Lie Algebras Theorem 3.2.2

Jacob Stegemann

4. November 2021

We refine the statement and the proof of (Thm 3.2.2(1)) from https:// www.math.uni-hamburg.de/home/wedrich/Lie-Algebras.pdf pages 22 ff. Recall the statement:

Theorem 3.2.2. Let V be a finite dimensional vector space and $\mathfrak{g} \subset \mathfrak{gl}(V)$ a Lie subalgebra, such that

 $\forall x \in \mathfrak{g} : x \text{ is nilpotent as an endomorphism of } V.$

Then the following hold

(1) If $V \neq 0$, then there exists $v \in V, v \neq 0$, such that

$$\forall x \in \mathfrak{g} : x(v) = 0$$

Notation: gv = 0.

(2) [...]

However the condition $\mathfrak{g} \subset \mathfrak{gl}(V)$ is very restrictive. So restrictive in fact that the proof of (2) as given in the lecture uses a more general version of (1), which can be stated as follows:

Theorem 3.2.2 (more general). Let \mathfrak{g} be a Lie algebra and V be a finite dimensional \mathfrak{g} representation, such that

 $\forall x \in \mathfrak{g} : \rho(x) \text{ is nilpotent as an endomorphism of } V.$

Then the following hold

(1) If $V \neq 0$, then there exists $v \in V, v \neq 0$, such that

$$\forall x \in \mathfrak{g} : \rho(x)(v) = 0 \quad (i.e. \ x.v = 0)$$

(2) [...]

But it turns out that this general version actually follows from the special case $\mathfrak{g} \subset \mathfrak{gl}(V)$. To see this, we define $\mathfrak{g}' := \operatorname{im}(\rho) \subset \mathfrak{gl}(V)$ and consider the factorization

$$\mathfrak{g} \xrightarrow[\rho]{\rho} \mathfrak{g}' \xrightarrow[\rho]{\rho} \mathfrak{gl}(V)$$

If now the original theorem holds for \mathfrak{g}' , then the new theorem will hold for \mathfrak{g} , since the elements of \mathfrak{g}' are exactly those of the form $\rho(x)$ for $x \in \mathfrak{g}$.

Thus we are left to prove the original theorem:

Proof. The proof proceeds by induction on dim \mathfrak{g} . To be precise, we prove:

$$\forall d \in \mathbb{N} \ \forall V \ \forall \mathfrak{g} \subset \mathfrak{gl}(V), \dim \mathfrak{g} = d : [...],$$

in particular V is **not** fixed.

For dim $\mathfrak{g} = 1$, we have $\mathfrak{g} = \operatorname{span}\{x\}$. Since $x : V \to V$ is nilpotent and $V \neq 0$, its kernel is nonzero and we can choose $v \in \operatorname{ker}(x), v \neq 0$.

Now let $\dim \mathfrak{g} > 1$ and assume the statement holds for all Lie algebras of smaller dimension.

The remaining part of the proof consists of two steps:

(1) Decompose \mathfrak{g} into smaller parts to apply the induction hypothesis.

(2) Find $v \in V, v \neq 0$ such that $\mathfrak{g}v = 0$.

Step 1 (decompose \mathfrak{g}):

The idea is to write $\mathfrak{g} = \mathfrak{h} + \operatorname{span}\{l\}$ and use the induction hypothesis on \mathfrak{h} . However there are two ways to go about this: Either we first choose $l \in \mathfrak{g}$ to have some nice properties and then \mathfrak{h} to fill up the rest, or we choose $\mathfrak{h} \subset \mathfrak{g}$ first and then $l \notin \mathfrak{h}$ to interact nicely with \mathfrak{h} . We will follow the second approach: One reason for the first approach being hard is that we need to assure that \mathfrak{h} is still a Lie algebra to apply the induction hypothesis. It is not at all obvious that \mathfrak{h} has dimension exactly one less than \mathfrak{g} (e.g. $0, \{1 - \dim \subset \mathfrak{g}\}$ and \mathfrak{g} could be the only subalgebras of \mathfrak{g} (e.g. \mathbb{R}^3 with \times)). This is why we define \mathfrak{h} as:

Let $\mathfrak{h} \subsetneq \mathfrak{g}$ be a maximal¹ Lie subalgebra.

¹It suffices to choose \mathfrak{h} maximal with respect to \subset instead of dim.

We still need to find $l \in \mathfrak{g}$ such that $\mathfrak{h} + \operatorname{span}\{l\} = \mathfrak{g}$. Obviously $l \notin \mathfrak{h}$ is necessary. But how do we make sure that $\mathfrak{h} + \operatorname{span}\{l\}$ is not just any subset of \mathfrak{g} but in fact all of it?

This is where the maximality of \mathfrak{h} comes into play. If we choose $l \in \mathfrak{g}, l \notin \mathfrak{h}$ such that $\mathfrak{h} + \operatorname{span}\{l\}$ is again a Lie algebra, then

$$\mathfrak{h} \stackrel{l\notin\mathfrak{h}}{\subsetneq} \mathfrak{h} + \operatorname{span}\{l\} \subset \mathfrak{g}$$

implies $\mathfrak{h} + \operatorname{span}\{l\} = \mathfrak{g}$.

But when is $\mathfrak{h} + \operatorname{span}\{l\}$ again a Lie algebra? The only non trivial condition is "closed under [-, -]". I.e. we need to require for l to satisfy $[\mathfrak{h}, l] \subset \mathfrak{h} + \operatorname{span}\{l\}$. It's hard to motivate at this point, but to find v in the end, we actually want $[\mathfrak{h}, l] \subset \mathfrak{h}$. The intuition is that this ties the action of l more closely to that of \mathfrak{h} . For more details please refer to the (*)-Problem at the end of this document. To summarize, we want to find $l \in \mathfrak{g}, l \notin \mathfrak{h}$ such that $[\mathfrak{h}, l] \subset \mathfrak{h}$.^{*a*}

 a To clarify: This will not finish the proof, it just decomposes $\mathfrak g$ into more handy pieces, namely $\mathfrak h$ and l.

The **ingenious idea** of the proof is to find l (more precisely \overline{l}) as the vector given by the induction hypothesis applied to \mathfrak{h} (more precisely $\overline{\mathrm{ad}}(\mathfrak{h})$). For this we need a clever representation of \mathfrak{h} . But what representation should we choose?

We try to reverse engineer this clever representation U of \mathfrak{h} . The induction hypothesis would give $u \in U, u \neq 0$ such that $\mathfrak{h}u = 0$. Somehow we have to find the connections between:

$$\begin{array}{lll} u \in U & \longleftrightarrow & l \in \mathfrak{g}, \\ u \neq 0 & \longleftrightarrow & l \notin \mathfrak{h}, \\ \mathfrak{h}u = 0 & \longleftrightarrow & [\mathfrak{h}, l] \subset \mathfrak{h}. \end{array}$$

Introducing a 0 on the right hand side of $l \notin \mathfrak{h}$ is easy, if we just quotient by \mathfrak{h} (thus $u = \overline{l}$). Since we need $l \in \mathfrak{g}$ we can already guess that $U = \mathfrak{g}/\mathfrak{h}$. After taking this quotient, the third correspondence can be refined to:

$$\mathfrak{h}\overline{l} = 0 \quad \longleftrightarrow \quad \overline{[\mathfrak{h},l]} = 0.$$

The left hand side says $\forall y \in \mathfrak{h} : y.\overline{l} = 0$ and the right hand says $\forall y \in \mathfrak{h} : [\overline{y,l}] = 0$. Thus a reasonable guess would be to define the action of $y \in \mathfrak{h}$ on $\overline{x} \in U = \mathfrak{g}/\mathfrak{h}$ as $y.\overline{x} := \overline{[y,x]} = \overline{\mathrm{ad}_y(x)}$.

Consider the finite dimensional \mathfrak{h} representation

$$\operatorname{ad} : \mathfrak{h} \to \mathfrak{gl}(\mathfrak{g}/\mathfrak{h})$$

 $y \mapsto \operatorname{\overline{ad}}_y := \operatorname{\overline{ad}}_y$

To see that this indeed is a representation, we can define it formally by first considering the representation

$$\operatorname{ad}|_{\mathfrak{h}}:\mathfrak{h}\hookrightarrow\mathfrak{g}\xrightarrow{\operatorname{ad}}\mathfrak{gl}(\mathfrak{g})$$

and then taking the quotient representation

 $\overline{\mathrm{ad}}:\mathfrak{h}\to\mathfrak{gl}(\mathfrak{g}/\mathfrak{h}).$

But now $\mathfrak{h} \not\subset \mathfrak{gl}(\mathfrak{g}/\mathfrak{h})$, so we cannot simply apply our induction hypothesis. We fall back to the same trick as before, by considering $\mathfrak{h}' := \overline{\mathrm{ad}}(\mathfrak{h})$, i.e. the image of the representation. Then $\dim \mathfrak{h}' \leq \dim \mathfrak{h} < \dim \mathfrak{g}$, since we chose $\mathfrak{h} \subsetneq \mathfrak{g}$.

We have to check that \mathfrak{h}' acts by nilpotent endomorphisms. Since $\mathfrak{g} \subset \mathfrak{gl}(V)$ acts by nilpotent endomorphisms, we can apply (Lem 3.2.1) on every element of \mathfrak{g} , to conclude that for every $x \in \mathfrak{g}$ the endomorphism $\mathrm{ad}_x \in \mathfrak{gl}(\mathfrak{g})$ is nilpotent. This is inherited to $\overline{\mathrm{ad}}$ as follows: For every $y \in \mathfrak{h}$ the endomorphism $\overline{\mathrm{ad}}_y \in \mathfrak{gl}(\mathfrak{g}/\mathfrak{h})$ is nilpotent.

Thus we can apply the induction hypothesis, to find $\bar{l} \in \mathfrak{g}/\mathfrak{h}, \bar{l} \neq 0$, such that $\mathfrak{h}' \bar{l} = 0$.

Now all we have to do, is to follow our ideas backwards to see them unfold. We designed our representation, so that $l \in \mathfrak{g}, l \notin \mathfrak{h}$ and $[\mathfrak{h}, l] \subset \mathfrak{h}$ would be true, so this will be the next thing to show. This implies $l \in \mathfrak{g}, l \notin \mathfrak{h}$ and

$$\begin{split} \mathfrak{h}'\bar{l} &= 0 \iff \forall y' \in \overline{\mathrm{ad}}(\mathfrak{h}) : \ y'(\bar{l}) = 0 \\ \iff \forall y \in \mathfrak{h} : \ \underbrace{\overline{\mathrm{ad}}_y(\bar{l})}_{=\overline{[y,l]}} = 0 \\ \iff \forall y \in \mathfrak{h} : \ [y,l] \in \mathfrak{h} \\ \iff [\mathfrak{h},l] \subset \mathfrak{h}. \end{split}$$

By maximality of \mathfrak{h} and $[\mathfrak{h}, l] \subset \mathfrak{h}$ together with $l \notin \mathfrak{h}$ we now have

 $\mathfrak{h} + \operatorname{span}\{l\} = \mathfrak{g}.$

Step 2 (Find v):

To proof the theorem we also need $v \in V, v \neq 0$ such that $\mathfrak{g}v = 0$, i.e. $\mathfrak{h}v = 0$ and l(v) = 0. Let $W := \{v \in V \mid \mathfrak{h}v = 0\}$ be the vector space of potential candidates. Our wanted vector v lives in W, so we need to have that ker $l \cap W \neq 0$, for $v \neq 0$ to exist.

But how would we know that l has a nonzero kernel element in W? Since $l \in \mathfrak{g}$ we do know for certain that l has a nonzero kernel in V, since it is a nilpotent map $V \to V$ (compare this to the induction start). But it could lie anywhere.

The **next trick** is to require that l restricts to a well defined map $l|_W$: $W \to W$, i.e. $lW \subset W$. Then l being nilpotent implies that $l|_W$ is nilpotent as well, thus it has nonzero kernel, which is exactly what we need.

Define $W := \{ v \in V \mid \mathfrak{h}v = 0 \}.$ Claim: $lW \subset W.$

Proof: Let $w \in W$, then we have to show $l(w) \in W$, i.e. $\forall y \in \mathfrak{h} : y(l(w)) = 0$. Although looking weird, this is just the action of \mathfrak{g} on V (recall $\mathfrak{g} \subset \mathfrak{gl}(V)$). Let $y \in \mathfrak{h}$, then

$$y(l(w)) = y.(l.w) \stackrel{\text{action}}{=} l.(y.w) + [y,l].w \stackrel{y \in \mathfrak{h}}{\stackrel{w \in W}{=}} 0 + [y,l].w = 0,$$

where the last equality holds, since $[\mathfrak{h}, l] \subset \mathfrak{h}$.

Now since $l \in \mathfrak{g}$ is a nilpotent map $V \to V$, it restricts to a nilpotent map $l|_W : W \to W$. Since dim $\mathfrak{h} < \dim \mathfrak{g}$ and $\mathfrak{h} \subset \mathfrak{gl}(V)$, we have that $W \neq 0$ by the induction hypothesis. Together with $l|_W$ being nilpotent, this implies that there exists a $v \in \ker l|_W, v \neq 0$.

Then by definition of W we finally have $v \in V, v \neq 0$ with

$$\mathfrak{h}v = 0 \quad \text{and} \quad l(v) = 0 \quad \Rightarrow \quad \mathfrak{g}v = 0.$$

Remark. A few questions to think about:

- (a) Where did we use $V \neq 0$? It's obvious that for V = 0 there is no $v \neq 0$, but where exactly did we use this fact?
- (b) Did we really need that \mathfrak{g} acts nilpotently? More precisely, would it suffice to require

 $\forall x \in \mathfrak{g} \ \forall W \subset V, W \neq 0 : (xW \subset W \Rightarrow \ker x|_W \neq 0)$

instead? (This property is how we used l being nilpotent in the end).

- (c) Why did we, in the beginning of the proof, mention, that "V is not fixed"?
- (d) What happens if we define $\mathfrak{h} \subsetneq \mathfrak{g}$ to be maximal with respect to dim instead of \subset ?
- (e) Why exactly is $W \neq 0$?
- (*) What is the intuition behind the implication $[\mathfrak{h}, l] \subset \mathfrak{h} \Rightarrow lW \subset W$? Use this to explain that $[\mathfrak{h}, l] \subset \mathfrak{h} + \operatorname{span}\{l\}$ does not imply $lW \subset W$.

Hints:

- (1) The proof of $lW \subset W$ used that $\mathfrak{h} + \operatorname{span}\{l\} \subset \mathfrak{g} \subset \mathfrak{gl}(V)$ is a representation.
- (2) What does this implication say for $\mathfrak{h} = \operatorname{span}\{x\}$?
- (3) Intuitively W can be thought of as some kind of "kernel" of \mathfrak{h} .
- (4) What happens when generalizing to $\mathfrak{a}, \mathfrak{b} \subset \mathfrak{g}$?
- (5) Prove that for every subspace $U \subset V$ the following relations hold

$$\begin{split} & \mathfrak{b}, \mathfrak{a}]U \subset \mathfrak{a}\mathfrak{b}U + \mathfrak{b}\mathfrak{a}U, \\ & \mathfrak{a}\mathfrak{b}U \subset [\mathfrak{a}, \mathfrak{b}]U + \mathfrak{b}\mathfrak{a}U, \\ & \mathfrak{b}\mathfrak{a}U \subset [\mathfrak{b}, \mathfrak{a}]U + \mathfrak{a}\mathfrak{b}U. \end{split}$$

(6) Draw a picture like this

and apply (5), to conclude and "visually see" $\mathfrak{h}lW = 0$. (7) Ask Jacob ;)