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We refine the statement and the proof of (Thm 3.2.2(1)) from https://

www.math.uni-hamburg.de/home/wedrich/Lie-Algebras.pdf pages 22 ff.
Recall the statement:

Theorem 3.2.2. Let V be a finite dimensional vector space and g ⊂ gl(V ) a
Lie subalgebra, such that

∀x ∈ g : x is nilpotent as an endomorphism of V.

Then the following hold

(1) If V ̸= 0, then there exists v ∈ V, v ̸= 0, such that

∀x ∈ g : x(v) = 0

Notation: gv = 0.

(2) [...]

However the condition g ⊂ gl(V ) is very restrictive. So restrictive in fact
that the proof of (2) as given in the lecture uses a more general version of (1),
which can be stated as follows:

Theorem 3.2.2 (more general). Let g be a Lie algebra and V be a finite
dimensional g representation, such that

∀x ∈ g : ρ(x) is nilpotent as an endomorphism of V.

Then the following hold

(1) If V ̸= 0, then there exists v ∈ V, v ̸= 0, such that

∀x ∈ g : ρ(x)(v) = 0 (i.e. x.v = 0)

(2) [...]
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But it turns out that this general version actually follows from the special
case g ⊂ gl(V ). To see this, we define g′ := im(ρ) ⊂ gl(V ) and consider the
factorization

g g′ gl(V ).
ρ

ρ

If now the original theorem holds for g′, then the new theorem will hold for g,
since the elements of g′ are exactly those of the form ρ(x) for x ∈ g.

Thus we are left to prove the original theorem:

Proof. The proof proceeds by induction on dim g. To be precise, we prove:

∀d ∈ N ∀V ∀g ⊂ gl(V ), dim g = d : [...],

in particular V is not fixed.
For dim g = 1, we have g = span{x}. Since x : V → V is nilpotent and

V ̸= 0, its kernel is nonzero and we can choose v ∈ ker(x), v ̸= 0.
Now let dim g > 1 and assume the statement holds for all Lie algebras of

smaller dimension.

The remaining part of the proof consists of two steps:

(1) Decompose g into smaller parts to apply the induction hypothesis.

(2) Find v ∈ V, v ̸= 0 such that gv = 0.

Step 1 (decompose g):

The idea is to write g = h + span{l} and use the induction hypothesis
on h. However there are two ways to go about this: Either we first choose
l ∈ g to have some nice properties and then h to fill up the rest, or we
choose h ⊂ g first and then l /∈ h to interact nicely with h.
We will follow the second approach: One reason for the first approach be-
ing hard is that we need to assure that h is still a Lie algebra to apply the
induction hypothesis. It is not at all obvious that h has dimension exactly
one less than g (e.g. 0, {1-dim ⊂ g} and g could be the only subalgebras of
g (e.g. R3 with ×)).
This is why we define h as:

Let h ⊊ g be a maximal1 Lie subalgebra.

1It suffices to choose h maximal with respect to ⊂ instead of dim.
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We still need to find l ∈ g such that h + span{l} = g. Obviously l /∈ h is
necessary. But how do we make sure that h+span{l} is not just any subset
of g but in fact all of it?
This is where the maximality of h comes into play. If we choose l ∈ g, l /∈ h
such that h+ span{l} is again a Lie algebra, then

h
l /∈h
⊊ h+ span{l} ⊂ g

implies h+ span{l} = g.

But when is h+ span{l} again a Lie algebra?
The only non trivial condition is “closed under [−,−]”. I.e. we need to
require for l to satisfy [h, l] ⊂ h + span{l}. It’s hard to motivate at this
point, but to find v in the end, we actually want [h, l] ⊂ h. The intuition
is that this ties the action of l more closely to that of h. For more details
please refer to the (∗)-Problem at the end of this document.
To summarize, we want to find l ∈ g, l /∈ h such that [h, l] ⊂ h.a

aTo clarify: This will not finish the proof, it just decomposes g into more handy
pieces, namely h and l.

The ingenious idea of the proof is to find l (more precisely l) as the vec-
tor given by the induction hypothesis applied to h (more precisely ad(h)).
For this we need a clever representation of h. But what representation
should we choose?

We try to reverse engineer this clever representation U of h. The induc-
tion hypothesis would give u ∈ U, u ̸= 0 such that hu = 0.
Somehow we have to find the connections between:

u ∈ U ←→ l ∈ g,

u ̸= 0 ←→ l /∈ h,

hu = 0 ←→ [h, l] ⊂ h.
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Introducing a 0 on the right hand side of l /∈ h is easy, if we just quotient
by h (thus u = l). Since we need l ∈ g we can already guess that U = g/h.
After taking this quotient, the third correspondence can be refined to:

hl = 0 ←→ [h, l] = 0.

The left hand side says ∀y ∈ h : y.l = 0 and the right hand says ∀y ∈ h :
[y, l] = 0. Thus a reasonable guess would be to define the action of y ∈ h
on x ∈ U = g/h as y.x := [y, x] = ady(x).

Consider the finite dimensional h representation

ad : h→ gl(g/h)

y 7→ ady := ady

To see that this indeed is a representation, we can define it formally by
first considering the representation

ad |h : h ↪→ g
ad−→ gl(g)

and then taking the quotient representation

ad : h→ gl(g/h).

But now h ̸⊂ gl(g/h), so we cannot simply apply our induction hypothesis.
We fall back to the same trick as before, by considering h′ := ad(h), i.e. the
image of the representation. Then dim h′ ≤ dim h < dim g, since we chose
h ⊊ g.

We have to check that h′ acts by nilpotent endomorphisms. Since g ⊂ gl(V )
acts by nilpotent endomorphisms, we can apply (Lem 3.2.1) on every element
of g, to conclude that for every x ∈ g the endomorphism adx ∈ gl(g) is
nilpotent. This is inherited to ad as follows: For every y ∈ h the endomorphism
ady ∈ gl(g/h) is nilpotent.

Thus we can apply the induction hypothesis, to find l ∈ g/h, l ̸= 0, such
that h′ l = 0.

Now all we have to do, is to follow our ideas backwards to see them un-
fold. We designed our representation, so that l ∈ g, l /∈ h and [h, l] ⊂ h
would be true, so this will be the next thing to show.
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This implies l ∈ g, l /∈ h and

h′ l = 0 ⇐⇒ ∀y′ ∈ ad(h) : y′(l) = 0

⇐⇒ ∀y ∈ h : ady(l)︸ ︷︷ ︸
=[y,l]

= 0

⇐⇒ ∀y ∈ h : [y, l] ∈ h

⇐⇒ [h, l] ⊂ h.

By maximality of h and [h, l] ⊂ h together with l /∈ h we now have

h+ span{l} = g.

Step 2 (Find v):

To proof the theorem we also need v ∈ V, v ̸= 0 such that gv = 0, i.e.
hv = 0 and l(v) = 0. Let W := {v ∈ V | hv = 0} be the vector space of
potential candidates. Our wanted vector v lives in W , so we need to have
that ker l ∩W ̸= 0, for v ̸= 0 to exist.
But how would we know that l has a nonzero kernel element in W?
Since l ∈ g we do know for certain that l has a nonzero kernel in V , since
it is a nilpotent map V → V (compare this to the induction start). But it
could lie anywhere.
The next trick is to require that l restricts to a well defined map l|W :
W → W , i.e. lW ⊂ W . Then l being nilpotent implies that l|W is nilpo-
tent as well, thus it has nonzero kernel, which is exactly what we need.

Define W := {v ∈ V | hv = 0}.
Claim: lW ⊂ W .

Proof: Let w ∈ W , then we have to show l(w) ∈ W , i.e. ∀y ∈ h :
y(l(w)) = 0. Although looking weird, this is just the action of g on V
(recall g ⊂ gl(V )). Let y ∈ h, then

y(l(w)) = y.(l.w)
action
= l.(y.w) + [y, l].w

y∈h
w∈W
= 0 + [y, l].w = 0,

where the last equality holds, since [h, l] ⊂ h.

Now since l ∈ g is a nilpotent map V → V , it restricts to a nilpotent map
l|W : W → W . Since dim h < dim g and h ⊂ gl(V ), we have that W ̸= 0 by
the induction hypothesis. Together with l|W being nilpotent, this implies that
there exists a v ∈ ker l|W , v ̸= 0.

Then by definition of W we finally have v ∈ V, v ̸= 0 with

hv = 0 and l(v) = 0 ⇒ gv = 0.
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Remark. A few questions to think about:

(a) Where did we use V ̸= 0? It’s obvious that for V = 0 there is no v ̸= 0,
but where exactly did we use this fact?

(b) Did we really need that g acts nilpotently? More precisely, would it
suffice to require

∀x ∈ g ∀W ⊂ V,W ̸= 0 : (xW ⊂ W ⇒ kerx|W ̸= 0)

instead? (This property is how we used l being nilpotent in the end).

(c) Why did we, in the beginning of the proof, mention, that “V is not
fixed”?

(d) What happens if we define h ⊊ g to be maximal with respect to dim
instead of ⊂?

(e) Why exactly is W ̸= 0?

(∗) What is the intuition behind the implication [h, l] ⊂ h ⇒ lW ⊂ W?
Use this to explain that [h, l] ⊂ h+ span{l} does not imply lW ⊂ W .

Hints:

(1) The proof of lW ⊂ W used that h + span{l} ⊂ g ⊂ gl(V ) is a
representation.

(2) What does this implication say for h = span{x}?
(3) Intuitively W can be thought of as some kind of “kernel” of h.

(4) What happens when generalizing to a, b ⊂ g?

(5) Prove that for every subspace U ⊂ V the following relations hold

[b, a]U ⊂ abU + baU,
abU ⊂ [a, b]U + baU,
baU ⊂ [b, a]U + abU.

(6) Draw a picture like this

lW hlW

W 0 ∈ W

0 ∈ W l(0) ∈ W

h

l

h

[h,l]⊂h

l

and apply (5), to conclude and “visually see” hlW = 0.

(7) Ask Jacob ;)
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