem) with 𝜏1(ℎ) = 𝜏2(ℎ′) and hence
𝜎 := 𝜏−12 𝜏1 : ℎ ↦→ ℎ′. But this implies 𝜎 (𝔥) = 𝔥′ (Exercise). □

Exercise 45 Prove Lemma 4.8.2.

Exercise 46 Consider 𝔤 = 𝔰𝔩(2,C) with standard basis 𝑒, 𝑓 , ℎ. Define the automorphism 𝜎 := exp(ad𝑒) ◦exp(ad−𝑓 ) ◦
exp(ad𝑒) of 𝔤 and compute its action on the basis 𝑒, 𝑓 , ℎ. Next compute exp(𝑒) and exp(−𝑓 ) and show they are elements
of SL(2,C) (the special linear group of complex 2×2 matrices of determinant 1). Compute 𝑠 = exp(𝑒) ·exp(−𝑓 ) ·exp(𝑒)
and show that conjugation 𝑧 ↦→ 𝑠𝑧𝑠−1 defines an automorphism of 𝔤. How does it compare to 𝜎?

End
W.12
Exerc.4.9 Constructing semisimple Lie algebras

Definition 4.9.1 Let 𝐼 be a set and F a field. Then a free Lie algebra on 𝑰 over F is a Lie algebra 𝐿 over F, together
with a map can: 𝐼 → 𝐿, such that for any Lie algebra 𝔤 over F, precomposition with can provides a bijection

LieAlgF(𝐿, 𝔤)
−◦can−−−−→ Set(𝐼 , 𝔤)

between Lie algebra morphisms from 𝐿 to 𝔤 and maps of sets from 𝐼 to 𝔤. This this called the universal property of
the free Lie algebra on 𝐼 over F.

Remark 4.9.2 (Uniqueness of free Lie algebras) Let can : 𝐼 → 𝐿 and can′ : 𝐼 → 𝐿′ be two free Lie algebras
over the same set 𝐼 and field F, then there exist unique Lie algebra morphisms 𝜙 : 𝐿 → 𝐿′ and𝜓 : 𝐿′ → 𝐿 such that
𝜙 ◦ can = can′ and𝜓 ◦ can′ = can. Moreover, 𝜙 and𝜓 are mutual inverses. To see this, note that there is a unique Lie
algebra morphism 𝜁 : 𝐿 → 𝐿 such that 𝜁 ◦ can = can. Since 𝜁 = id𝐿 and 𝜁 = 𝜓 ◦ 𝜙 satisfy this condition, they are
equal. Similarly one shows 𝜙 ◦𝜓 = id𝐿′ .

Remark 4.9.3 (Existence of free Lie algebras) It is not hard to explicitly construct a free Lie algebra on a given
set 𝐼 . Here we only give a sketch. One first constructs a free algebra 𝐴 on 𝐼 over F with multiplication denoted by ·
(Idea: a basis is given by bracketed words of length ≥ 1 with letters drawn from 𝐼 ). This satisfies a universal property
similar as in Definition 4.9.1, but for all F-algebras. To obtain a Lie algebra 𝐿 from 𝐴, one takes the quotient by the
2-sided ideal 𝑅 generated by elements of the form 𝑎 · 𝑎 and (𝑎 · (𝑏 · 𝑐)) + (𝑏 · (𝑐 · 𝑎)) + (𝑐 · (𝑎 · 𝑏)) for 𝑎, 𝑏, 𝑐 ∈ 𝐴.
This inherits the desired universal property from 𝐴: any map 𝜙 : 𝐼 → 𝔤 extends uniquely to an algebra morphism
𝜙 : 𝐴 → 𝔤, but then 𝜙 (𝑅) = 0 because 𝔤 is a Lie algebra, so this map descends uniquely to the quotient, thus providing
the desired Lie algebra morphism 𝐿 = 𝐴/𝑅 → 𝔤.
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By the preceding remarks, we have a free Lie algebra for every set 𝐼 and F, and it is uniquely determined up to
unique isomorphism. We thus call the result the free Lie algebra on 𝐼 over F and denote it by LAF(𝐼 )

Definition 4.9.4 Let F be a field, 𝐼 a set, and 𝑇 ⊂ LAF(𝐼 ) a subset of the free Lie algebra on 𝐼 over F

(1) Let ⟨𝑇 ⟩𝐿 denote the Lie-ideal generated by 𝑇 in LAF(𝐼 ), i.e. the intersection of all ideals of LAF(𝐼 ) that contain
𝑇 . Then the Lie algebra with generators 𝑰 and relations 𝑻 is defined as the quotient LAF(𝐼 )/⟨𝑇 ⟩𝐿 .

(2) Suppose that 𝔤 is a Lie algebra over F and 𝐼 ⊂ 𝔤. Then we say 𝐠 is presented by the generators 𝑰 with
relations 𝑻 if the map 𝜙 : LAF(𝐼 ) → 𝔤 induced by the inclusion 𝐼 ↩→ 𝔤 descends to an isomorphism
LAF(𝐼 )/⟨𝑇 ⟩𝐿 → 𝔤.

The latter condition combines the following requirements:

• We say that 𝐼 generates 𝔤 if 𝜙 : LAF(𝐼 ) → 𝔤 is surjective.

• We can compare the kernel of this morphism 𝜙 with ⟨𝑇 ⟩𝐿 . If ker(𝜙) ⊃ ⟨𝑇 ⟩𝐿 , then we get an induced morphism:

LAF(𝐼 )/⟨𝑇 ⟩𝐿 → LAF(𝐼 )/ker(𝜙) → 𝔤

Informally this containment means that the relations 𝑇 among the generators 𝐼 are satisfied in 𝔤. Moreover, if 𝜙
was surjective, then so will be the induced map on the quotient.

• Third, the map on the quotient will be injective if𝑇 also generates the kernel of 𝜙 , i.e. if𝑇 describes all relations
between the generators 𝐼 in 𝔤.

L21
End

Theorem 4.9.5 [Presentation of complex semisimple Lie algebras by generators and relations] (1) Let
𝔤 be a complex semisimple Lie algebra with Cartan subalgebra 𝔥 and Π ⊂ 𝑅 := 𝑅(𝔤, 𝔥) a basis of the corre-
sponding root system. If we choose for every 𝛼 ∈ Π a basis element 𝑥𝛼 ∈ 𝔤𝛼 of the corresponding root space,
then there exist elements 𝑦𝛼 ∈ 𝔤−𝛼 such that [𝑥𝛼 , 𝑦𝛼 ] = 𝛼∨. Set ℎ𝛼 := 𝛼∨ for the 𝛼 ∈ Π. Then these elements
satisfy the following relations for all 𝛼, 𝛽 ∈ Π:

[𝑥𝛼 , 𝑦𝛼 ] = ℎ𝛼

[𝑥𝛼 , 𝑦𝛽 ] = 0 if 𝛼 ≠ 𝛽

[ℎ𝛼 , ℎ𝛽 ] = 0
[ℎ𝛼 , 𝑥𝛽 ] = ⟨𝛽, 𝛼∨⟩𝑥𝛽
[ℎ𝛼 , 𝑦𝛽 ] = −⟨𝛽, 𝛼∨⟩𝑦𝛽

ad1−⟨𝛽,𝛼
∨ ⟩

𝑥𝛼 (𝑥𝛽 ) = 0 if 𝛼 ≠ 𝛽

ad1−⟨𝛽,𝛼
∨ ⟩

𝑦𝛼 (𝑦𝛽 ) = 0 if 𝛼 ≠ 𝛽

Furthermore, 𝔤 is presented by the generators 𝑥𝛼 , 𝑦𝛼 , ℎ𝛼 for 𝛼 ∈ Π with the listed relations (the last two are
called Serre relations).

(2) Given an abstract root system 𝑅 with basis Π, then the complex Lie algebra 𝔤 = 𝔤𝑅,Π generated by the symbols
𝑥𝛼 , 𝑦𝛼 , ℎ𝛼 for 𝛼 ∈ Π with the listed relations is semisimple. The images of the generators ℎ𝛼 form the basis of a
Cartan subalgebra 𝔥 ⊂ 𝔤 and there is an isomorphism of root systems 𝑅 � 𝑅(𝔤, 𝔥) sending 𝛽 ↦→ (ℎ𝛼 ↦→ ⟨𝛽, 𝛼∨⟩).

Partial proof. We will only show a part of (1). That we can find a 𝑦𝛼 for every 𝑥𝛼 such that [𝑥𝛼 , 𝑦𝛼 ] = ℎ𝛼 follows
from the Definition 4.4.12 of 𝛼∨ as special basis element of the 1-dimensional subspace [𝔤𝛼 , 𝔤−𝛼 ] ⊂ 𝔤. The second
relation holds since [𝑥𝛼 , 𝑦𝛽 ] ∈ [𝔤𝛼 , 𝔤−𝛽 ] ⊂ 𝑔𝛼−𝛽 = 0 since 𝛼 − 𝛽 ∉ 𝑅 by definition of a basis. The third is clear since
𝔥 is abelian. The fourth and fifth relations follow from the definition of the root spaces. For the sixth relation we
observe

ad1−⟨𝛽,𝛼
∨ ⟩

𝑥𝛼 (𝑥𝛽 ) ∈ 𝔤𝛽+𝛼−⟨𝛽,𝛼∨ ⟩𝛼 = 𝔤𝛼+𝑠𝛼 (𝛽 ) = 0

since 𝛼 + 𝑠𝛼 (𝛽) = 𝑠𝛼 (−𝛼 + 𝛽) ∉ 𝑅 since 𝛼 − 𝛽 ∉ 𝑅 as observed above. The last relation follows analogously. Using the
notation from (2), we thus obtain a Lie algebra morphism

𝔤𝑅,Π → 𝔤
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and it remains to show that this is an isomorphism. We first consider surjectivity, i.e. that 𝔤 is generated by the
𝑥𝛼 , ℎ𝛼 , 𝑦𝛼 for 𝛼 ∈ Π. This follows from Exercise 44 together with the fact [𝔤𝛼 , 𝔤𝛽 ] = 𝔤𝛼+𝛽 when 𝛼, 𝛽, 𝛼 + 𝛽 ∈ 𝑅 from
Theorem 4.4.9. Thus 𝔤𝑅,Π ↠ 𝔤. The injectivity of this morphism follows from (2), which we will not prove. □

As a consequence we can now assemble a proof for the classification result stated in Theorem 4.4.21, namely
that complex semisimple Lie algebras are classified, up to isomorphism, by complex reduced root systems up to
isomorphism. More generally, the analogous statement holds over every algebraically closed field of characteristic
zero.

Proof of Theorem 4.4.21. First, recall from Theorem 4.4.18 that a choice of Cartan subalgebra 𝔥 ⊂ 𝔤 indeed determines
a complex reduced root system 𝑅(𝔤, 𝔥). Then Theorem 4.8.4 shows that all Cartan subalgebras are conjugate in 𝔤,
which means that the isomorphism class of the root system 𝑅(𝔤, 𝔥) is independent of the choice of 𝔥. It is also clear
that isomorphic Lie algebras have isomorphic root systems. Thus the map{

isomorphism classes of
complex semisimple Lie algebras

}
→

{
isomorphism classes of

complex reduced root systems

}
induced by 𝔤 ↦→ 𝑅(𝔤, 𝔥) ⊂ 𝔥∗ is well-defined. Theorem 4.9.5.(2) shows that this map is surjective, since it constructs a
complex semisimple Lie algebra for every abstract root systemwith basis (which exists by Corollary 4.6.6 and is unique
up to action by automorphisms given by the Weyl group Theorem 4.6.5) by giving a presentation. Theorem 4.9.5.(1)
shows the map is injective, since any two complex semisimple Lie algebras with isomorphic root systems are both
isomorphic to the Lie algebra with the mentioned presentation. □

Now we consider the classification of complex simple Lie algebras.

Theorem 4.9.6 Given a complex simple Lie algebra 𝔤, then the choice of a Cartan subalgebra 𝔥 ⊂ 𝔤 determines an
indecomposable complex root system 𝑅(𝔤, 𝔥) ⊂ 𝔥∗. This map{

complex simple
Lie algebras

}
→

{
complex indecomposable

root systems

}
𝔤 ↦→ 𝑅(𝔤, 𝔥) ⊂ 𝔥∗

induces a bijection between isomorphism classes of complex simple Lie algebras and isomorphism classes of inde-
composable complex root systems.

Proof. Based on Theorem 4.4.21 it remains to show that a complex semisimple Lie algebra is simple if and only if its
root system is indecomposable. Indeed, every decomposition of the root system would induce a decomposition of the
Lie algebra into a direct sum of corresponding ideals. Conversely, every such decomposition into a direct sum of
ideals leads to a decomposition of the associated root system. □

The Killing classification of Theorem 3.1.2 now follows from Theorem 4.9.6 and the classification of indecompos-
able root systems from Theorem 4.7.6.

Remark 4.9.7 The classification from Theorem 4.4.21 is part of a chain of further identifications, which will not be
treated here.{

isomorphism classes of
compact Lie groups with trivial center

}
→

{
isomorphism classes of

compact Lie algebras over R

}
→

{
isomorphism classes of

complex semisimple Lie algebras

}
The first map is induced by forming the Lie algebra associated to the Lie group (the tangent space at the identity),
and the second map is induced by a complexification procedure.

Exercise 47 Write down explicit presentations (following Theorem 4.9.5) for the complex semisimple Lie algebras
corresponding to the root systems from Example 4.5.11.
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5 Representation theory of complex semisimple Lie algebras

Throughout this section we let 𝔤 denote a complex semisimple Lie algebra and 𝔥 a Cartan subalgebra. All vector
spaces are defined over the field of complex numbers C unless specified otherwise.

In this section, we will often use capital letters to denote elements of Lie algebras, e.g. 𝑋 ∈ 𝔤, 𝐻 ∈ 𝔥. For
a 𝔤-representation 𝜌 : 𝔤 → 𝔤𝔩(𝑉 ), we will further abbreviate the notation for the action on a vector 𝑣 ∈ 𝑉 as:
𝑋𝑣 := 𝑋 · 𝑣 := 𝜌 (𝑋 ) (𝑣).

5.1 Weights

Definition 5.1.1 (1) The elements of 𝔥∗ are called weights of 𝔤 (relative to 𝔥).

(2) For every representation 𝑉 , the weight space for a weight 𝜆 ∈ 𝔥∗ is defined as:

𝑉𝜆 = {𝑣 ∈ 𝑉 | 𝐻𝑣 = 𝜆(𝐻 )𝑣 for all 𝐻 ∈ 𝔥}

If 𝑉𝜆 ≠ 0, then 𝜆 is a weight of the representation 𝑉 . The set of weights of 𝑉 is denoted 𝑃 (𝑉 ).

(3) For every system of positive roots 𝑅+, one defines a partial order on 𝔥∗ by setting

𝜆 ≥ 𝜇 ⇐⇒ 𝜆 − 𝜇 ∈ Z≥0𝑅+

A greatest element 𝜆 in 𝑃 (𝑉 ), i.e. if 𝜆 ≥ 𝜇 for all 𝜇 ∈ 𝑃 (𝑉 ), is called the highest weight of 𝑉 with respect to
𝑅+. A nonzero vector 0 ≠ 𝑣 ∈ 𝑉𝜆 is then called a highest weight vector of 𝑉 . For given 𝑉 , a highest weight
need not exist, but it is unique if it does. (For partial orders, there is also the notion of a maximal element. This
is 𝜆, such that 𝜇 ≥ 𝜆 implies 𝜇 = 𝜆, but not every element needs to be comparable to 𝜆. If a greatest element
exists, then it is the unique maximal element.)

(4) The lattice of integral weights, or short weight lattice, is:

X := {𝜆 ∈ 𝔥∗ | ⟨𝜆, 𝛼∨⟩ ∈ Z for all 𝛼 ∈ 𝑅}

All roots are integral weights, i.e. 𝑅 ⊂ X and the Weyl group preserves the weight lattice𝑊X = X.

(5) For a given basis Π = {𝛼1, . . . , 𝛼𝑟 } of the root system we consider the fundamental dominant weights
Λ𝑖 = Λ𝛼𝑖 , which form the basis of 𝔥∗ dual to the basis of coroots 𝛼∨

𝑖 of 𝔥. In formulas: ⟨Λ𝑖 , 𝛼
∨
𝑗 ⟩ = 𝛿𝑖, 𝑗 . The

fundamental dominant weights also form a Z-basis for the weight lattice.

(6) The elements of

X+(𝑅+) = Z≥0Λ1 + · · · + Z≥0Λ𝑟 = {𝜆 ∈ 𝔥∗ | ⟨𝜆, 𝛼∨⟩ ∈ Z≥0 for all 𝛼 ∈ 𝑅+}

are called dominant integral weights. X+(𝑅+) is the intersection of the weight lattice X with the closure of
the dominant Weyl chamber with respect to 𝑅+.

Examples 5.1.2 (1) The weights of the adjoint representation are the roots together with the zero vector in 𝔥∗.

(2) Let us consider the case 𝔰𝔩(2,C) with Cartan subalgebra 𝔥 = Cℎ and 𝑅+ = {𝛼} (we may choose 𝛼 = 2ℎ∗ so that
𝛼∨ = ℎ.). We identify weights with complex numbers along 𝑥𝛼/2 ↦→ 𝑥 (equivalently 𝜆 ↦→ ⟨𝜆, 𝛼∨⟩). The simple
representation 𝐿(𝑚) then has weights {𝑚,𝑚 − 2, . . . , 2 −𝑚,−𝑚}, the partial order is the obvious one, and𝑚 is
the highest weight of 𝐿(𝑚). The weight lattice is Z ⊂ C, the dominant integral weights are Z≥0, and these are
exactly the highest weights of the simple representations. L22

End
We are interested in classifying finite-dimensional complex representations of the complex semisimple Lie algebra

𝔤. By Weyl’s Theorem 4.2.5, this reduces to classifying simple representations, which we will see to be in bijection
with dominant integral weights.

Lemma 5.1.3 Let 𝑉 be a 𝔤-representation. Then 𝔤𝛼𝑉𝜆 ⊂ 𝑉𝜆+𝛼 for all 𝛼 ∈ 𝑅 and 𝜆 ∈ 𝔥∗.

Proof. Given 𝐻 ∈ 𝔥, 𝑋 ∈ 𝔤 and 𝑣 ∈ 𝑉 , we have 𝐻𝑋𝑣 = [𝐻,𝑋 ]𝑣 + 𝑋𝐻𝑣 . If 𝑣 ∈ 𝑉𝜆 we have 𝐻𝑣 = 𝜆(𝐻 )𝑣 and if 𝑋 ∈ 𝔤𝛼

we have [𝐻,𝑋 ] = 𝛼 (𝐻 )𝑋 . In this case 𝐻𝑋𝑣 = (𝜆(𝐻 ) + 𝛼 (𝐻 ))𝑋𝑣 = (𝜆 + 𝛼) (𝐻 )𝑋𝑣 . □
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Lemma 5.1.4 With respect to a system of positive roots 𝑅+ we consider the subalgebras 𝔫 =
⊕

𝛼∈𝑅+ 𝔤−𝛼 and
𝔫+ =

⊕
𝛼∈𝑅+ 𝔤𝛼 of 𝔤. Let𝑉 be a 𝔤-representation and 𝑣 ∈ 𝑉𝜆 such that 𝔫+ · 𝑣 = 0. By restriction we may view𝑉 as an

𝔫-representation and consider the 𝔫-subrepresentation𝑉 ′ ⊂ 𝑉 generated by 𝑣 . Then𝑉 ′ is already a 𝔤-representation,
𝑉 ′
𝜆
= C𝑣 and 𝑉 ′ =

⊕
𝜇≤𝜆𝑉

′
𝜇 .

Proof. By Lemma 5.1.3 we have 𝑉 ′ ∩ 𝑉𝜆 = C𝑣 and 𝑉 ′ =
⊕

𝜇≤𝜆𝑉
′
𝜇 . It thus suffices to prove 𝑋 · 𝑉 ′ ⊂ 𝑉 ′ for all

𝑋 ∈ 𝔟 := 𝔥 ⊕ 𝔫+. For 𝑟 ∈ Z≥0 we consider the subspace of 𝑉 ′ defined as

𝑉 ′(𝑟 ) = spanC{𝑌1 · · ·𝑌𝑖𝑣 | 𝑖 ≤ 𝑟, 𝑌𝑖 ∈ 𝔫}.

Then we have𝑉 ′ =
⋃

𝑟≥0𝑉
′(𝑟 ) and we shall prove by induction in 𝑟 that 𝑋 ·𝑉 ′(𝑟 ) ⊂ 𝑉 ′(𝑟 ) for 𝑋 ∈ 𝔟. The base of the

induction at 𝑟 = 0 follows from the assumptions 𝑣 ∈ 𝑉𝜆 and 𝔫+ · 𝑣 = 0. For the induction step with 𝑟 ≥ 1 we write:

𝑋𝑌1 · · ·𝑌𝑟 · 𝑣 = 𝑌1𝑋𝑌2 · · ·𝑌𝑟 · 𝑣 + [𝑋,𝑌1]𝑌2 · · ·𝑌𝑟 · 𝑣

On the right hand side in the first term we see (using induction) an element 𝑋𝑌2 · · ·𝑌𝑟 · 𝑣 ∈ 𝑉 ′(𝑟 − 1), thus
𝑌1𝑋𝑌2 · · ·𝑌𝑟 · 𝑣 ∈ 𝑉 ′(𝑟 ). In the second term, we use 𝔤 = 𝔟 ⊕ 𝔫 to split the Lie bracket [𝑋,𝑌1] = 𝑋̃ + 𝑌̃ with 𝑋̃ ∈ 𝔟 and
𝑌̃ ∈ 𝔫 and again use the induction hypothesis to conclude [𝑋,𝑌1]𝑌2 · · ·𝑌𝑟 · 𝑣 ∈ 𝑉 ′(𝑟 ). □

Theorem 5.1.5 Let 𝑉 be a simple 𝔤-representation.

(1) If the set of weights 𝑃 (𝑉 ) contains a maximal element, then it is a greatest element, i.e. a highest weight.

(2) If 𝑉 has a highest weight 𝜆, then dimC(𝑉𝜆) = 1.

(3) If 𝑉 is finite-dimensional, then it is the direct sum of its weight spaces and has a highest weight.

There are infinitely dimensional (even simple) 𝔤-representations which have no weights at all, or which have a
nonempty set of weights without a maximal element. We will see examples later.

Proof. If 𝑣 ∈ 𝑉𝜆 with 𝜆 ∈ 𝑃 (𝑉 ) maximal, then 𝔤𝛼𝑣 = 0 for all positive roots 𝛼 ∈ 𝑅+, so 𝔫+ · 𝑣 = 0. Lemma 5.1.4 provides
a subrepresentation 𝑉 ′ with 𝑉 ′

𝜆
= C𝑣 ≠ 0 and 𝑉 ′ =

⊕
𝜇≤𝜆𝑉

′
𝜇 . Since 𝑉 is simple, we have 𝑉 ′ = 𝑉 , which shows (1)

and (2).
If 𝑉 is of finite dimension, then 𝑉 decomposes as 𝑉 =

⊕
𝜆∈𝔥∗ 𝑉𝜆 thanks to Theorem 4.3.1.(2) (see also Re-

mark 4.4.5.(1)). The poset of weights of 𝑉 is finite and not empty, thus has a maximal element, which is a highest
weight by (1). This shows (3). □

Theorem 5.1.6 If 𝑉 is a finite-dimensional 𝔤-representation, then all of its weights are integral, i.e. 𝑃 (𝑉 ) ⊂ X, and
the set of weights 𝑃 (𝑉 ) is stable under the Weyl group. If a highest weight exists, then it is dominant and integral.

Proof. Fix a root 𝛼 ∈ 𝑅 and consider the subalgebra 𝔰𝔩(2,C)𝛼 := 𝔤𝛼 = 𝔤𝛼 ⊕C𝛼∨ ⊕ 𝔤−𝛼 which is isomorphic to 𝔰𝔩(2,C).
By restricting 𝑉 to this subalgebra, we deduce from Consequences 2.1.5 that ⟨𝜆, 𝛼∨⟩ ∈ Z for any 𝜆 ∈ 𝑃 (𝑉 ).

Let 𝐸𝛼 denote a generator of the 1-dimensional vector space 𝔤𝛼 , 𝐸−𝛼 one of 𝔤−𝛼 , fix a weight 𝜆 of 𝑉 and set
𝑚 = ⟨𝜆, 𝛼∨⟩. For 𝑣 ∈ 𝑉𝜆 and 𝑣 ≠ 0, we have:

(𝐸−𝛼 )𝑚 · 𝑣 ≠ 0 if𝑚 ≥ 0; (𝐸𝛼 )−𝑚 · 𝑣 ≠ 0 if𝑚 ≤ 0

Either way we have 𝑉𝜆−𝑚𝛼 ≠ 0, so 𝑠𝛼 (𝜆) = 𝜆 − ⟨𝜆, 𝛼∨⟩𝛼 = 𝜆 −𝑚𝛼 is another weight of 𝑉 .
If 𝜆 ∈ 𝑃 (𝑉 ) is not dominant, then there exists 𝛼 ∈ Π with ⟨𝜆, 𝛼∨⟩𝛼 < 0. Then 𝑠𝛼 (𝜆) ∈ 𝑃 (𝑉 ) and 𝑠𝛼 (𝜆) ≥ 𝜆,

so 𝜆 is not maximal. Conversely it follows that maximal weights of the finite-dimensional representation 𝑉 are
dominant. □

Theorem 5.1.7 Let 𝑉 and 𝑉 ′ be simple 𝔤-representations with the same highest weight 𝜆, then 𝑉 and 𝑉 ′ are
isomorphic.

Proof. Let 𝑣 ∈ 𝑉𝜆 and 𝑣 ′ ∈ 𝑉 ′
𝜆
be nonzero vectors and 𝐷 ⊂ 𝑉 ⊕ 𝑉 ′ the 𝔤-subrepresentation generated by (𝑣, 𝑣 ′). By

Lemma 5.1.4 𝐷 is the direct sum of its weight spaces and 𝐷𝜆 = C(𝑣, 𝑣 ′).
Every proper subrepresentation 𝐷 ′ ⊂ 𝐷 is also a sum of its weight spaces and so

𝐷 ′ ⊂
⊕
𝜇≠𝜆

𝐷𝜆 . (8)
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Let 𝑝1, 𝑝2 denote the projection maps from 𝑉 ⊕ 𝑉 ′ to 𝑉 and 𝑉 ′ respectively. These can be restricted to subspaces
and (8) implies 𝑝1(𝐷 ′) ≠ 𝑉 and 𝑝2(𝐷 ′) ≠ 𝑉 ′. Since 𝑉 and 𝑉 ′ are simple, and since images of representations under
projections are again representations, we must have 𝑝1(𝐷 ′) = 0 and 𝑝2(𝐷 ′) = 0, hence 𝐷 ′ = 0. Thus 𝐷 is simple.

An argument analogous to Schur’s Lemma 4.2.1 now implies that the nonzero maps 𝑝1 and 𝑝2 are isomorphisms.
Thus 𝑉 � 𝑉 ′. □

One detail is still missing before we can conclude with the following summary.

Theorem 5.1.8 Let 𝔤 be a complex semisimple Lie algebra. Then the finite-dimensional simple 𝔤-representations
are in bijection with the integral dominant weights of 𝔤.

It remains to show that every dominant integral weight actually appears as highest weight of a simple 𝔤-
representation. This will be proved using the notion of a universal enveloping algebra. L23

End
Exercise 48 Let 𝔤 = 𝔰𝔩(𝑛,C) and 𝑉 = C𝑛 the vector representation. Show that ∧𝑖 (𝑉 ) has highest weight 𝜛𝑖 =

𝜖1 + · · · + 𝜖𝑖 with highest weight vector 𝑤1 ∧ · · · ∧𝑤𝑖 for a suitable basis {𝑤 𝑗 } of C𝑛 . For every dominant weight
𝜆 ∈ X+ show that a simple representation of highest weight 𝜆 arises as a direct summand of a suitable tensor product
of representations ∧𝑖 (𝑉 ).

Exercise 49 Verify the statements made in Examples 5.1.2.(2). End
W.13
Exerc.5.2 Universal enveloping algebras

Definition 5.2.1 Let 𝔤 be a Lie algebra (not necessarily semisimple) over a field F. A universal enveloping
algebra of 𝔤 is a pair (𝑈 , can), where𝑈 is an associative, unital F-algebra and

can : 𝔤 → 𝑈

is a F-linear map and, more specifically, a Lie algebra morphism with respect to the commutator on𝑈 (see Construc-
tion 1.2.4), such that the following universal property is satisfied: for every associative, unital F-algebra 𝐴 and a
Lie algebra morphism

𝜙 : 𝔤 → 𝐴

(with respect to the commutator on 𝐴), there exists a unique morphism of unital F-algebras 𝜙 : 𝑈 → 𝐴, such that
𝜙 = 𝜙 ◦ can. This is expressed by the diagram:

𝔤 𝑈

𝐴

can

𝜙
∃!𝜙

Remarks 5.2.2 (1) A priori it is not clear that every Lie algebra has a universal enveloping algebra, but if one
exists, then it is unique up to canonical isomorphism. This is a standard consequence of the universal property
and sometimes we will refer to the universal enveloping algebra of a given Lie algebra.

(2) In fact, universal enveloping algebras do exist for all Lie algebras, as we will see in Theorem 5.2.6. Moreover,
𝔤 ↦→ 𝑈 (𝔤) is a functor that is a left adjoint to the functor that interprets associative, unital algebras as Lie
algebras with respect to the commutator, see Construction 1.2.4.

(3) A universal enveloping algebra𝑈 of 𝔤 is generated as an associative, unital algebra by the image of 𝔤 under
can. This is because the subalgebra of𝑈 generated by this image already satisfies the universal property of
a universal enveloping algebra. Furthermore, we will see in Theorem 5.2.6 that can is injective. Therefore,
we will sometimes simply interpret can as an inclusion 𝔤 ⊂ 𝑈 and write 𝑋 for the image can(𝑋 ) ∈ 𝑈 of an
element 𝑋 ∈ 𝔤.

Examples 5.2.3 (1) For the 0-dimensional Lie algebra 𝔤 = 0 over F, the field 𝑈 = F with the unique map
can: 0 → F is a universal enveloping algebra.
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(2) For a 1-dimensional Lie algebra spanned by an element 𝑋 , i.e. 𝔤 = F𝑋 , the polynomial ring F[𝑋 ] serves as
universal enveloping algebra with respect to the map:

can : 𝔤 → F[𝑋 ]
𝑎𝑋 ↦→ 𝑎𝑋

Note that 𝔤 is abelian and the given map is a Lie algebra morphism since F[𝑋 ] is commutative.

(3) An 𝑛-dimensional abelian Lie algebra spanned by 𝑋1, . . . , 𝑋𝑛 has F[𝑋1, . . . , 𝑋𝑛] as universal enveloping algebra.
In general, universal enveloping algebras can be considered as generalizations of polynomial rings to non-
commuting variables.

Recall that a (left-)module for an associative, unital F-algebra 𝐴 is an F-vector space 𝑉 together with a unital
algebra morphism 𝜙 : 𝐴 → EndF(𝑉 ). We will use the notation 𝑎 · 𝑣 := 𝜙 (𝑎) (𝑣) for 𝑎 ∈ 𝐴 and 𝑣 ∈ 𝑉 .

Lemma 5.2.4 Let can : 𝔤 → 𝑈 be a universal enveloping algebra of 𝔤. Then the restriction along can induces an
equivalence of categories:

{modules for the F-algebra𝑈 } ≃−→ {representations of 𝔤}

Proof. Given a𝑈 -module (𝑉 , 𝜙) with 𝜙 : 𝑈 → EndF(𝑉 ) we obtain a 𝔤-representation (𝑉 , 𝜙 ◦ can) with 𝜙 ◦ can : 𝔤 →
EndF(𝑉 ). Conversely, given a 𝔤-representation (𝑉 , 𝜌), the universal property guarantees the existence of a unique
𝜌 : 𝑈 → EndF(𝑉 ), i.e. a 𝑈 -module structure on 𝑉 , such that 𝜌 ◦ can = 𝜌 . These assignments are mutually inverse
and functorial, as one can easily check. □

Definition 5.2.5 Let 𝔤 be a Lie algebra over F and𝑈 (𝔤) a universal enveloping algebra of 𝔤. Consider the trivial
representation 𝜌 : 𝔤 → F. By Lemma 5.2.4 this corresponds to a unital algebra morphism 𝜖 : 𝑈 (𝔤) → F with 𝜖 (𝑋 ) = 0
for all 𝑋 ∈ can(𝔤) ⊂ 𝑈 (𝔤), the so called augmentation. The kernel of 𝜖 is a 2-sided ideal in 𝑈 (𝔤), called the
augmentation ideal:

𝑈 + := ker(𝜖)

The goal of this section is the following result.

Theorem 5.2.6 [Poincaré–Birkhoff–Witt] (1) Every Lie algebra 𝔤 has a universal enveloping algebra𝑈 (𝔤).

(2) If {𝑋𝑖}𝑖∈𝐼 is a basis of 𝔤 and ≤ a total order on the index set 𝐼 , then the monomials 𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) for 𝑖 (1) ≤
𝑖 (2) ≤ · · · ≤ 𝑖 (𝑟 ) for 𝑟 ≥ 0 form an F-basis of 𝑈 (𝔤). For 𝑟 = 0 this includes the empty monomial, which is
identified with the unit 1 ∈ 𝑈 (𝔤).

Note that 𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) should be interpreted as can(𝑋𝑖 (1) ) · · · can(𝑋𝑖 (𝑟 ) ), see Remarks 5.2.2.(3). The proof is
spread out over the rest of the section.

Definition 5.2.7 Let 𝑉 be a vector space over F. The tensor algebra is the associative unital F-algebra

𝑇 (𝑉 ) =
⊕
𝑟≥0

𝑉 ⊗𝑟 = F ⊕ 𝑉 ⊕ (𝑉 ⊗ 𝑉 ) ⊕ · · ·

with multiplication given by the tensor product, i.e. defined on elementary tensors by:

(𝑣1 ⊗ 𝑣2 ⊗ · · · ⊗ 𝑣𝑟 ) (𝑤1 ⊗ · · · ⊗𝑤𝑡 ) := 𝑣1 ⊗ · · · ⊗ 𝑣𝑟 ⊗𝑤1 ⊗ · · · ⊗𝑤𝑡 .

The exterior algebra on 𝑉 is the associative unital F-algebra

∧(𝑉 ) = 𝑇 (𝑉 )/⟨𝑣 ⊗ 𝑣 | 𝑣 ∈ 𝑉 ⟩

and the symmetric algebra on 𝑉 is the associative unital F-algebra

𝑆 (𝑉 ) = 𝑇 (𝑉 )/⟨𝑣 ⊗𝑤 −𝑤 ⊗ 𝑣 | 𝑣,𝑤 ∈ 𝑉 ⟩.

These algebras, 𝑇 (𝑉 ), ∧(𝑉 ), and 𝑆 (𝑉 ) are examples of graded algebras, i.e. associative algebras 𝐴 with a decompo-
sition as vector spaces

𝐴 =
⊕
𝑟≥0

𝐴𝑟 = 𝐴0 ⊕ 𝐴1 ⊕ 𝐴2 ⊕ · · ·

such that the multiplication maps 𝐴𝑟 ×𝐴𝑠 → 𝐴𝑟+𝑠 for all 𝑟, 𝑠 ≥ 0.
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The tensor, exterior, and symmetric algebras also satisfy universal properties. We only need the first kind.

Lemma 5.2.8 Let 𝑉 be a vector space over F and denote by 𝑐 : 𝑉 → 𝑇 (𝑉 ) the evident F-linear inclusion. If 𝐴 is
a associative unital F-algebra and 𝜙 : 𝑉 → 𝐴 an F-linear map, then there exists a unique morphism of associative
unital algebras 𝜙 : 𝑇 (𝑉 ) → 𝐴 such that 𝜙 ◦ 𝑐 = 𝜙 . This is expressed by the diagram:

𝑉 𝑇 (𝑉 )

𝐴

𝑐

𝜙
∃!𝜙

Proof. As 𝑉 generates 𝑇 (𝑉 ) as an algebra, there exists at most one algebra morphism 𝜙 : 𝑇 (𝑉 ) → 𝐴 with prescribed
values on 𝑉 . We define it on elementary tensors in 𝑇 (𝑉 ) as:

𝜙 (𝑣1 ⊗ · · · ⊗ 𝑣𝑟 ) := 𝜙 (𝑣1) · · ·𝜙 (𝑣𝑟 )

It is straightforward to check that this defines an unital algebra morphism. □

Theorem 5.2.9 Let 𝐼 (𝔤) denote the 2-sided ideal of 𝑇 (𝔤) that is generated by all elements of the form 𝑥 ⊗ 𝑦 − 𝑦 ⊗
𝑥 − [𝑥,𝑦] where 𝑥,𝑦 ∈ 𝔤. Then𝑈 (𝔤) := 𝑇 (𝔤)/𝐼 (𝔤) together with the map

can: 𝔤 𝑐
↩−→ 𝑇 (𝔤) ↠ 𝑈 (𝔤)

is a universal enveloping algebra of 𝔤. L24
End

This theorem establishes Theorem 5.2.6.(1).

Proof. Denote the canonical projection𝑇 (𝔤) → 𝑈 (𝔤) by 𝜋 . We first check that can = 𝜋 ◦ 𝑐 is a Lie algebra morphism.
Let 𝑥,𝑦 ∈ 𝔤, then we have:

can( [𝑥,𝑦]) = 𝜋 ( [𝑥,𝑦]) = 𝜋 (𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥)
= can(𝑥)can(𝑦) − can(𝑦)can(𝑥) = [can(𝑥), can(𝑦)]

where we have used that 𝑥 ⊗ 𝑦 − 𝑦 ⊗ 𝑥 − [𝑥,𝑦] is in the kernel of 𝜋 .
As unital algebra𝑈 (𝔤) is generated by can(𝔤), so for any associative unital algebra 𝐴, a Lie algebra morphism

𝔤 → 𝐴 extends in at most one way to a unital algebra morphism𝑈 (𝔤) → 𝐴. It thus remains that such an extension
exists. To this end, consider the diagram

𝔤 𝑇 (𝔤) 𝑈 (𝔤)

𝐴

𝑐

𝜙

where 𝜙 is a Lie algebra morphism. By Lemma 5.2.8, 𝜙 extends to a unital algebra morphism 𝜙 : 𝑇 (𝔤) → 𝐴. Since 𝜙
is a morphism of Lie algebras, we obtain 𝜙 (𝐼 (𝔤)) = 0. Thus 𝜙 factors uniquely through a unital algebra morphism
𝜙 : 𝑈 (𝔤) → 𝐴. □

Proof of Theorem 5.2.6.(2). Let 𝔤 be a Lie algebra and𝑈 (𝔤) its universal enveloping algebra as constructed in Theo-
rem 5.2.9, both over the field F. Let {𝑋𝑖}𝑖∈𝐼 be an F-basis with ordered index set 𝐼 .

We first check that the monomials𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) with 𝑖 (1) ≤ 𝑖 (2) ≤ · · · ≤ 𝑖 (𝑟 ) for 𝑟 ≥ 0 span𝑈 (𝔤). Let𝑈𝑟 ⊂ 𝑈 (𝔤)
denote the subset spanned by all monomials (not necessarily ordered indices) of length at most 𝑟 . We claim that𝑈𝑟 is
actually spanned by monomials with ordered indices and prove this by induction. The case 𝑟 = 1 is trivial. For 𝑟 ≥ 2 we
consider an arbitrary monomial 𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) . Then 𝑋𝑖 ( 𝑗 )𝑋𝑖 ( 𝑗+1) = 𝑋𝑖 ( 𝑗+1)𝑋𝑖 ( 𝑗 ) + [𝑋𝑖 ( 𝑗 ) , 𝑋𝑖 ( 𝑗+1) ] and we can expand
the commutator [𝑋𝑖 ( 𝑗 ) , 𝑋𝑖 ( 𝑗+1) ] =

∑
𝑘 𝑎𝑘𝑋𝑘 . This implies that the class in 𝑈𝑟/𝑈𝑟−1 represented by 𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 )

does not depend on the order of the factors; the indices may be assumed to be ordered. Then 𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) can
be expanded as a sum of an ordered monomial of length 𝑟 and ordered monomials of shorter length. In summary,
ordered monomials span.

Next we claim that the monomials 𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) with 𝑖 (1) ≤ 𝑖 (2) ≤ · · · ≤ 𝑖 (𝑟 ) for 𝑟 ≥ 0 are linearly independent
in 𝑈 (𝔤). A usual strategy for showing linear independence of such elements is to show that they act in a linearly
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independent way on a representation. To this end, consider the vector space 𝑆 over F with basis 𝑌𝑖 (1) · · ·𝑌𝑖 (𝑟 ) with
𝑖 (1) ≤ 𝑖 (2) ≤ · · · ≤ 𝑖 (𝑟 ) for 𝑟 ≥ 0.

Claim: There exists an action of 𝔤 on 𝑆 , such that

𝑋𝑖𝑌𝑖 (1) · · ·𝑌𝑖 (𝑟 ) = 𝑌𝑖𝑌𝑖 (1) · · ·𝑌𝑖 (𝑟 ) whenever 𝑖 (1) ≤ 𝑖 (2) ≤ · · · ≤ 𝑖 (𝑟 )

We will show this claim as part of Lemma 5.2.10. Assuming it holds, we can now consider 𝑆 as a 𝑈 (𝔤)-module. For
𝑖 (1) ≤ 𝑖 (2) ≤ · · · ≤ 𝑖 (𝑟 ) we now find:

𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) · 1𝑆 = 𝑌𝑖 (1) · · ·𝑌𝑖 (𝑟 )

where 1𝑆 denotes the basis element of 𝑆 for the length zero monomial. The 𝑌𝑖 (1) · · ·𝑌𝑖 (𝑟 ) were assumed to be linearly
independent in 𝑆 , which now implies the linear independence of the ordered monomials 𝑋𝑖 (1) · · ·𝑋𝑖 (𝑟 ) in𝑈 (𝔤). □

It remains to state and prove the announced auxiliary lemma. To this end, retain notation from the preceding
proof and denote by 𝑆𝑟 the subspace of 𝑆 spanned by polynomials of length 𝑟 . We have 𝑆0 = F1𝑆 , 𝑆 =

⊕
𝑟 ∈Z≥0 𝑆𝑟 .

Consider 𝑆 as a polynomial ring, we also have an associative and commutative multiplication such that 𝑆𝑟𝑆𝑠 ⊂ 𝑆𝑟+𝑠
for all 𝑟, 𝑠 ∈ Z≥0. We also write 𝑆≤𝑟 =

⊕𝑟

𝑠=0 𝑆𝑠 and set 𝑆≤𝑟 = 0 when 𝑟 < 0. We will also use multiindices
𝑖 = (𝑖 (1), . . . , 𝑖 (𝑟 )) ∈ 𝐼𝑟 and write 𝑌𝑖 := 𝑌𝑖 (1) · · ·𝑌𝑖 (𝑟 ) . A multiindex 𝑖 ismonotone if 𝑌𝑖 is ordered. We also write 𝑖 ≤ 𝑖

if 𝑖 ≤ 𝑖 ( 𝑗) for all 1 ≤ 𝑗 ≤ 𝑟 .

Lemma 5.2.10 There exists a unique family of bilinear maps 𝜙𝑟 : 𝔤 × 𝑆≤𝑟 → 𝑆≤𝑟+1 for 𝑟 ∈ Z, denoted (𝑥, 𝑝) ↦→ 𝑥𝑝

such that

(1) 𝜙𝑟 extends 𝜙𝑟−1;

(2) 𝑋𝑖𝑌𝑖 = 𝑌𝑖𝑌𝑖 if 𝑖 ∈ 𝐼𝑟 and 𝑖 ≤ 𝑖;

(3) 𝑋𝑖𝑌𝑖 ∈ 𝑌𝑖𝑌𝑖 + 𝑆≤𝑟 if 𝑖 ∈ 𝐼𝑟 and 𝑖 ∈ 𝐼 ;

(4) 𝑋𝑖 (𝑋 𝑗𝑝) − 𝑋 𝑗 (𝑋𝑖𝑝) = [𝑋𝑖 , 𝑋 𝑗 ]𝑝 for all 𝑖, 𝑗 ∈ 𝐼 and 𝑝 ∈ 𝑆≤𝑟−1.

Proof. For 𝑟 < 0 these are just the zero maps. Now we proceed by induction. Suppose 𝜙𝑟 has already been constructed.
Then we need to show that it extends in a unique way to 𝜙𝑟+1, such that the properties (2)-(4) are still satisfied.

For 𝑖 ∈ 𝐼 and a monotone 𝑖 ∈ 𝐼𝑟+1 we have to define 𝜙𝑟+1(𝑋𝑖 , 𝑌𝑖) = 𝑋𝑖𝑌𝑖 ∈ 𝑆 . If 𝑖 ≤ 𝑖 , then we set 𝑋𝑖𝑌𝑖 := 𝑌𝑖𝑌𝑖 and
(2) is satisfied. Otherwise we write 𝑖 = ( 𝑗, 𝑗) with 𝑗 ∈ 𝐼 and 𝑗 ∈ 𝐼𝑟 , and we know 𝑖 > 𝑗 . To satisfy (1)-(4) we must have:

𝑋𝑖𝑌𝑖 = 𝑋𝑖 (𝑋 𝑗𝑌𝑗 )
= 𝑋 𝑗 (𝑋𝑖𝑌𝑗 ) + [𝑋𝑖 , 𝑋 𝑗 ]𝑌𝑗

= 𝑋 𝑗 (𝑌𝑖𝑌𝑗 ) + 𝑋 𝑗𝑞 + [𝑋𝑖 , 𝑋 𝑗 ]𝑌𝑗

= 𝑌𝑗 (𝑌𝑖𝑌𝑗 ) + 𝑋 𝑗𝑞 + [𝑋𝑖 , 𝑋 𝑗 ]𝑌𝑗

where we have abbreviated 𝑞 = 𝑋𝑖𝑌𝑗 − 𝑌𝑖𝑌𝑗 . As 𝑞 ∈ 𝑆≤𝑟 , the terms in the last row are already defined, and so the
computation serves as definition of 𝑋𝑖𝑌𝑖 in case 𝑖 ≰ 𝑖 .

The required properties of 𝜙𝑟+1 are immediate, except maybe (4). Here we have to show:

𝑋𝑖 (𝑋 𝑗𝑌𝑗 ) − 𝑋 𝑗 (𝑋𝑖𝑌𝑗 ) = [𝑋𝑖 , 𝑋 𝑗 ]𝑌𝑗

for all 𝑖, 𝑗 ∈ 𝐼 and 𝑗 ∈ 𝐼𝑟 . We call this assertion 𝐴(𝑖, 𝑗, 𝑗). Clearly we have 𝐴(𝑖, 𝑖, 𝑗) and by the definition of 𝜙𝑟+1 we
also have 𝐴(𝑖, 𝑗, 𝑗) if 𝑖 > 𝑗 ≤ 𝑗 . Since the Lie bracket is anti-symmetric, we also have 𝐴(𝑖, 𝑗, 𝑗) if 𝑗 > 𝑖 ≤ 𝑗 . The
remaining case is for 𝑗 ≰ 𝑗 and 𝑖 ≰ 𝑗 . Here we write 𝑗 = (𝑘, 𝑘) with 𝑘 ∈ 𝐼 and 𝑘 ∈ 𝐼𝑟−1, so we have 𝑘 < 𝑖 , 𝑘 < 𝑗 and
𝑘 < 𝑘 . Now we expand

𝑋𝑖 (𝑋 𝑗𝑌𝑗 ) = 𝑋𝑖 (𝑋 𝑗 (𝑋𝑘𝑌𝑘 ))
= 𝑋𝑖 ( [𝑋 𝑗 , 𝑋𝑘 ]𝑌𝑘 ) + 𝑋𝑖 (𝑋𝑘 (𝑋 𝑗𝑌𝑘 ))
= 𝑋𝑖 ( [𝑋 𝑗 , 𝑋𝑘 ]𝑌𝑘 ) + [𝑋𝑖𝑋𝑘 ] (𝑋 𝑗𝑌𝑘 ) + 𝑋𝑘 (𝑋𝑖 (𝑋 𝑗𝑌𝑘 ))
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where the second equation follows by induction and the third by the cases already verified. (To see this, write
𝑋 𝑗𝑌𝑘 = 𝑌𝑗𝑌𝑘 + 𝑞 with 𝑞 ∈ 𝑆≤𝑟−2 and note 𝑘 < 𝑗 and 𝑘 ≤ 𝑘 .) The same equation holds after exchanging 𝑖 and 𝑗 . Now
we get three equations:

𝑋𝑖 (𝑋 𝑗𝑌𝑗 ) = 𝑋𝑖 ( [𝑋 𝑗 , 𝑋𝑘 ]𝑌𝑘 ) + [𝑋𝑖𝑋𝑘 ] (𝑋 𝑗𝑌𝑘 ) + 𝑋𝑘 (𝑋𝑖 (𝑋 𝑗𝑌𝑘 ))
𝑋 𝑗 (𝑋𝑖𝑌𝑗 ) = 𝑋 𝑗 ( [𝑋𝑖 , 𝑋𝑘 ]𝑌𝑘 ) + [𝑋 𝑗𝑋𝑘 ] (𝑋𝑖𝑌𝑘 ) + 𝑋𝑘 (𝑋 𝑗 (𝑋𝑖𝑌𝑘 ))
[𝑋𝑖 , 𝑋 𝑗 ]𝑌𝑗 = [𝑋𝑖 , 𝑋 𝑗 ] (𝑌𝑘𝑌𝑘 )

We have to show 𝑋𝑖 (𝑋 𝑗𝑌𝑗 ) − 𝑋 𝑗 (𝑋𝑖𝑌𝑗 ) − [𝑋𝑖 , 𝑋 𝑗 ]𝑌𝑗 = 0, i.e. after subtracting the second and third equation from the
first, the left hand side should vanish. We compute the right hand side of this difference as:

[𝑋𝑖 , [𝑋 𝑗 , 𝑋𝑘 ]]𝑌𝑘 + [[𝑋𝑖 , 𝑋𝑘 ], 𝑋 𝑗 ]𝑌𝑘 + 𝑋𝑘 ( [𝑋𝑖 , 𝑋 𝑗 ]𝑌𝑘 ) − [𝑋𝑖 , 𝑋 𝑗 ] (𝑌𝑘𝑌𝑘 )
= ( [𝑋𝑖 , [𝑋 𝑗 , 𝑋𝑘 ]] + [𝑋 𝑗 , [𝑋𝑘 , 𝑋𝑖]] + [𝑋𝑘 , [𝑋𝑖 , 𝑋 𝑗 ]])𝑌𝑘 = 0 □

Remarks 5.2.11 (1) A(n ascending) filtration of a vector space 𝑉 is a sequence of subspaces 𝑉≤𝑟 for 𝑟 ∈ Z
with 𝑉≤𝑟 ⊂ 𝑉≤𝑟+1 for all 𝑟 ∈ Z. Any subspace and any quotient of a vector space with a filtration inherits a
filtration. A linear map 𝜙 : 𝑉 →𝑊 respects two given filtrations on 𝑉 and𝑊 if 𝜙 (𝑉≤𝑟 ) ⊂𝑊≤𝑟 . If 𝑉 is graded
𝑉 =

⊕
𝑟 ∈Z𝑉𝑟 , then 𝑉 can be equipped with the filtration 𝑉≤𝑠 :=

⊕
𝑠≤𝑟 𝑉𝑟 . For any filtration on 𝑉 , one can

define the associated graded vector space gr𝑉 :=
⊕

𝑟 ∈Z𝑉≤𝑟/𝑉≤𝑟−1. If the filtration comes from a grading, we
have a natural isomorphism 𝑉 � gr𝑉 .

(2) A (unital) associative algebra 𝐴 is filtered if it is equipped with a filtration, such that the multiplication sends
𝐴≤𝑟 × 𝐴≤𝑠 → 𝐴≤𝑟+𝑠 (and 1 ∈ 𝐴≤0). The associated graded gr𝐴 naturally inherits the structure of a graded
algebra. If the filtration comes from a grading, we have a natural isomorphism of graded algebras 𝐴 � gr𝐴.
Every quotient of a filtered associative algebra is again filtered.

(3) Alternative form of the PBW theorem: Let 𝔤 be a Lie algebra. The two surjections 𝑇 (𝔤) ↠ 𝑆 (𝔤) and
𝑇 (𝔤) �−→ gr𝑇 (𝔤) → gr𝑈 (𝔤) have the same kernel and thus define an isomorphism of graded, associative, unital
algebras

gr𝑈 (𝔤) � 𝑆 (𝔤) .

Exercise 50 Let 𝑒, 𝑓 , ℎ be the usual basis of 𝔰𝔩(2,C) with [ℎ, 𝑒] = 2𝑒 , [ℎ, 𝑓 ] = −2𝑓 , and [𝑒, 𝑓 ] = ℎ. Express
𝑓 2ℎ𝑒 ∈ 𝑈 (𝔰𝔩(2,C)) as a linear combination of ordered monomials with respect to the order 𝑒, ℎ, 𝑓 .

Exercise 51 Let 𝔤 be a vector space and 𝑏 : 𝔤 × 𝔤 → 𝔤 a bilinear map. Consider the ideal 𝐼 ⊂ 𝑇 (𝔤) generated by
𝑥 ⊗𝑦 −𝑦 ⊗ 𝑥 −𝑏 (𝑥,𝑦) for 𝑥,𝑦 ∈ 𝔤. Show that the map 𝔤 ↩→ 𝑇 (𝔤) ↠ 𝑇 (𝔤)/𝐼 is injective if and only if 𝑏 is a Lie bracket.

Exercise 52 Show that every morphism between Lie algebras extends uniquely to a unital algebra morphism
between their universal enveloping algebras.

Exercise 53 Let 𝔤 be a finite-dimensional Lie algebra and 𝑏 : 𝔤 × 𝔤 → F a nondegenerate invariant bilinear form.
Choose a basis {𝑥1, . . . , 𝑥𝑛} of 𝔤 and denote by {𝑥1, . . . 𝑥𝑛} the basis dual with respect to 𝑏. I.e. 𝑏 (𝑥𝑖 , 𝑥 𝑗 ) = 𝛿𝑖, 𝑗 . We set

𝐶 = 𝐶𝑏 :=
𝑛∑︁
𝑖=1

𝑥𝑖𝑥
𝑖 ∈ 𝑈 (𝔤)

Show that 𝐶𝑏 ∈ 𝑈 (𝔤) is independent of the choice of a basis for the Lie algebra 𝔤 and that 𝐶𝑛 ∈ 𝑍 (𝑈 (𝔤)), i.e. that
𝑢𝐶 = 𝐶𝑢 for all 𝑢 ∈ 𝑈 (𝔤).

End
W.14
Exerc.5.3 Constructing highest weight modules

In this subsection we fix a system of positive roots 𝑅+ ⊂ 𝑅(𝔤, 𝔥) of the complex semisimple Lie algebra 𝔤 with Cartan
subalgebra 𝔥.

Definition 5.3.1 For a weight 𝜆 ∈ 𝔥∗ consider the left ideal 𝐼𝜆 ⊂ 𝑈 (𝔤) generated by 𝑥 ∈ 𝔤𝛼 for 𝛼 ∈ 𝑅+ and
𝐻 − 𝜆(𝐻 )1 for 𝐻 ∈ 𝔥. The quotient Δ(𝜆) = 𝑈 (𝔤)/𝐼𝜆 is naturally a left module for 𝑈 (𝔤) and, by Lemma 5.2.4, a
𝔤-representation. It is called the Verma module of 𝔤 of highest weight 𝜆 ∈ 𝔥∗. The coset of 1 ∈ 𝑈 (𝔤) is denoted
𝑣𝜆 ∈ Δ(𝜆) and called the canonical generator of the Verma module Δ(𝜆).
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Proposition 5.3.2 For every weight 𝜆 ∈ 𝔥∗ we have:

(1) If 𝛼1, . . . , 𝛼𝑝 ∈ 𝑅+ are the positive roots in a fixed order and 𝑦𝛼 ∈ 𝔤−𝛼 basis elements of the root spaces for the
negative roots, then the vectors 𝑦𝑚 (1)

𝛼1 · · ·𝑦𝑚 (𝑝 )
𝛼𝑝 𝑣𝜆 indexed by functions𝑚 : {1, . . . , 𝑝} → Z≥0 form a C-basis of

the Verma module Δ(𝜆).

(2) The Verma module Δ(𝜆) has the weight space decomposition

Δ(𝜆) =
⊕
𝜇≤𝜆

Δ(𝜆)𝜇

and the highest weight space Δ(𝜆)𝜆 is 1-dimensional and spanned by 𝑣𝜆 .

(3) Let P : 𝔥∗ → Z≥0 denote the Kostant partition function, which counts in how many ways (if any) a weight
can be decomposed into a non-negative integer linear combination of positive roots (and P(0) = 1). In formulas:

P(𝜆) = |{𝑚 : 𝑅+ → Z≥0 | 𝜆 =
∑︁
𝛼∈𝑅+

𝑚(𝛼)𝛼}|

Then the dimensions of the weight spaces of the Verma module Δ(𝜆) are:

dimC(Δ(𝜆)𝜇) = P(𝜆 − 𝜇)
L25
End

Proof. Consider the polynomial ring C[𝐻1, . . . , 𝐻𝑟 ]. For fixed scalars 𝜆1, . . . , 𝜆𝑟 ∈ C this has a C-basis with elements
(𝐻1 − 𝜆1)𝑛 (1) · · · (𝐻𝑟 − 𝜆𝑟 )𝑛 (𝑟 ) indexed by functions 𝑛 : {1, . . . , 𝑟 } → Z≥0. We consider the case when 𝐻1, . . . , 𝐻𝑟 form
a basis of the Cartan subalgebra 𝔥. Furthermore, let 𝑥𝛼 ∈ 𝔤𝛼 for 𝛼 ∈ 𝑅+ denote basis elements of the root spaces for
positive roots. Now Theorem 5.2.6 implies that the products

𝑦
𝑚 (𝛼1 )
𝛼1 · · ·𝑦𝑚 (𝛼𝑝 )

𝛼𝑝 (𝐻1 − 𝜆1)𝑛 (1) · · · (𝐻𝑟 − 𝜆𝑟 )𝑛 (𝑟 )𝑥𝑙 (𝛼1 )
𝛼1 · · · 𝑥𝑙 (𝛼𝑝 )𝛼𝑝

for𝑚, 𝑙 : 𝑅+ → Z≥0 and 𝑛 : {1, . . . , 𝑟 } → Z≥0 form a C-basis of 𝑈 (𝔤). Similarly, for 𝔟 = 𝔥 ⊕
⊕

𝛼∈𝑅+ 𝔤𝛼 ⊂ 𝔤 we get a
C-basis of 𝑈 (𝔟) by omitting the factors 𝑦𝛼 . Consider the Lie algebra morphisms 𝔟 ↠ 𝔥 → C, the first of which splits
𝔥 ↩→ 𝔟 and the second is the linear form 𝜆. This induces an associative algebra morphism𝑈 (𝔟) → C whose kernel
consists of the nontrivial monomials of our basis, which thus form an ideal in𝑈 (𝔟). Multiplying by basis elements
from𝑈 (𝔤) on the left, we obtain a spanning set over C of a left ideal in𝑈 (𝔤). In particular, the ideal 𝐼𝜆 is obtained by
constructing the basis of 𝑈 (𝔤) as above and with 𝜆𝑖 = 𝜆(𝐻𝑖) and then considering the span of basis vectors with
𝑛 ≠ 0 or 𝑙 ≠ 0. (We leave it as an exercise to show that left multiplication by a PBW basis elements of𝑈 (𝔤) preserves
this subspace.) The cosets of the 𝑦𝑚 (𝛼1 )

𝛼1 · · ·𝑦𝑚 (𝛼𝑝 )
𝛼𝑝 for𝑚 : 𝑅+ → Z≥0 thus form a C-basis of Δ(𝜆). By definition we

have 𝐻𝑣𝜆 = 𝜆(𝐻 )𝑣𝜆 for all 𝐻 ∈ 𝔥, so 𝑣𝜆 is a weight vector for 𝜆. The remaining statements follow immediately. □

Lemma 5.3.3 [Universal property of Verma modules] Let𝑀 be a 𝔤-representation and 𝜆 ∈ 𝔥∗. Then there is a
vector space isomorphism

Hom𝔤 (Δ(𝜆), 𝑀) �−→ {𝑣 ∈ 𝑀𝜆 | 𝔤𝛼𝑣 = 0 for all 𝛼 ∈ 𝑅+}

induced by the evaluation 𝜙 ↦→ 𝜙 (𝑣𝜆) on the canonical generator 𝑣𝜆 ∈ Δ(𝜆).

Proof. For every module𝑀 over a ring, the evaluation at the neutral element 1𝑅 induces a bijection Hom𝑅 (𝑅,𝑀) �−→ 𝑀 .
Similarly, in the context of quotients we find that for every left ideal 𝐼 ⊂ 𝑅 the evaluation at 1𝑅 + 𝐼 induces a bijection
Hom𝑅 (𝑅/𝐼 , 𝑀) �−→ {𝑚 ∈ 𝑀 | 𝐼𝑚 = 0}. Now we apply this for 𝑅 = 𝑈 (𝔤) and 𝐼 = 𝐼𝜆 . For 𝑣 ∈ 𝑀 we have 𝐼𝜆𝑣 = 0 if and
only if 𝑣 ∈ 𝑀𝜆 and 𝔤𝛼𝑣 = 0 for all 𝛼 ∈ 𝑅+. An application of Lemma 5.2.4 finishes the proof. □

Theorem 5.3.4 Let 𝜆 ∈ 𝔥∗.

(1) The Verma module Δ(𝜆) has a maximal proper submodule rad(Δ(𝜆)).

(2) We denote by 𝐿(𝜆) = Δ(𝜆)/rad(Δ(𝜆)) the quotient, which is a simple 𝔤-representation. This defines a bijection:

ℎ∗
�−→ {simple highest weight representations up to isomorphism}

𝜆 ↦→ 𝐿(𝜆)
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(3) The simple quotient 𝐿(𝜆) is finite-dimensional, dim(𝐿(𝜆)) < ∞ if and only if 𝜆 is dominant integral, i.e. 𝜆 ∈ X+.

This is the last missing part of Theorem 5.1.8.

Proof. (1) Every 𝔥-subrepresentation 𝑁 ⊂ Δ(𝜆) (and thus every 𝔤-subrepresentation) decomposes into weight spaces,
since Δ(𝜆) does so. To see this, let 𝑤 ∈ 𝑁 ⊂ Δ(𝜆) and decompose it as 𝑤 = 𝑤1 + · · · +𝑤𝑛 with 0 ≠ 𝑤𝑖 ∈ Δ(𝜆)𝜇𝑖
for pairwise distinct 𝜇𝑖 . We have to show 𝑤𝑖 ∈ 𝑁 . Suppose this were not the case for some 𝑤 ∈ 𝑁 with 𝑛 > 1
minimal. Then we can find 𝐻 ∈ 𝔥 with 𝜇1(𝐻 ) ≠ 𝜇2(𝐻 ). Then with 𝑤 ∈ 𝑁 and 𝐻 · 𝑤 ∈ 𝑁 , we also have
𝑁 ∋ (𝐻 − 𝜇1)𝑤 =

∑𝑛
𝑖=2(𝜇𝑖 − 𝜇1)𝑤𝑖 in contradiction to the minimality of 𝑛.

If 𝑁 is a 𝔤-subrepresentation of Δ(𝜆), then 𝑁𝜆 ≠ 0 implies 𝑁 = Δ(𝜆). A proper subrepresentation thus satisfies
𝑁 ⊂

⊕
𝜇≠𝜆 Δ(𝜆)𝜇 . As a consequence, the sum of all proper submodules of Δ(𝜆), denoted rad(Δ(𝜆)), is still a proper

submodule and maximal with this property.
(2) The quotient 𝐿(𝜆) = Δ(𝜆)/rad(Δ(𝜆)) is simple with highest weight 𝜆 and Theorem 5.1.7 shows that any

simple representation 𝐿 with highest weight 𝜆 must be isomorphic to it.
(3) One implication was shown in Theorem 5.1.6. It remains to show that 𝐿(𝜆) is finite-dimensional provided 𝜆 is

dominant integral. This will be done after some preparation. □

Definition 5.3.5 Recall the Weyl vector 𝜌 from Lemma 4.6.7, the half sum of positive roots. The dot action of the
Weyl group𝑊 on 𝔥∗ is defined by:

𝑤 · 𝜆 := 𝑤 (𝜆 + 𝜌) − 𝜌 for𝑤 ∈𝑊, 𝜆 ∈ 𝔥∗

Note that the dot action has fixed point𝑊 · (−𝜌) = −𝜌 .

Lemma 5.3.6 For every simple root 𝛼 and every weight 𝜆 ∈ 𝔥∗ with ⟨𝜆 + 𝜌, 𝛼∨⟩ ∈ Z≥0 there exists an injection of
𝔤-representations

Δ(𝑠𝛼 · 𝜆) ↩→ Δ(𝜆)

In fact, this holds for any positive root 𝛼 ∈ 𝑅+ as we will see later.

Proof. By Lemma 4.6.7 we have ⟨𝜌, 𝛼∨⟩ = 1 and so ⟨𝜆 + 𝜌, 𝛼∨⟩ ∈ Z≥0 if and only if 𝑛 := ⟨𝜆, 𝛼∨⟩ ∈ Z≥−1. Then we have
𝑠𝛼 · 𝜆 = 𝑠𝛼 (𝜆 + 𝜌) − 𝜌 = 𝜆 − (𝑛 + 1)𝛼 since 𝑠𝛼 (𝜌) = 𝜌 − 𝛼 .

For 𝑥𝛼 ∈ 𝔤𝛼 and 𝑦𝛼 ∈ 𝔤−𝛼 we now claim
𝑥𝛼𝑦

𝑛+1
𝛼 𝑣𝜆 = 0

If 𝑛 = −1, this is clear. For 𝑛 ∈ Z≥0 one can check that 𝑦𝑖𝛼𝑣𝜆 forms the basis of a Verma module of 𝔤𝛼 � 𝔰𝔩(2,C)
with highest weight vector 𝑣𝜆 . If further [𝑥𝛼 , 𝑦𝛼 ] = 𝛼∨ and 𝛼∨ acts on 𝑣𝜆 with eigenvalue 𝑛 + 1, then there exists an
(𝑛 + 1)-dimensional simple representation of 𝔰𝔩(2,C), which is a quotient of our Verma module. The corresponding
kernel is spanned by the 𝑦𝑖𝛼𝑣𝜆 with 𝑖 > 𝑛, which thus form a submodule; in particular 𝑥𝛼𝑦𝑛+1𝛼 𝑣𝜆 = 0. (Alternatively,
one can also compute inductively 𝑥𝛼𝑦𝑖𝛼𝑣𝜆 = 𝑖 (𝑛 − 𝑖 + 1)𝑦𝑖−1𝛼 𝑣𝜆 .)

Furthermore, if 𝛼 is a simple root, then 𝑥𝛽𝑦
𝑖
𝛼𝑣𝜆 = 0 for any 𝛽 ∈ 𝑅+ \ {𝛼} and 𝑖 ∈ Z≥0 since 𝑖𝛼 − 𝛽 is never a sum

of positive roots. From 𝑠𝛼 · 𝜆 = 𝜆 − (𝑛 + 1)𝛼 we deduce 0 ≠ 𝑦𝑛+1𝛼 𝑣𝜆 ∈ Δ(𝜆)𝑠𝛼 ·𝜆 . Thus 𝑦𝑛+1𝛼 𝑣𝜆 is of weight 𝑠𝛼 · 𝜆 and
now Lemma 5.3.3 provides a nonzero morphism Δ(𝑠𝛼 ) → Δ(𝜆) that sends the canonical generator of Δ(𝑠𝛼 ) to 𝑦𝑛+1𝛼 𝑣 ⟨ .
By comparing bases as in Proposition 5.3.2 (with 𝛼 ordered last), one checks that this map is injective. □

L26
End

Continuation of the proof of Theorem 5.3.4.(3). Lemma 5.3.6 shows that given 𝜆 ∈ 𝔥∗ and a simple root𝛼 with ⟨𝜆, 𝛼∨⟩ ∈
Z≥0, a highest weight vector of 𝐿(𝜆) always generates a finite-dimensional 𝔤𝛼 -subrepresentation of 𝐿(𝜆). In every
𝔤-representation 𝑉 , the sum𝑊 of all finite-dimensional 𝔤𝛼 -subrepresentations for a fixed 𝛼 ∈ 𝑅 is in fact a 𝔤-
subrepresentation, see Exercise 54. Since 𝐿(𝜆) is simple and if ⟨𝜆, 𝛼∨⟩ ∈ Z≥0 for every simple root 𝛼 , then 𝐿(𝜆)
is the sum of its finite-dimensional 𝔤𝛼 -subrepresentations for every such 𝛼 . Using the characterization of finite-
dimensional 𝔰𝔩(2,C)-representations, we deduce 𝑠𝛼 (𝑃 (𝐿(𝜆))) = 𝑃 (𝐿(𝜆)) for every simple reflection 𝑠𝛼 ∈ 𝑊 , so
𝑃 (𝐿(𝜆)) is stable under the Weyl group. Since any Weyl group orbit 𝑃 (𝐿(𝜆)) intersects the dominant Weyl chamber,
which contains only finitely many weights 𝜇 ≤ 𝜆, we deduce that 𝑃 (𝐿(𝜆)) is finite. Since the weight spaces of 𝐿(𝜆)
are finite-dimensional, this implies dimC(𝐿(𝜆)) < ∞. □

Exercise 54 Let 𝑈 be a representation of a Lie algebra 𝔞. The vectors 𝑢 ∈ 𝑈 that lie in a finite-dimensional
𝔞-subrepresentation of 𝑈 are called the 𝐚-finite vectors of 𝑈 . If 𝑉 is a representation of a finite-dimensional Lie
algebra 𝔤 and 𝔞 ⊂ 𝔤 a subalgebra, then the 𝔞-finite vectors of 𝑉 form a 𝔤-subrepresentation 𝑉𝔞 of 𝑉 .
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Exercise 55 Show that a Verma module Δ(𝜆) for 𝔰𝔩(2,C) is simple if and only if it has no finite-dimensional
quotient, which holds if and only if ⟨𝜆, 𝛼⟩ ∉ Z≥0, where 𝛼 denotes the positive root.

Exercise 56 For dominant 𝜆, show that the sum over the images of Δ(𝑠𝛼 · 𝜆) ↩→ Δ(𝜆), where 𝛼 ranges over the
positive roots, is the maximal proper submodule of Δ(𝜆). Hint: similar to the proof of Theorem 5.3.4.(3); show that
the vectors 𝑦 ⟨𝜆,𝛼 ⟩+1

𝛼 for simple roots 𝛼 generate the maximal proper submodule of Δ(𝜆), even as𝑈 (𝔫)-submodule.

Exercise 57 Let 𝑉 be a simple representation of a semisimple Lie algebra and 0 ≠ 𝑣 ∈ 𝑉 such that 𝑔𝛼𝑣 = 0 for all
𝛼 ∈ 𝑅+. Show that 𝑣 is a highest weight vector of 𝑉 .

5.4 Weyl character formula

We retain the notation and conventions from the previous subsection. In particular, 𝔤 is a complex semisimple
Lie algebra with Cartan subalgebra 𝔥, Weyl group𝑊 , root system 𝑅, system of positive roots 𝑅+, weight lattice X,
dominant integral weights X+, and Weyl vector 𝜌 .

One goal of this section is the following.

Theorem 5.4.1 [Weyl’s dimension formula] For every dominant integral weight 𝜆 ∈ X+, the dimension of the
simple representation 𝐿(𝜆) of highest weight 𝜆 is given by:

dimC(𝐿(𝜆)) =
∏

𝛼∈𝑅+ ⟨𝜆 + 𝜌, 𝛼∨⟩∏
𝛼∈𝑅+ ⟨𝜌, 𝛼∨⟩

As in the case of 𝔰𝔩(2,C), the dimensions of simple representations can be recovered from their characters that
we generalize next.

Construction 5.4.2 Consider 𝔥∗ as an (abelian) group and form the group ring Z𝔥∗ and call it the character ring
of 𝔤. For an element 𝜆 ∈ 𝔥∗ we write 𝑒𝜆 ∈ Z𝔥∗ for the corresponding group ring element (In this way, we have a
clear distinction between 𝑒𝜆+𝜇 and 𝑒𝜆 + 𝑒𝜇). The 𝑒𝜆 for 𝜆 ∈ 𝔥∗ thus form a Z-basis of Z𝔥∗ and the multiplication is
determined by 𝑒𝜆𝑒𝜇 = 𝑒𝜆+𝜇 .

The ring Z𝔥∗ is an integral domain. (Any two elements are always contained in a subring Z𝐸 for a finitely
generated subgroup 𝐸 ⊂ 𝔥∗. Since 𝐸 is free abelian, Z𝐸 is isomorphic to a ring of Laurent polynomials in multiple
variables.) We denote the fraction field by Frac(Z𝔥∗).

For a finite-dimensional representation 𝑉 of 𝔤, the character Ch(𝑉 ) ∈ Z𝔥∗ is defined by:

Ch(𝑉 ) =
∑︁
𝜇∈𝔥∗

(dimC(𝑉𝜇))𝑒𝜇

The Weyl group acts on 𝔥∗ and thus on Z𝔥∗. The character Ch(𝑉 ) is fixed by𝑊 . In fact, suitable powers of generators
of 𝔤𝛼 and 𝔤−𝛼 induce isomorphisms between the weight spaces for 𝜆 and 𝑠𝛼 (𝜆).

Theorem 5.4.3 [Weyl’s character formula] For every dominant integral weight 𝜆 ∈ X+, the character of the
simple representation 𝐿(𝜆) of highest weight 𝜆 is computed in Frac(Z𝔥∗) by:

Ch(𝐿(𝜆)) =
∑

𝑤∈𝑊 (−1)𝑙 (𝑤 )𝑒𝑤 (𝜆+𝜌 )∑
𝑤∈𝑊 (−1)𝑙 (𝑤 )𝑒𝑤 (𝜌 )

The proof will take some work.

Examples 5.4.4 As sanity check we observe Ch(𝐿(0)) = 𝑒0. For 𝔤 = 𝔰𝔩(2,C) we have 𝜌 = 𝛼/2 and X+ = Z≥0𝜌 . For
𝑛 ∈ Z≥0 we get:

Ch(𝐿(𝑛𝜌)) = 𝑒 (𝑛+1)𝜌 − 𝑒−(𝑛+1)𝜌

𝑒𝜌 − 𝑒−𝜌
= 𝑒𝑛𝜌 + 𝑒 (𝑛−2)𝜌 + · · · + 𝑒−𝑛𝜌

as in Consequences 2.1.5.(1) with 𝑞 := 𝑒𝜌 .

The following construction extends the character ring, so that we can define characters of certain infinite-
dimensional representations such as Verma modules.

Construction 5.4.5 (1) We write Z𝔥∗ for the set of functions 𝑓 : 𝔥∗ → Z. We write these as formal expressions
𝑓 =

∑
𝜆∈ℎ∗ 𝑓 (𝜆)𝑒𝜆 . Note that Z𝔥∗ injects into Z𝔥

∗ as the finitely supported functions.
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(2) If𝑉 is a representation of 𝔤 (or even just 𝔥) with finite-dimensional weight spaces, then we define Ch(𝑉 ) ∈ Z𝔥∗

by the familiar formula:
Ch(𝑉 ) =

∑︁
𝜇∈𝔥∗

(dimC(𝑉𝜇))𝑒𝜇

(Note that we have not defined a multiplication on Z𝔥∗ that extends the multiplication on Z𝔥∗.)

(3) Let Z<𝔥∗ ⊂ Z𝔥∗ denote the set of functions 𝑓 : 𝔥∗ → Z that is supported on a union of finitely many sets of the
form 𝜆 − Z≥0𝑅+, i.e. sets of the form {𝜆 − ∑

𝛼∈𝑅+ 𝑛(𝛼)𝛼 | 𝑛 : 𝑅+ → Z≥0}. In particular we have Z𝔥∗ ⊂ Z<𝔥∗
and the multiplication on the former extends to the latter by setting

(𝑓 𝑔) (𝜈) =
∑︁

𝜆+𝜇=𝜈
𝑓 (𝜆)𝑔(𝜇).

The support condition guarantees that these sums have finitely many nonzero terms. The ring Z<𝔥∗ is called
the extended character ring of 𝔤.

Remarks 5.4.6 (1) If𝑀, 𝑁 are two 𝔥-representations that are the sum of their finite-dimensional weight spaces
and Ch(𝑀),Ch(𝑁 ) ∈ Z<𝔥∗, then Ch(𝑀 ⊗ 𝑁 ) = Ch(𝑀) Ch(𝑁 ).

(2) The character of a Verma module is Ch(Δ(𝜆)) = 𝑒𝜆
∏

𝛼∈𝑅+ (1+ 𝑒−𝛼 + 𝑒−2𝛼 + · · · ). In particular, in Z<𝔥∗ we have

(
∏
𝛼∈𝑅+

(1 − 𝑒−𝛼 )) Ch(Δ(𝜆)) = 𝑒𝜆

(This follows from
∏

𝛼∈𝑅+ (1 + 𝑒−𝛼 + 𝑒−2𝛼 + · · · ) = ∑
𝜇 P(𝜇)𝑒−𝜇 .)

For the following, let 𝜅 : 𝔥 → 𝔥∗ denote the isomorphism induced by the Killing form. It is characterized by
⟨𝜅 (ℎ), ℎ′⟩ = 𝜅 (ℎ,ℎ′) for ℎ,ℎ′ ∈ 𝔥. We let (−,−) denote the bilinear form on 𝔥∗ corresponding under 𝜅 to the Killing
form on 𝔥. If 𝜅 sends ℎ ↦→ 𝜆, then for all 𝜇 ∈ 𝔥∗ we have 𝜇 (ℎ) = (𝜆, 𝜇). This bilinear form is positive definite on the
Q-vector space Q𝑅 spanned by the roots, see Proposition 4.4.19.(2). It is also invariant under the Weyl group as we
shall see.

Lemma 5.4.7 The restriction of the Killing form of a complex semisimple Lie algebra to a Cartan subalgebra is
invariant under the Weyl group.

Proof. For 𝑥,𝑦 ∈ 𝔥 and𝑤 ∈𝑊 we compute:

𝜅 (𝑥,𝑦) = tr(ad𝑥 ◦ ad𝑦) =
∑︁
𝛼∈𝑅

⟨𝛼, 𝑥⟩⟨𝛼,𝑦⟩

𝜅 (𝑤 (𝑥),𝑤 (𝑦)) =
∑︁
𝛼∈𝑅

⟨𝛼,𝑤 (𝑥)⟩⟨𝛼,𝑤 (𝑦)⟩ =
∑︁
𝛼∈𝑅

⟨𝑤−1(𝛼), 𝑥⟩⟨𝑤−1(𝛼), 𝑦⟩ =
∑︁
𝛽∈𝑅

⟨𝛽, 𝑥⟩⟨𝛽,𝑦⟩ □

For the second equation in the second line recall that𝑤 is a product of reflections.

Lemma 5.4.8 Every endomorphism of a Verma module is multiplication by a scalar.

Proof. Consider the maps C ↩→ End𝔤 (Δ(𝜆)) ↩→ EndC(Δ(𝜆)𝜆). The second map is injective since Δ(𝜆)𝜆 generates
Δ(𝜆). The composition is bijective, since the highest weight space of a Verma module is 1-dimensional. Thus the
component maps are bijections too. □

Lemma 5.4.9 The Casimir operator𝐶 = 𝐶𝜅 from Construction 4.2.6 acts on Δ(𝜆) by the scalar 𝑐𝜆 = (𝜌 + 𝜆, 𝜌 + 𝜆) −
(𝜌, 𝜌) using the bilinear form corresponding to the Killing form.

Remark 5.4.10 Combined with Lemma 5.3.6, this lemma also shows that (𝜆, 𝜆) = (𝑤 (𝜆),𝑤 (𝜆)) for 𝜆 ∈ X and
𝑤 ∈𝑊 .

Proof of Lemma 5.4.9. By Exercise 53 we may consider 𝐶 ∈ 𝑍 (𝑈 (𝔤)) and by Lemma 5.4.8 we only have to compute
the scalar by which it acts on Δ(𝜆)𝜆 . For 𝛼 ∈ 𝑅+ choose root vectors 𝑥𝛼 ∈ 𝔤𝛼 and 𝑦𝛼 ∈ 𝔤−𝛼 with 𝜅 (𝑥𝛼 , 𝑦𝛼 ) = 1 and an
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orthonormal basis {ℎ1, . . . , ℎ𝑛} of 𝔥 under the Killing form. Then we compute:

𝐶 =
∑︁
𝛼∈𝑅+

𝑦𝛼𝑥𝛼 + 𝑥𝛼𝑦𝛼 +
𝑛∑︁
𝑖=1

ℎ2𝑖

=
∑︁
𝛼∈𝑅+

2𝑦𝛼𝑥𝛼 + [𝑥𝛼 , 𝑦𝛼 ] +
𝑛∑︁
𝑖=1

ℎ2𝑖 (9)

Since 𝑥𝛼Δ(𝜆)𝜆 = 0, this expression acts on Δ(𝜆)𝜆 by the scalar:

𝑐𝜆 =
∑︁
𝛼∈𝑅+

𝜆( [𝑥𝛼 , 𝑦𝛼 ]) +
𝑛∑︁
𝑖=1

𝜆(ℎ𝑖)2

Writing 𝜆 = 𝜅 (ℎ), this transforms into:

𝑐𝜆 =
∑︁
𝛼∈𝑅+

𝜅 (ℎ, [𝑥𝛼 , 𝑦𝛼 ]) +
𝑛∑︁
𝑖=1

𝜅 (ℎ,ℎ𝑖)2

Now 𝜅 (ℎ, [𝑥𝛼 , 𝑦𝛼 ]) = 𝜅 ( [ℎ, 𝑥𝛼 ], 𝑦𝛼 ) = 𝛼 (ℎ)𝜅 (𝑥𝛼 , 𝑦𝛼 ) = 𝛼 (ℎ) and if ℎ =
∑𝑛

𝑖=1 𝑑𝑖ℎ𝑖 , then
𝑛∑︁
𝑖=1

𝜅 (ℎ,ℎ𝑖)2 =
𝑛∑︁
𝑖=1

𝑑2𝑖 =

𝑛∑︁
𝑖, 𝑗=1

𝜅 (𝑑𝑖ℎ𝑖 , 𝑑 𝑗ℎ 𝑗 ) = 𝜅 (ℎ,ℎ),

so we have 𝑐𝜆 = 2𝜌 (ℎ) + 𝜅 (ℎ,ℎ) = (2𝜌, 𝜆) + (𝜆, 𝜆) = (𝜌 + 𝜆, 𝜌 + 𝜆) − (𝜌, 𝜌). □
L27
End

Remark 5.4.11 (Freudenthal’s formula) From the proof of Lemma 5.4.9 we can already extract a formula for
the characters of simple representations.

First, for 𝔰𝔩(2,C) with standard basis 𝑒, ℎ, 𝑓 and its (𝑚 + 1)-dimensional representation 𝐿(𝑚𝜌), the element
𝑓 𝑒 ∈ 𝑈 (𝔰𝔩(2,C)) acts on every nonzero weight space 𝐿(𝑚𝜌)𝑚𝜌−𝑖𝛼 by the scalar 𝑖 (𝑚 − 𝑖 + 1). Setting 𝜇 = 𝑚𝜌 − 𝑖𝛼 ,
this can be expressed as:

𝑖 (𝑚 − 𝑖 + 1) =
𝑖∑︁
𝑗=1

1(𝑚 − 2(𝑖 − 𝑗)) =
∑︁
𝑗≥1

(dimC(𝐿(𝑚𝜌)𝜇+𝑗𝛼 ))⟨𝜇 + 𝑗𝛼, 𝛼∨⟩

The right-hand side is zero for all 𝜇 with 𝐿(𝑚𝜌)𝜇 = 0. Thus for all finite-dimensional representations of 𝔰𝔩(2,𝐶) and
all weights 𝜇 we have

tr(𝑓 𝑒 |𝑉𝜇
) =

∑︁
𝑗≥1

(dimC(𝑉𝜇+𝑗𝛼 ))⟨𝜇 + 𝑗𝛼, 𝛼∨⟩

In the context of a general complex semisimple 𝔤, given 𝑥 ∈ 𝔤𝛼 and 𝑦 ∈ 𝔤−𝛼 with [𝑥,𝑦] = 𝛼∨, then 𝜅 (ℎ, [𝑥,𝑦]) =
𝛼 (ℎ)𝜅 (𝑥,𝑦) and 𝜅 (𝛼∨, 𝛼∨) = 2𝜅 (𝑥,𝑦), see (4). Conversely, any 𝑥𝛼 and𝑦𝛼 with 𝜅 (𝑥𝛼 , 𝑦𝛼 ) = 1 give rise to an 𝔰𝔩(2)-triple
𝑥𝛼 , 𝛼∨, 𝜅 (𝛼∨, 𝛼∨)/2𝑦𝛼 . For 𝜆 ∈ Q𝑅 we write |𝜆 | :=

√︁
(𝜆, 𝜆). For the trace of the Casimir operator on 𝐿(𝜆)𝜇 we get

from the proof of Lemma 5.4.9:

tr(𝐶 |𝐿 (𝜆)𝜇 ) = (dimC(𝐿(𝜆)𝜇)) ( |𝜆 + 𝜌 |2 − |𝜌 |2)

tr(𝐶 |𝐿 (𝜆)𝜇 ) =
∑︁
𝛼∈𝑅+

(2/𝜅 (𝛼∨, 𝛼∨))
∑︁
𝑗≥1

(dimC(𝐿(𝜆)𝜇+𝑗𝛼 ))⟨𝜇 + 𝑗𝛼, 𝛼∨⟩ + dimC(𝐿(𝜆)𝜇) ( |𝜇 + 𝜌 |2 − |𝜌 |2)

The first equation follows since 𝐶 acts by the same scalar on 𝐿(𝜆) as on Δ(𝜆)𝜆 ; the trace on the weight space 𝐿(𝜆)𝜇
is the shown multiple of this scalar. The second equation follows from the expression (9): the first summand is
rewritten using our expression for tr(𝑓 𝑒 |𝑉𝜇

) and the remaining two as in the proof of Lemma 5.4.9, but with 𝜇 in
place of 𝜆 and with a factor dimC(𝐿(𝜆)𝜇) appearing in the trace of the relevant scalar endomorphisms.

Comparing the two formulas using 𝜅 (𝛼∨) = 2𝛼/(𝛼, 𝛼) gives Freudenthal’s formula

(dimC(𝐿(𝜆)𝜇) ( |𝜆 + 𝜌 |2 − |𝜇 + 𝜌 |2) = 2
∑︁
𝛼∈𝑅+

∑︁
𝑗≥1

(dimC(𝐿(𝜆)𝜇+𝑗𝛼 )) (𝜇 + 𝑗𝛼, 𝛼)

which enables an inductive computation of the weight spaces of simple representations based on the dimensions of
the weight spaces of higher weights.
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Lemma 5.4.12 [Composition series of Vermamodules] Every Verma module Δ(𝜆) has finite length (the length
of a chain of proper submodules with simple subquotients is finite) and every simple subquotient is a simple module
𝐿(𝜇) with 𝜇 ≤ 𝜆 and (𝜇 + 𝜌, 𝜇 + 𝜌) = (𝜆 + 𝜌, 𝜆 + 𝜌).

Proof. The second statement follows from Theorem 5.1.5.(1) and Lemma 5.4.9 since the Casimir operator must act
on every subquotient of Δ(𝜆) by the scalar 𝑐𝜆 . This implies that there are only finitely many 𝜇 that are candidates
for highest weights of subquotients of Δ(𝜆). To see this, note first that 𝜇 ≤ 𝜆 implies 𝜇 = 𝜆 + 𝜈 with 𝜈 ∈ Z𝑅. We
argue that there are only finitely many 𝜈 ∈ Z𝑅 such that (𝜆 + 𝜌, 𝜆 + 𝜌) = (𝜆 + 𝜈 + 𝜌, 𝜆 + 𝜈 + 𝜌). For 𝜆 ∈ R𝑅 this is
straightforward because the bilinear form (−,−) is positive definite by Proposition 4.4.19 and every discrete, compact
subset is finite. For general 𝜆 the equation is equivalent to (𝜈, 𝜈) + 2(𝜆 + 𝜌, 𝜈) = 0 and so all its solutions are contained
in the subspace 𝐴 := {𝜈 ∈ Q𝑅 | (𝜆, 𝜈) ∈ Q}. Now one can find 𝜆′ ∈ Q𝑅 with (𝜆′, 𝜈) = (𝜆, 𝜈) for all 𝜈 ∈ 𝐴 and by
replacing 𝜆 by 𝜆′ we return to the known case.

Every nonzero subquotient 𝑆 of Δ(𝜆) has itself a simple subquotient (a general fact reminiscent of Exercise 38),
thus there exists some 𝜇 with (𝜇 + 𝜌, 𝜇 + 𝜌) = (𝜆 + 𝜌, 𝜆 + 𝜌) and 𝑆𝜇 ≠ 0. The length of a properly descending filtration
of Δ(𝜆) can thus be estimated by:

𝑙 (Δ(𝜆)) ≤
∑︁

dimC(Δ(𝜆)𝜇)

where the sum runs over all 𝜇 ≤ 𝜆 with (𝜇 + 𝜌, 𝜇 + 𝜌) = (𝜆 + 𝜌, 𝜆 + 𝜌). □

Theorem 5.4.13 [Kostant’s character formula] For every 𝜆 ∈ X+, the character of the simple module 𝐿(𝜆) is
the alternating sum over the characters of Verma modules with highest weights in the orbit of 𝜆 under the dot action
of𝑊 . In formulas:

Ch(𝐿(𝜆)) =
∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤 ) Ch(Δ(𝑤 · 𝜆))

Example 5.4.14 For 𝔰𝔩(2,C) and𝑚 ∈ Z≥0, the embedding of Verma modules from Lemma 5.3.6 induces a short
exact sequence

Δ((−𝑚 − 2)𝜌) ↩→ Δ(𝑚𝜌) ↠ 𝐿(𝑚𝜌)

and we obtain Ch(𝐿(𝑚𝜌)) = Ch(Δ(𝑚𝜌)) − Ch(Δ((−𝑚 − 2)𝜌)) = Ch(Δ(𝑚𝜌)) − Ch(Δ(𝑠𝛼 ·𝑚𝜌)) as claimed.

Proof. For 𝜆 ∈ Q𝑅 we write |𝜆 | =
√︁
(𝜆, 𝜆). Lemma 5.4.12 says that we can express the character of Δ(𝜆) as

Ch(Δ(𝜆)) =
∑︁
𝜇≤𝜆

|𝜇+𝜌 |= |𝜆+𝜌 |

𝑎
𝜇

𝑙
Ch(𝐿(𝜇))

for some 𝑎𝜇
𝜆
∈ Z≥0 with 𝑎𝜆

𝜆
= 1. These numbers form an upper triangular matrix with ones on the diagonal, which

can be inverted over Z. Thus we can write:

Ch(𝐿(𝜆)) =
∑︁
𝜇≤𝜆

|𝜇+𝜌 |= |𝜆+𝜌 |

𝑏
𝜇

𝜆
Ch(Δ(𝜇))

for suitable 𝑏𝜇
𝜆
∈ Z with 𝑏𝜆

𝜆
= 1. This holds for arbitrary 𝜆 ∈ 𝔥∗ (if we avoid the notation |.|). Now we assume that 𝜆

is dominant, then 𝐿(𝜆) is finite-dimensional by Theorem 5.3.4.(3) and hence Ch(𝐿(𝜆)) is invariant under the Weyl
group by Theorem 5.1.6. Now we multiply both sides of our equation by

∏
𝛼∈𝑅+ (𝑒𝛼/2 − 𝑒−𝛼/2) = 𝑒𝜌

∏
𝛼∈𝑅+ (1 − 𝑒−𝛼 )

to get ( ∏
𝛼∈𝑅+

(𝑒𝛼/2 − 𝑒−𝛼/2)
)
Ch(𝐿(𝜆)) =

∑︁
𝜇

𝑏
𝜇

𝜆
𝑒𝜇+𝜌 =

∑︁
𝜈

𝑑𝜈𝑒
𝜈

where we write 𝑑𝜈 = 𝑏
𝜈−𝜌
𝜆

and note 𝑑𝜆+𝜌 = 1 and 𝑑𝜈 = 0 if |𝜈 | ≠ |𝜆 + 𝜌 | or 𝜈 ≰ 𝜆 + 𝜌 . The left-hand side is negated by
every simple reflection (see Lemma 4.6.4), so we also must have 𝑑𝜈 = (−1)𝑙 (𝑤 )𝑑𝑤 (𝜈 ) for all𝑤 ∈𝑊 . In particular, we
must have 𝑑𝜈 = 0 unless |𝜈 | = |𝜆 + 𝜌 | and 𝑤 (𝜈) ≤ 𝜆 + 𝜌 for every 𝑤 ∈𝑊 . In the following lemma we will also see
that 𝑑𝜈 = 0 unless 𝜈 ∈𝑊 (𝜆 + 𝜌). Upon passing from 𝜈 back to 𝜇 + 𝜌 we obtain the desired character formula. □

Lemma 5.4.15 Let 𝜇 ∈ X+ and 𝜈 ∈ X. If |𝜈 | = |𝜇 | and𝑤 (𝜈) ≤ 𝜇 for all𝑤 ∈𝑊 , then 𝜈 ∈𝑊 (𝜇).

Proof. Every integral weight has a𝑊 -conjugate in X+ and their “absolute values” | − | agree by Remark 5.4.10.
Without loss of generality, we assume 𝜈 ∈ X+. It remains to prove for 𝜇, 𝜈 ∈ X+ that 𝜈 ≤ 𝜇 and |𝜈 | = |𝜇 | imply 𝜈 = 𝜇.
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Since the scalar product of any vector from the dominant Weyl chamber with a positive root is positive, we must
have (𝜇 − 𝜈, 𝜈) ≥ 0. Then 0 = (𝜇, 𝜇) − (𝜈, 𝜈) = (𝜇 − 𝜈, 𝜇 − 𝜈) + (𝜈, 𝜇 − 𝜈) + (𝜇 − 𝜈, 𝜈) ≥ 0 and the final equality forces
𝜇 = 𝜈 . □

We are now ready to prove Weyl’s character formula.

Proof of Theorem 5.4.3. In the proof of Kostant’s character formula we obtained the formula( ∏
𝛼∈𝑅+

(𝑒𝛼/2 − 𝑒−𝛼/2)
)
Ch(𝐿(𝜆)) =

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤 )𝑒𝑤 (𝜆+𝜌 )

Dividing this by its specialization at 𝜆 = 0 produces Weyl’s character formula. □

Remark 5.4.16 The specialization of the above formula at 𝜆 = 0 is called Weyl’s denominator formula:

𝑒𝜌
∏
𝛼∈𝑅+

(1 − 𝑒−𝛼 ) =
∏
𝛼∈𝑅+

(𝑒𝛼/2 − 𝑒−𝛼/2) =
∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤 )𝑒𝑤 (𝜌 )

Finally we prove Weyl’s dimension formula.

Proof of Theorem 5.4.1. It is tempting to use the ring homomorphism 𝑎 : Z𝔥∗ → Z with 𝑎(𝑒𝜆) = 1 for all 𝜆 ∈ 𝔥∗.
When applied to Weyl’s character formula, this unfortunately only returns the useless relation 0 dim(𝐿(𝜆)) = 0. An
abstract version of de l’Hospital’s rule comes to the rescue. Consider the subring ZX ⊂ Z𝔥∗ and for 𝛼 ∈ 𝑅+ the group
homomorphism 𝜕𝛼 : ZX → ZX define by 𝜕𝛼 (𝑒𝜇) = ⟨𝜇, 𝛼∨⟩𝑒𝜇 . One can check easily that 𝜕𝛼 is a derivation and 𝜕𝛼 and
𝜕𝛽 commute for 𝛼, 𝛽 ∈ 𝑅+. Define 𝐷 =

∏
𝛼∈𝑅+ 𝜕𝛼 ∈ End(ZX). Combined with the ring homomorphism 𝑎 we find

𝑎(𝐷 (𝑒𝜇)) = ∏
𝛼∈𝑅+ ⟨𝜇, 𝛼∨⟩. Lemma 4.6.4 then implies 𝑎(𝐷 (𝑒𝑤 (𝜇 ) )) = (−1)𝑙 (𝑤 )𝑎(𝐷 (𝑒𝜇)) for all𝑤 ∈𝑊 . Now we apply

𝑎 ◦ 𝐷 to (
𝑒𝜌

∏
𝛼∈𝑅+

(1 − 𝑒−𝛼 )
)
Ch(𝐿(𝜆)) =

∑︁
𝑤∈𝑊

(−1)𝑙 (𝑤 )𝑒𝑤 (𝜆+𝜌 )

and obtain

(𝑎 ◦ 𝐷)
(
𝑒𝜌

∏
𝛼∈𝑅+

(1 − 𝑒−𝛼 )
)
𝑎(Ch(𝐿(𝜆))) = |𝑊 |

∏
𝛼∈𝑅+

⟨𝜆 + 𝜌, 𝛼∨⟩

because if one of the factors (1 − 𝑒−𝛼 ) is not hit by a derivation, it vanishes under 𝑎. Now we note 𝑎(Ch(𝐿(𝜆))) =
dim(𝐿(𝜆)) and divide the equation by its specialization at 𝜆 = 0 to obtain Weyl’s dimension formula. Note that the
latter is non-zero since 𝜌 lies in the dominant Weyl chamber and thus not on any reflecting hyperplane. □

L28
End
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