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Preface

This document is based in large parts on the German lecture notes of Peter
Benner who gave a similar course at the TU Chemnitz in winter term 2009/10.
The usage of his LATEX source code is highly appreciated. I believe that there
are more errors and typos in this document, please send an email to

matthias.voigt@uni-hamburg.de

if you find any.

Many topics dicsussed in these notes can also be found in Chapters 3 and 4
of

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control, Prentice-
Hall, Englewood Cliffs, NJ, 1996.

Further, more recent results discussed here will be cited throughout the lecture
notes, so that you can read the original sources.
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CHAPTER 1

Introduction

In this course we will consider dynamical systems that describe physical, tech-
nical, or economical processes. These should be manipulated with the help
of input variables such that certain output variables show a certain desired
behavior. Schematically, this is illustrated in Figure 1.1.

system
inputs outputs

Figure 1.1: System description as black box.

Example: If the European central bank changes its base rate, then this influ-
ences developments at the German stock and financial markets. For example,
the exchange rate betweene and US-$ may rise or fall as well as share prices.
Considering the stock market as a dynamical system, then the base rate can
be viewed as an input to the system, whereas the German stock index DAX
can be regarded as an output of the system.

Note that in this example, the system is not described by mathematical equa-
tions. Therefore, this system is a black box, since the internal variables (so-
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2 Chapter 1. Introduction

called states) and how they are affected by the input is unknown. It is still
possible to gain insight in the relationship between the inputs and outputs.

Here we will consider instationary (i. e. time-dependent) processes. Thus the
inputs up¨q and outputs yp¨q are functions of time. The internal variables of
the system, called states, that are often not explicitly available, are denoted
by xp¨q and are a functions of time as well. We assume that the dynamic
behavior of the system is described by (ordinary) differential equations of first
order (Recall that higher-order systems can be reduced to first-order systems
by a linearization.)

In general, the systems considered in this course can be described by the
following definition.

Definition 1.1: A (nonlinear) control system (or controlled system) satisfies
the following equations for (almost all) t P rt0, tfs, t0 ă tf ď 8:

9xptq “ fpt, xptq, uptqq (state equation), (1.1)
xpt0q “ x0

P X (initial condition), (1.2)
yptq “ gpt, xptq, uptqq (output equation). (1.3)

Hereby,

x : rt0, tf s Ñ X is the state (vector),
u : rt0, tf s Ñ U is the input or control (vector),
y : rt0, tf s Ñ Y is the output (vector),

and

X Ď Rn is the state space,
U Ď Rm is the input space,
Y Ď Rp is the output space.

The number n is the order of the system (also state-space dimension, if X “

Rn). The system is called autonomous (time-invariant), if

fpt, xptq, uptqq ” fpxptq, uptqq and gpt, xptq, uptqq ” gpxptq, uptqq,

i. e., for uptq ” 0, 9xptq “ fpxptqq is an autonomous differential equation.
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For the systems defined above, Figure 1.1 can be extended as in Figure 1.2.
If one tries to model a physical, technical, or economical process by equations

system
9xptq “ fpt, xptq, uptqq
yptq “ gpt, xptq, uptqq

inputs uptq outputs yptq

Figure 1.2: Nonlinear system as a black box.

of the form (1.1)–(1.3), the following aspects are of importance:

a) Which are the “free” input parameters (input/control variables)?

b) Which are the state variables?

c) Which variables can be measured or observed? (all/a few state variables
or only derived quantities?)

d) What is the functional relationship?

e) Isa continuous-time modeling as in (1.1)–(1.3) appropriate or does one
need a discrete-time model, i. e., a description of the dynamics by differ-
ence equations?

Often mixed models are needed (so-called hybrid systems), since a few
model variables may be described in continuous time, others only in dis-
crete time.

f) Do the model variables behave in a deterministic or stochastic manner?

In the following we will mostly assume that we have continuous-time and de-
terministic model. Further, in this course we will only consider a simpler func-
tional relationship between the variables in (1.1)–(1.3), namely we assume
that f and g are affine linear functions.

Definition 1.2: A linear control system is given, if X “ Rn, U “ Rm, Y “ Rp,
and

fpt, xptq, uptqq “ Aptqxptq `Bptquptq,

gpt, xptq, uptqq “ Cptqxptq `Dptquptq,

where A : rt0, tfs Ñ Rnˆn, B : rt0, tfs Ñ Rnˆm, C : rt0, tfs Ñ Rpˆn,
D : rt0, tfs Ñ Rpˆm are sufficiently smooth matrix-valued functions.
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For autonomous systems it holds that Aptq ” A,Bptq ” B, Cptq ”, and
Dptq ” D. In this situation we talk about linear time-invariant (LTI) systems, if
the systems fulfills the equations

9xptq “ Axptq `Buptq, xpt0q “ x0
P Rn, (1.4)

yptq “ Cxptq `Duptq. (1.5)

A linear time-varying (LTV) system is given by

9xptq “ Aptqxptq `Bptquptq, xpt0q “ x0
P Rn, (1.6)

yptq “ Cptqxptq `Dptquptq. (1.7)

Analogously, for k “ 0, 1, 2, . . . a linear discrete-time system is described by

xk`1 “ Akxk `Bkuk, x0 “ x0
P Rn, (1.8)

yk “ Ckxk `Dkuk, (1.9)

where Ak P Rnˆn, Bk P Rnˆm, Ck P Rpˆn, and Dk P Rpˆm. Again, in the
time-invariant case it holds that Ak ” A, Bk ” B, Ck ” C, Dk ” D etc.

Remark 1.3: For autonomous systems we can assume w. l. o. g. that t0 “ 0: If
we move from x0 to x1 in the time interval rt0, t1s with the control function up¨q,
then we could equivalently move from x0 to x1 in the time-interval r0, t1 ´ t0s,
if we choose the control function ruptq :“ upt ` t0q and consider the solution
trajectory rxptq :“ xpt` t0q.

In the following we will assume that the control function up¨q lives in a function
space Uad of admissible controls. We assume further that up¨q is not subject to
input constraints such as ap¨q ď up¨q ď bp¨q (“ď” understood componentwise).
This would lead to questions from linear or nonlinear optimization and is widely
analysed in the optimal control of partial differential equations. This will not
addressed in this course. Here the function space Uad is the space of square-
integrable functions on rt0, tfs mapping to U denoted by L2prt0, tfs;Uq or the
space of piecewise continuous functions on rt0, tfs mapping to U denoted by
PCprt0, tfs;Uq. Integration is understood in the Lebesgue sense.

To emphasize the dependence of the solution trajectories of the differential
equations (1.1), (1.4), or (1.6) on the control function up¨q, we write

xptq “ xpt;uq,
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where we assume that the solution of the corresponding initial value problem
on the interval rt0, tfs exists for all u P Uad and is unique.

A central question in mathematical control theory is the following one:

Given an initial condition x0 and a target x1, can we find a pu P Uad,
such that for some tf ě t1 ě t0 it holds that xpt1; puq “ x1?

A stronger question is the following one:

Given an initial condition x0, a target x1 as well as t1 ď tf , can we
find a pu P Uad such that xpt1; puq “ x1?

Often the problem can be formulated in such a way that the target is x1 “ 0,
so x can be interpreted as the deviation from some given reference trajectory.
A weaker objective is then to find an asymptotically stabilizing control pu P Uad,
that is, it holds that lim

tÑ8
xpt; puq “ 0. Slightly modified, the question is whether

in finite time one can enter an arbitrarily small neighborhood of zero.

Besides the existence of such control functions, the question of optimality
plays an important role. For given x1 P X or given reference trajectory xrefp¨q

(e. g. xrefptq ” 0, if the state describes the deviation from the reference trajec-
tory), possible objective functionals are

min
uPUad

 

t1 P rt0, tfs
ˇ

ˇxpt1;uq “ x1
(

, (time-optimal control) (1.10)

min
uPUad

ż tf

t0

}xptq ´ xrefptq}dt, (minimum deviation control) (1.11)

min
uPUad,xpt;uq“x1

ż tf

t0

}uptq} dt. (energy minimizing control) (1.12)

Here } ¨ } is an appropriate vector norm such as the Euclidean norm, but 1-
and8-norms can be useful as well. Mixtures of these cost functionals appear
quite often, in particular, we will have a closer look at combinations of (1.11)
and (1.12), while (1.10) is subject of optimal control theory. In mathematical
systems theory, the focus is often put on the input/output behavior, i. e., on up¨q
and yp¨q. Therefore, the cost functionals above are often formulated in terms of
yp¨q instead of xp¨q, in particular, in the tracking problem, often yrefp¨q is given
instead of xrefp¨q.

Remark 1.4: Often in the literature the cost functional

min
uPUad

ż tf

t0

}xptq ´ x1
}dt (1.13)
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or respectively in combination with (1.12)

min
uPUad

ż tf

t0

}xptq ´ x1
} ` }uptq}dt (1.14)

are used. However, this often leads to trajectories of the state or control that
are difficult to realize or that put high demands of the mechanics or electron-
ics of the system since the control then tends to take only a high impact on
the system at the end of the control interval. This can be improved by using
energy-minimizing controls, but even better solutions are achieved by prescrib-
ing by using a reference trajectory xrefp¨q with xrefptf q “ x1.

Here we will mostly deal with control functions up¨q that appear in the form of
a feedback control. Thereby, the knowledge of the state or the output to steer
the system to a desired state or to correct the deviation from the desired state.
Hereby, we distinguish

• state feedback: uptq “ upt, xptqq, in the linear case uptq “ F ptqxptq or
uptq “ Fxptq in the time-invariant case with F, F ptq P Rmˆn;

• output feedback: uptq “ upt, yptqq, in the linear case yptq “ F ptqyptq or
uptq “ Fyptq in the time-invariant case with F, F ptq P Rmˆp.

The matrix F is galled feedback matrix or gain and which has to chosen ap-
propriately in order to achieve the desired objectives. So one of the goals of
this lecture is whether there exists such a feedback matrix and if yes, how it
can be constructed.

In the linear case, plugging in the feedback into (1.6) (respectively, into (1.4))
leads to the following closed-loop system:

• for state feedback:

9xptq “ Aptqxptq `Bptquptq “ pAptq `BptqF ptqqxptq.

• for output feedback:

9xptq “ Aptqxptq `Bptquptq

“ Aptqxptq `BptqF ptqyptq

The output feedback leads to a closed-loop system as in Figure 1.3.

The following example illustrates the questions and difficulties of mathematical
control theory.
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9xptq “ Aptqxptq `Bptquptq
yptq “ Cptqxptq `Dptquptq

uptq “ F ptqyptq

uptq yptq

Figure 1.3: Closed-loop system.

Example: A major question in robotics is to control the position of a single–
link rotational joint using a motor placed at the “pivot”. As a mathematical we
can use a pendulum to which we can apply a torque as external force up¨q to
control the motion of the pendulum, see (1.4).

If we neglect friction and assume that the mass is concentrated at the tip of
the pendulum, Newton’s law for rotating objects yields

m:θptq `mg sin θptq “ uptq

describes the counterclockwise movement of the angle between the vertical
axis and the pendulum subject to the control up¨q. Scaling the variables to
m “ 1 and g “ 1 (for simplicity), this is a first example of a nonlinear control
system, if we set

xptq :“

„

x1ptq
x2ptq



:“

„

θptq
9θptq



,

fpt, xptq, uptqq :“

„

x2ptq
´ sinpx1ptqq ` uptq



, gpt, xptq, uptqq “ x1ptq,

i. e., here we assume that only θptq can be measured but not the angular ve-
locity 9θptq.

For uptq ” 0, the stationary position θ “ π, 9θ “ 0 is an unstable equilib-
rium, i. e., small perturbations will lead to an unstable motion. The objective
now is to apply a torque (control u) to correct for deviations from this unstable
equilibrium, so that the pendulum is kept in upright position.

Assuming small perturbations θ ´ π in the inverted pendulum problem, we
have

sin θ “ ´pθ ´ πq ` o
`

pθ ´ πq2
˘

.
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(Here, hpθq “ o
`

pθ ´ πq2
˘

if limθÑπ
hpθq
pθ´πq2

“ 0). This allows us to linearize the
control system in order to obtain a linear control system for ϕptq :“ θptq ´ π,
namely

:ϕptq ´ ϕptq “ uptq.

This can be written as an LTI system, assuming only positions can be observed
with

xptq “

„

ϕptq
9ϕptq



, A “

„

0 1
1 0



, B “

„

0
1



, C “
“

1 0
‰

, D “ 0.

Now the objective translates to: given initial values x1p0q “ ϕp0q, x2p0q “
9ϕp0q, find up¨q to bring xp¨q to zero “as fast as possible”. It is usually an addi-
tional goal to avoid overshoot and oscillating behavior as much as possible.

In the above example we have seen that that it is important to achieve that
limtÑ8 xptq “ 0 for all initial conditions xpt0q “ x0 that are sufficiently close
to the equilibrium x̄ “ 0. Either this property is inherent in the system itself,
then one does not have to do anything. Otherwise, as in the example above,
we are interested in constructing a feedback such that the closed-loop system
achieves this goal. Let us first define stability of an autonomous system.

Definition 1.5 (Stability of autonomous systems): An equilibrium point x̄ of the
differential equation 9xptq “ fpxptqq (i. e., satisfying fpx̄q “ 0) is called

a) stable, if for each ε ą 0 there exists a δ ą 0 such that

}xpt0q ´ x̄} ă δ ñ }xptq ´ x̄} ă ε @ t ě t0.

b) asymptotically stable, if it is stable and if in addition, δ can be chosen such
that

}xpt0q ´ x̄} ă δ ñ lim
tÑ8

}xptq ´ x̄} “ 0.

The importance of asymptotic stability is evident if xp¨q is the deviation from a
nominal path rp¨q, e. g. in Example 1 this deviation is

xptq “

„

θptq ´ π
9θptq ´ 0



.

For nonlinear systems, (asymptotic) stability is not easy to check in general.
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However, for LTI systems, one normally considers the zero equilibrium and its
stability can be checked as follows. Note this in this situation one usually talks
about stability of the system instead of stability of its zero equilibrium.

Proposition 1.6 (Stability of linear systems): Let ΛpAq denote the spectrum
of A P Rnˆn. The linear time-invariant differential equation 9xptq “ Axptq,
xpt0q “ x0 is

a) asymptotically stable ô ΛpAq Ă C´;

b) stable ô ΛpAq Ă C´ and all imaginary eigenvalues of A are not de-
fective.
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θmg sin
mg

θ

u

m

(a) Pendulum as a mathematical
model of a rotational joint

m

ϕ

u

(b) Inverted pendulum: control to up-
right position

Figure 1.4: Example: Pendulum and inverted pendulum



CHAPTER 2

Analysis of Control Systems

2.1 Controllability

First, we ask the question whether, for a given x0 P Rn, it is possible to reach
a given target x1 P Rn with the help of a control function u P Uad. Since
controllability is only affected by the state equation (1.1), we will ignore the
output equation for now.

Definition 2.1 (Controllability): Let x1 P X Ď Rn be given.

a) The control system (1.1) with initial condition xpt0q “ x0 P X Ď Rn is con-
trollable to x1 in time t1 ą t0, if there exists a u P Uad such that xpt1;uq “ x1.
Then the pair pt1, x1q is called controllable from pt0, x

0q.

b) The control system (1.1) with initial condition xpt0q “ x0 P X Ď Rn is
controllable to x1 if there exists a t1 ą t0 such that pt1, x1q is reachable
from pt0, x

0q.

c) If for all x0 P X , pt0, x0q is controllable to x1 for all x1 P X , then the control
system (1.1) is called (completely) controllable.

11
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d) The controllability set with respect to x1 is defined by

Cpx1, t0q :“
ď

t1ąt0

Cpx1, t0, t1q,

where Cpx1, t0, t1q :“
 

x0 P X | Du P Uad with xpt0;uq “ x0, xpt1;uq “ x1
(

.

Analogously one defines the reachability set with respect to x0, namely

Rpx0, t0, t1q :“
 

x1
P X | Du P Uad with xpt0;uq “ x0, xpt1;uq “ x1

(

and
Rpx0, t0q :“

ď

t1ąt0

Rpx0, t0, t1q.

Thus, the controllability set contains all initial states that can be controlled to
x1, whereas the reachability set contains all states that can be controlled to
from a given x0.

In the following we will restrict ourselves to linear systems. We will see that for
LTI systems, all controllability concepts will coincide and that C :“ Cpx1, 0q “
Rn (for arbitrary x1) is equivalent to controllability. Therefore we first need the
solutions of the initial value problems (1.4) und (1.6). Here we are particularly
interested in the input-to-state mapping

Rˆ Rn
ˆ Rˆ Uad Ñ Rn, pt0, x

0, t, uq ÞÑ xptq,

which is given by following standard result form the theory of ordinary differen-
tial equations.

Theorem 2.2: a) Let Φ be the fundamental solution of 9xptq “ Aptqxptq, i. e.
the solution of the homogeneous linear matrix differential equation

B

Bt
Φpt, sq “ AptqΦpt, sq, Φps, sq “ In. (2.1)

Then for the unique solution of the differential equation (1.6) it holds that

xptq “ Φpt, t0qx
0
`

ż t

t0

Φpt, sqBpsqupsqds. (2.2)

b) The unique solution of (1.4) satisfies Φpt, sq “ eApt´sq and therefore,

xptq “ eAtx0
`

ż t

0

eApt´sqBupsqds “ eAt
ˆ

x0
`

ż t

0

e´AsBupsqds

˙

. (2.3)
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Proof. Exercise.

As a consequence of Theorem 2.2 we obtain directly a representation of the
input-to-output mapping

Rˆ Rn
ˆ Rˆ Uad Ñ Rp, pt0, x

0, t, uq ÞÑ yptq.

Corollary 2.3: a) The unique solution of (1.7) satisfies

yptq “ CptqΦpt, t0qx
0
` Cptq

ż t

t0

Φpt, sqBpsqupsqds`Dptquptq. (2.4)

b) The unique solution of (1.5) is given by

yptq “ CeAtx0
`

ż t

0

CeApt´sqBupsqds`Duptq (2.5)

“ CeAt
ˆ

x0
`

ż t

0

e´AsBupsqds

˙

`Duptq. (2.6)

In the following we will use that the fundamental solution Φ fulfills the semi-
group property

Φpt, tq “ In, Φpt, sq “ Φpt, τqΦpτ, sq (2.7)

for all t, s, τ P R. Moreover, Φpt, sq is invertible for all t, s P R and it holds that

Φpt, sq´1
“ Φps, tq. (2.8)

To simplify the following considerations, from now on we assume that Uad “

PCprt0,8q;Rmq. Analogously, the choice Uad “ L2prt0,8q;Rmq would be
feasible.

First we consider the target x1 “ 0 and the corresponding controllability sets
with respect to x1 “ 0. This will not be a restriction in the case of linear
systems.
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Lemma 2.4: It holds that x0 P Cp0, t0, t1q if and only if there exists a u P Uad

with

x0
“ ´

ż t1

t0

Φpt0, sqBpsqupsqds.

Proof. According to Theorem 2.2, x0 P C0pt0, t1q is equivalent to

0 “ xpt1q “ Φpt1, t0qx
0
`

ż t1

t0

Φpt1, sqBpsqupsqds (2.9)

“ Φpt1, t0q

ˆ

x0
`

ż t1

t0

Φpt0, sqBpsqupsqds

˙

, (2.10)

where we have used the semi-group property of Φ. With the invertibility of Φ it
follows that

0 “ x0
`

ż t1

t0

Φpt0, sqBpsqupsqds

for a u P Uad and hence the claim.

The term of the Gramian (matrix) will play an important role in this course.
First we give a definition.

Definition 2.5: For G P PCpp´8,8q;Rnˆmq, the matrix

P pt0, t1q “

ż t1

t0

GptqGptqTdt

is called the pt0, t1q-Gramian (matrix) of G.

Obviously, the Gramian is positive semi-definite. Further properties are given
in the following lemmas.

Lemma 2.6: It holds that

kerP pt0, t1q “
 

x P Rn
| GptqTx ” 0 on rt0, t1s

(

.

Proof. For an arbitrary x P Rn it holds that

xTP pt0, t1qx “ xT
ż t1

t0

GptqGptqTdt x “

ż t1

t0

pGptqTxqTpGptqTxq
loooooooooomoooooooooon

ě0@t

dt ě 0



2.1. Controllability 15

Then P pt0, t1qx “ 0, if and only if GptqTx ” 0 on rt0, t1s.

Lemma 2.7: Let G be as in Definition 2.5. Then the following statements are
equivalent:

a) There exists a u P Uad such that x “
şt1
t0
Gptquptqdt.

b) It holds that x P imP pt0, t1q, i. e., there exists a z P Rn with x “ P pt0, t1qz.

Proof. First define

L :“

#

x P Rn

ˇ

ˇ

ˇ

ˇ

ˇ

Du P Uad with x “
ż t1

t0

Gptquptqdt

+

.

Because of the linearity of the integral and the vector space properties of Uad,
L is itself a subspace of Rn, in particular, it is a vector space.

So we have to show that L “ imP pt0, t1q. It is clear that imP pt0, t1q Ď L.
(Simply set uptq “ GptqTz for x “ P pt0, t1qz.)

Now let x P LX kerP pt0, t1q. Then because of x P L and Lemma 2.6

xTx “

ż t

t0

xTGptq
loomoon

”0, since
xPkerP pt0,t1q

uptqdt “ 0

which results directly in x “ 0. Therefore, one obtains dimLX kerP pt0, t1q “
t0u and with the help of the dimension formula

n ě dimpL` kerP pt0, t1qq “ dimpLq ` dimpkerP pt0, t1qq

ě dimpimP pt0, t1qq ` dimpkerP pt0, t1qq “ n.

Overall, we get dimL “ dimpimP pt0, t1qq, hence L “ imP pt0, t1q.

If we set Gptq “ Φpt0, tqBptq, then

P pt0, t1q “

ż t1

t0

Φpt0, tqBptqBptq
TΦpt0, tq

Tdt (2.11)

is called the pt0, t1q-controllability Gramian of the linear system (1.6)–(1.7).
With this, one obtains the first characterization of the controllability set.
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Theorem 2.8: Let x1 “ 0 and consider the LTV system (1.6)–(1.7) with
P pt0, t1q as in (2.11). Then the following assertions are satisfied:

a) Cp0, t0, t1q “ imP pt0, t1q;

b) P pt0, t1qx “ 0 ô xTΦpt0, tqBptq ” 0 on rt0, t1s.

Proof. a) Use Lemma 2.4 and Lemma 2.7.

b) Use Lemma 2.6.

A further very useful characterization of complete controllability of LTV sys-
tems is obtained by a more detailed analysis of the properties of the pt0, t1q-
controllability Gramian P pt0, t1q. First recall the following property of the adjoint
equation of 9xptq “ Aptqxptq known from the theory of differential equations.
This adjoint equation is given by

9zptq “ ´AptqTzptq. (2.12)

If Φp¨, ¨q is the fundamental solution of 9xptq “ Aptqxptq, i. e., solution of the
linear homogeneous matrix differential equation, (2.1), then

Φpt, sq´T “ Φps, tqT

is the fundamental solution of (2.12). 1 In particular, every solution of the initial
value problem of (2.12) with zpt0q “ z0 can be written as

zptq “ Φpt0, tq
Tz0. (2.13)

Theorem 2.9: The following statements are equivalent:

a) The LTV system (1.6) is completely controllable.

b) Every solution of the adjoint equation (2.12) has the property

zptqTBptq ” 0 on rt0,8q for a t0 P R ñ zptq ” 0. (2.14)

c) For all t0 P R, there exists a t1 P R such that P pt0, t1q is positive definite.

1Proof. Let Ψ be the fundamental solution of (2.12), i. e. B
BtΨpt, sq “

´AptqTΨpt, sq, Ψps, sq “ In. Then
`

B
BtΨpt, sq

T
˘

Φpt, sq “ ´Ψpt, sqTAptqΦpt, sq “

´Ψpt, sqT
`

B
BtΦpt, sq

˘

, so 0 “
`

B
BtΨpt, sq

T
˘

Φpt, sq `Ψpt, sqT
`

B
BtΦpt, sq

˘

“ B
BtΨpt, sq

TΦpt, sq.
Hence, Ψpt, sqTΦpt, sq is constant and because of the initial condition it holds that
Ψpt, sqTΦpt, sq “ In.
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Proof. The proof follows by a ring closure argument.

a) ñ b): Assume that there exists a nontrivial solution of (2.12) with zptqTBptq ”
0 on rt0,8q for some t0 P R, but z

`

pt
˘

‰ 0 for at least one pt P R.

Then zpt0q ‰ 0, since with (2.13) it holds that z
`

pt
˘

“ Φ
`

t0,pt
˘T
zpt0q

and Φ
`

t0,pt
˘

is invertible.

Now we choose x0 P Rn such that
`

x0
˘T
zpt0q ‰ 0. Since (1.6) is com-

pletely controllable, by Definition 2.1 there exist a t1 ą t0 and u P Uad

such that xpt1q ” xpt1;uq “ 0 solves (1.6) with initial condition xpt0q “
x0. With this it follows that

d

dt

`

xptqTzptq
˘

“ 9xptqTzptq ` xptqT 9zptq

“ xptqTAptqTzptq ` uptqTBptqTzptq
loooomoooon

”0 on rt0,8q

´xptqTAptqTzptq

“ 0.

Therefore, xptqTzptq is constant and due to the initial conditions it holds
that

xpt1q
Tzpt1q “ xpt0q

Tzpt0q “
`

x0
˘T
zptq ‰ 0,

which is a contradiction to xpt1q “ 0.

b) ñ c): This step is proven in two parts. First we show the following state-
ment:

For all t0 P R there exists a t1 P R such that every nontrivial
solution of the adjoint equation (2.12) has the property

zptqTBptq ı 0 on rt0, t1s. (2.15)

Assume that this is not the case. This would mean that there exists a
sequence ptkq8k“1 with tk Ñ 8 for k Ñ 8 and a sequence of solutions
pzkp¨qq

8
k“1 of (2.12) with initial conditions }zkpt0q} “ 1 for k “ 1, 2, . . .

such that
zkptq

TBptq ” 0 on rt0, tks. (2.16)

We assume w. l. o. g. that pzkpt0qq8k“1 is converging (otherwise, we could
find a converging subsequence, since tz P Rn | }z} “ 1u is compact).

Let now pz0 :“ limkÑ8 zkpt0q and pzp¨q be solution of (2.12) with the initial
condition pzpt0q “ pz0. Then pzptq ı 0 (since }pzpt0q} “ 1). Due to (2.14)
it holds that pzptqTBptq ı 0 on rt0,8q. Thus there exists a pt ą t0 with
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pz
`

pt
˘T
B
`

pt
˘

‰ 0. Since the solution of (2.12) depends continuously on the
initial condition, pzkp¨qq8k“1 converges uniformly to pzp¨q. But then it holds
that zk

`

pt
˘T
B
`

pt
˘

‰ 0 for sufficiently large k. But for tk Ñ 8 this leads to
a contradiction to (2.16).

In the second step we show:

If any nontrivial solution of (2.12) satisfies the property (2.15),
then P pt0, t1q ą 0.

Since we already have P pt0, t1q ě 0, it remains to show that kerP pt0, t1q “
t0u. According to Theorem 2.8, z0 P kerP pt0, t1q is equivalent to

zT0 Φpt0, tqBptq ” 0 on rt0, t1s.

Because of (2.13), zptq “ Φpt0, tq
Tz0 is the solution of (2.12) with zpt0q “

z0. Therefore, it holds that zptqTBptq ” 0 on rt0, t1s and due to the first
step, zptq ” 0 on rt0, t1s. This implies z0 “ 0, hence kerP pt0, t1q “ t0u
is shown.

c) ñ a): Let t1 be chosen such that P pt0, t1q ą 0. Then every pair
`

t0, x
0
˘

can be controlled to an arbitrary x1 P Rn in time t1 with

uptq :“ BptqTΦpt0, tq
Tv,

where v P Rn can be determined as the solution of the equation

x0
“ xpt0q “ Φpt0, t1qx

1
`

ż t0

t1

Φpt0, sqBpsqBpsq
TΦpt0, sq

Tvds

“ Φpt0, t1qx
1
´ P pt0, t1qv.

This equation follows from (2.2) by interchanging initial and final time and
it has a unique solution due to the positive definiteness of P pt0, t1q.

For LTI systems where we can can w. l. o. g. assume t0 “ 0, we can say more.
First, from the explicit formula of the fundamental solution of 9xptq “ Axptq, it
follows that the p0, t1q-controllability Gramian can be written as

P p0, t1q “

ż t1

0

e´AtBBTe´A
Ttdt.

Then it follows directly that x P kerP p0, t1q if and only if

BTe´A
Ttx ” 0 in r0, t1s. (2.17)
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In the following we will characterize controllability in terms of the properties of
the following matrix.

Definition 2.10 (controllability matrix): The controllability matrix of an LTI sys-
tem is

KpA,Bq :“
“

B AB A2B . . . An´1B
‰

P Rnˆnm.

With this we obtain a characterization of the controllability set Cp0, 0, tq for LTI
systems.

Theorem 2.11: For an LTI system (1.4) it holds that Cp0, 0, tq “ imKpA,Bq for
all t ą 0.

Proof. We show the statement indirectly by proving Cp0, 0, tqK “ pimKpA,BqqK
for all t ą 0.

From Theorem 2.8 a) it follows with P p0, tq “ P p0, tqT ě 0 that

Cp0, 0, tqK “ pimP p0, tqqK “ kerP p0, tq.

Therefore, it remains to show that

kerP p0, tq “ pimKpA,BqqK “ kerKpA,BqT, (2.18)

or, in other words, P p0, tqx “ 0 if and only if xTKpA,Bq “ 0. From Theo-
rem 2.8 b) resp. (2.17) we already know a property of the elements of the
kernel of P p0, tq which we want to use now. First we do some preliminary
considerations. Let φApxq “

řn
j“0 αjx

j be the characteristic polynomial of A.
Then the Theorem of Cayley-Hamilton states that φApAq “ 0. Then because
of αn “ 1 with βj “ ´αj we get

An “
n´1
ÿ

j“0

βjA
j. (2.19)

Thus it holds that xTAnB “
řn´1
j“0 βjx

TAjB. By a repeated application of

(2.19) as well as by summarizing all coefficients of xTAjB in β
pνq
j we obtain

the representation

xTAn`νB “
n´1
ÿ

j“0

β
pνq
j xTAjB @ν P N0. (2.20)
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From this we get the following chain of equivalences:

xTKpA,Bq “ 0 ô xTAjB “ 0, j “ 0, 1, . . . , n´ 1

(2.20)
ô xTAνB “ 0 @ν P N0

ô 0 “
8
ÿ

j“0

p´τqj

j!
xTAjB “ xTe´AτB @τ P r0, ts

(2.17)
ô P p0, tqx “ 0.

So (2.18) follows and hence, the statement of the theorem.

Theorem 2.11 shows that for a controllable LTI system it holds that Cp0, 0, t1q “
Cp0, 0, t2q for all t1, t2 ą 0, in particular, that Cp0, 0q ” Cp0, 0, tq for all t ą 0
and therefore, all controllability concepts for LTI systems coincide. For sim-
plicity, we will now write C instead of Cp0, 0q. Further, from Theorem 2.8, it
follows that imKpA,Bq ” imP p0, tq. So obviously, Theorem 2.9 implies that
for a controllable LTI system it holds that P p0, tq ą 0 for all t ą 0. A very use-
ful characterization of controllability for LTI systems is given by the so-called
Hautus-Popov test.

Theorem 2.12 (Hautus-Popov lemma): Let A P Rnˆn and B P Rnˆm. Then
the following statements are equivalent:

a) The pair pA,Bq is controllable.

b) It holds that rankKpA,Bq “ n.

c) If v P Cnzt0u is a left eigenvector of A, then vHB ‰ 0.

d) It holds that rank
“

A´ λI B
‰

“ n for all λ P C.

Proof. a) ô b): This follows directly from Theorem 2.11 and the equivalence
of controllability and C “ Rn.

c) ô d): The condition vH
“

A´ λI B
‰

“ 0 is true if and only if vHA “ λvH

and vHB “ 0. So rank
“

A´ λI B
‰

ă n, if and only if there exists a left
eigenvector v P Czt0u of A that satisfies vHB “ 0.

b) ñ d) Assume that rank
“

A´ λI B
‰

ă n. Then there exists a v ‰ 0 with
vH

“

A´ λI B
‰

, i. e. vHA “ λvH, vHB “ 0. Then we get

vHAjB “ λjvHB “ 0 for all j P N0.

This implies vHKpA,Bq “ 0 which is a contradiction to b).
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d) ñ b): Assume that it holds that rankKpA,Bq “ r ă n. Then there exists
an orthonormal basis tv1, . . . , vru of K :“ imKpA,Bq. We extend this
basis to an orthonormal basis of Rn by tvr`1, . . . , vnu. This implies

pimKpA,BqqK “ spantvr`1, . . . , vnu.

Define V :“
“

v1 . . . vn
‰

P Rnˆn. Since the columns of V are orthonor-
mal, it holds that V V T “ In “ V TV . Moreover, vTr`jKpA,Bq “ 0 for
j “ 1, . . . , n´r, in particular, it holds that vTr`jB “ 0 for j “ 1, . . . , n´r,
i. e., V TB “

“

B1
0

‰

.

With the Theorem of Cayley-Hamilton (see the proof of Theorem 2.11
and (2.19)) it follows, that AK Ď K, i. e., K is an A-invariant subspace
of Rn. Since the columns of V1 :“

“

v1 . . . vr
‰

form a basis for this
A-invariant subspace, there exists a A1 P Rrˆr with ΛpA11q Ď ΛpAq and
AV1 “ V1A11. This implies

AV “ V

„

A11 A12

0 A22



.

Now let rv ‰ 0 be a left eigenvector A22, i. e., rvHA22 “ λrvH for some
λ P ΛpA22q Ď ΛpAq. If one defines now v :“ V ¨ r 0

rv s, then v ‰ 0 (since
V is orthogonal and rv ‰ 0) and it satisfies

vHB “
“

0 rvH
‰

V TB “
“

0 rvH
‰

„

B1

0



“ 0,

vHA “
“

0 rvH
‰

V TA “
“

0 rvH
‰

V TAV V T
“
“

0 rvH
‰

„

A11 A12

0 A22



V T

“ λ
“

0 rvH
‰

V T
“ λvH.

Thus it holds that vH
“

A´ λI B
‰

“ 0 in contradiction to d).

Part c) of the theorem gives a practical test for controllability of an LTI sys-
tem: compute all eigenvalues and left eigenvectors vj of A and then check
whether vHj B “ 0. This test can still be improved from the numerical point of
view. Transforming the pair pA,Bq to a staircase form instead will result in a
numerically more stable scheme, since the accuracy of the eigenvectors may
be very sensitive with respect to rounding errors, in particular, if A is almost
defective. Moreover, the decision whether vHj B “ 0 is numerically difficult.
The decomposition of pA,Bq used in the proof of Theorem 2.12, namely

A “ V

„

A11 A12

0 A22



V T, B “ V

„

B1

0



, (2.21)
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with orthogonal V and controllable pA11, B1q is called (orthogonal) Kalman
decomposition of pA,Bq. By a change of basis rx :“ V Tx in state space, for
an LTI system, one obtains the equivalent system

9
rx1ptq “ A11rx1ptq ` A12rx2ptq `B1uptq,

9
rx2ptq “ A22rx2ptq.

Therefore, the components of rx2 are already fixed by the initial condition rx2p0q
and cannot be influences by the control; it holds that rx2ptq “ eA22t

rx2p0q. There-
fore, the components of rx2 are called uncontrollable states, the right eigenvec-
tors of A corresponding to eigenvalues in A22 are called uncontrollable modes
of the LTI system.

Example (Example 1 revisited): After a linearization and reduction to a system
of first order, one obtains an LTI system with state space X “ R2 and

A “

„

0 1
1 0



, B “

„

0
1



.

Then KpA,Bq “ r 0 1
1 0 s, thus rankKpA,Bq “ 2 and, according to Theo-

rem 2.12 a), b) the system is controllable. Alternatively, one can use the
Hautus-Popov test. We have ΛpAq “ t´1, 1u, the left eigenvector associ-
ated with λ1 “ 1 is v1 “ r

1
1 s and vH1 B “ 1 ‰ 0; the left eigenvector associated

with λ2 “ ´1 is v2 “ r
1
´1 s and vH2 B “ ´1 ‰ 0. Hence, again controllability of

the system is shown.

2.2 Stabilizability

Now we want to consider the weaker goal of reaching the given target only
asymptotically. As a target we will take x1 “ 0. First we consider LTV systems.

Definition 2.13: The LTV system (1.6)–(1.7) is called (asymptotically) stabi-
lizable, if for every initial state x0 P Rn, there exists a u P Uad such that the
solution of (1.6) satisfies

lim
tÑ8

xpt;uq “ 0.

A necessary condition for the stabilizability of LTV systems is provided by the
following result.
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Theorem 2.14: If the LTV system (1.6) is stabilizable and zp¨q is a bounded,
nontrivial solution of the adjoint equation (2.12) for tÑ 8, then

zptqTBptq ı 0 on rt0,8q.

Proof. Assume that there exists a solution of the adjoint equation (2.12) such
that

zptqTBptq “ 0 @t P rt0,8q and lim
tÑ8

}zptq} ă 8.

Since by assumption z is non-trivial, it holds that zpt0q ‰ 0 such that we can
find an initial state x0 P Rn with

px0
q
Tzpt0q ‰ 0.

Analogously to the proof of Theorem 2.9 a) ñ b), it follows that

xptqTzptq ” px0
q
Tzpt0q ‰ 0 on rt0,8q. (2.22)

Let now u P Uad be a stabilizing control for the solution of (1.6) with xpt0q “ x0.
Then with limtÑ8 xpt;uq “ 0 it also holds that

lim
tÑ8

}xpt;uq} “ 0.

Since }zptq} for t Ñ 8 is bounded, there exists a sequence ptkq8k“1 with tk Ñ
8 and

lim
kÑ8

xptkq
Tzptkq “ 0.

(Note: Because of the Cauchy-Schwarz inequality it holds that
ˇ

ˇxptkq
Tzptkq

ˇ

ˇ ď

}xptkq}}zptkq}.) With this we have constructed a contradiction to (2.22).

For checking stabilizability of an LTI system (resp. a matrix pair pA,Bqq) there
exist similar characterizations as in Theorem 2.12.

Theorem 2.15 (Hautus test for stabilizability): Let A P Rnˆn and B P Rnˆm.
Then the following statements are equivalent:

a) pA,Bq is stabilizable.

b) There exists an F P Rmˆn with ΛpA`BF q Ă C´.

c) In the Kalman decomposition (2.21) it holds that ΛpA22q Ă C´.
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d) If v ‰ 0 is a left eigenvector of A associated with the eigenvalue λ with
Repλq ě 0, then vHB ‰ 0.

e) It holds rank
“

A´ λI B
‰

“ n for all λ P C with Repλq ě 0.

Proof. Homework. Show the following ring closure a) ñ d) ñ c) ñ e) ñ b)
ñ a), similarly to the proof of Theorem 2.12.

Example (Example 1 revisited): For the system matrices

A “

„

0 1
1 0



, B “

„

0
1



.

we obtain – as found above – ΛpAq “ t´1, 1u, where v1 “ r 1
´1 s is a left

eigenvector associated with the only eigenvalue with nonnegative real part
λ1 “ 1. We have vT1B “ 1 ‰ 0, from which we infer stabilizability according to
Theorem 2.15. Note that it is sufficient to evaluate vH1 B, since the eigenspace
to λ1 is onedimensional and therefore, every eigenvector to λ1 is a nonzero
scalar multiple of v1.

Stabilizability could have been also checked with the following simple conse-
quence of Theorems 2.12 and 2.15.

Corollary 2.16: A controllable LTI system is stabilizable.

2.3 Observability and Detectability

First we consider again an LTV system of the form (1.6)–(1.7) and ask the
question, how much information of the state of the system can be obtained
from the output equation (1.7). In practical applications, this is a very relevant
question, since most often not the whole state is available for control design,
but only observed or measured quantities. These could be a few of the state
variables or derived quantities. For instance, in Example 1 we could only mea-
sure the position (first component of the state vector), but not the angular
velocity (second component of the state vector).
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Definition 2.17 (observability): An LTV system is called reconstructable (ob-
servable), if the following condition is satisfied:

If xp¨q and rxp¨q are solutions of (1.6) for the same control function
u P Uad and if

Cptqxptq “ Cptqrxptq @t ď t0 pt ě t0q,

then it holds that

xptq “ rxptq @t ď t0 pt ě t0q.

Thus, reconstructability means that systems with the same inputs and the
same outputs in the past, also had the same states in the past. On the other
hand, observability delivers the same statement for the future, where as ref-
erence time instance we take t0. We will see later that for LTI systems, both
concepts are equivalent. Statements about reconstructability and observability
can be shown easily by making use of statements of a dual system. The fol-
lowing duality principle is also useful in many other considerations in systems
and control.

Theorem 2.18 (duality): An LTV system is reconstructable, if and only if

9xptq “ Ap´tqTxptq ` Cp´tqTuptq (2.23)

is controllable.

Proof. If one defines zptq :“ rxptq ´ xptq, then reconstructability is nothing but

Cptqzptq “ 0 @t ď t0 ñ zptq “ 0 @t ď t0.

This is equivalent to:

zp¨q ı 0 solves 9zptq “ Aptqzptq ñ Cptqzptq ı 0 on p´8, t0s.

If we replace t by ´t, then this statement becomes

zp¨q ı 0 solves 9zptq “ Ap´tqzptq ñ Cp´tqzptq ı 0 on r´t0,8q.

But with Theorem 2.9 this is equivalent to the controllability of (2.23).
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With this we can easily characterize reconstructability of LTV systems.

Theorem 2.19: An LTV system is reconstructable, if and only if for all t1 P R
there exists a t0 ă t1 such that the pt0, t1q-reconstructability Gramian

Qpt0, t1q “

ż t1

t0

Φpt, t1q
TCptqTCptqΦpt, t1qdt (2.24)

is positive definite.

Proof. This is a consequence of Theorem 2.9 applied to the dual LTV system
(2.23) and the duality principle from Theorem 2.19.

For LTI systems, as a consequence of the duality principle and the Hautus-
Popov lemma (Theorem 2.12) one obtains the following characterizations of
observability and reconstructability. Since both terms only involve the matrices
A and C we also talk about observability and reconstructability of the matrix
pair pA,Cq P Rnˆn ˆ Rpˆn instead of the LTI system (1.4)–(1.5).

Corollary 2.20 (Hautus-Popov test): Let A P Rnˆn and C P Rpˆn. Then the
following statements are equivalent:

a) The pair pA,Cq is reconstructable.

b) The pair pA,Cq is observable.

c) For the observability matrix

OpA,Cq :“ K
`

AT, CT
˘T
“

»

—

—

—

—

—

–

C
CA
CA2

...
CAn´1

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnpˆn (2.25)

it holds that rankOpA,Cq “ n.

d) If v ‰ 0 is a right eigenvector of A, then Cv ‰ 0.

e) It holds that

rank

„

A´ λI
C



“ n

for all λ P C.
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If one only knows the output yptq for the design of a control, the problem of
constructing an output feedback control

uptq “ Fyptq, F P Rmˆp,

arises in order to achieve the given goal. Due to the equivalence of observabil-
ity and reconstructability of LTI systems, one mostly uses only the observability
concept.

Remark 2.21: If one applies the Kalman decomposition (2.21) to the LTI sys-
tem 9xptq “ ATxptq`CTuptq, then one obtains an orthogonal matrix W P Rnˆn

with

WTATW “

„

AT
11 AT

21

0 AT
22



, WTCT
“

„

CT
1

0



,

where A11 P Rrˆr, C1 P Rpˆr and r “ dimpOpA,Cqq. This results in the
(orthogonal) observability Kalman decomposition

WTAW “

„

A11 0
A21 A22



, CW “
“

C1 0
‰

. (2.26)

With the change of basis rxptq :“ WTxptq and a partitioning analogously to
(2.26) yields the system

9
rx1ptq “ A11rx1ptq,

9
rx2ptq “ A21rx1ptq ` A22rx2ptq,

yptq “ C1rx1ptq.

In other words, the state variables in rx2 have no influence on the output. There-
fore, they are called unobservable states, right eigenvectors of A correspond-
ing to the eigenvalues of A22 are called unobservable modes.

Analogously to the weakening of controllabilty to stabilizability, observability
can be weakened to detectability.

Definition 2.22 (detectablity): The LTI system (1.4)–(1.5) is called detectable,
if for every solution zp¨q of 9zptq “ Azptq with Czptq ” 0 it holds that
limtÑ8 zptq “ 0.

If in the definition one sets zp¨q :“ xp¨q´rxp¨q for two solutions xp¨q, rxp¨q of (1.4)
for the same input function up¨q, the detectability can be interpreted as follows:
From Cxptq ” Crxptq one cannot infer xptq ” rxptq, but limtÑ8pxptq´rxptqq “ 0.
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In other words, the non-observable part of the state is not known, but we can
conclude its asymptotic behavior. With Theorem 2.19 and the observability
Kalman decomposition (2.26), one obtains the following variant of the duality
principle:

Corollary 2.23: The LTI system (1.4)–(1.5) is detectable, if and only if

9xptq “ ATxptq ` CTuptq

is stabilizable.

Analogously to the Hautus-Popov test for stabilizability one obtains the follow-
ing result.

Corollary 2.24 (Hautus-Popov test for detectability): Let A P Rnˆn and C P

Rpˆn. Then the following statements are equivalent:

a) The pair pA,Cq is detectable.

b) There exists a G P Rnˆp with ΛpA`GCq Ă C´.

c) In the observability Kalman decomposition (2.26) it holds that ΛpA22q Ă

C´.

d) If v is a right eigenvector of A corresponding to the eigenvalue λ with
Repλq ě 0, then Cv ‰ 0.

e) It holds that

rank

„

A´ λI
C



“ n

for all λ P C with Repλq ě 0.

If one wants to stabilize an LTI system and only the output yptq is available for
control, then one wants to find an output feedback uptq “ Fyptq with F P Rmˆp

such that limtÑ8 xpt;uq “ 0. Note that the existence of such a feedback is not
guaranteed, even if the system is both stabilizable and detectable.



CHAPTER 3

Stabilization, Lyapunov Equations, and Pole
Placement

In this chapter we try to answer the question, how to determine a feedback
matrix for LTI systems. From Theorem 2.15 we know that the computation of a
stabilizing control function up¨q is possible with the help of state feedbacks. For
that we need an F P Rmˆn such that ΛpA` BF q Ă C´. With uptq :“ Fxptq it
follows that the solution trajectory of

9xptq “ Axptq `Buptq “ Axptq `BFxptq “ pA`BF qxptq

is asymptotically stable, if and only if F is stabilizing, i. e., ΛpA`BF q Ă C´.

Under certain assumptions, stabilizing state feedbacks can be obtained by the
solution of linear-quadratic optimal control problems, see Chapter 4. First we
want to discuss two simpler methods:

• Lyapunov’s direct method: With the help of Lyapunov’s stability theory
and the solution of a linear system of equations, a stabilizing feedback
can be computed directly. This method is a special case of a general
theory for nonlinear systems which is based on the computation of Lya-
punov functions for nonlinear systems of the form 9xptq “ fpxptqq (with
fp0q “ 0, i. e., x “ 0 is an equilibrium of the dynamical system). There,
one seeks a differentiable function V : X Ñ R such that

29
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– V pxq ě 0 and V pxq “ 0, if and only if x “ 0;

– d
dt
V pxptqq “ ∇V pxptqq ¨ fpxptqq ă 0 for all xptq ‰ 0.

If one can find such a function, then Lyapunov’s theorem says that x “ 0
is an asymptotically stable equilibrium. By using energy-based mod-
elling techniques leading to so-called port-Hamiltonian systems, a Lya-
punov function can be obtained for free, however, it is not always possi-
ble to get a Lyapunov function in an easy way. Here will use Lyapunov
functions in an implicit way. Namely, for an LTI system with state matrix
A, we will consider Lyapunov equations of the form AP `PAT ` In “ 0.
Then the uncontrolled system is asymptotically stable, if and only if the
solution matrix P is positive definite. In this case, V pxq “ xTPx is a
Lyapunov function.

• pole placement: In general, the pole placement problem consists of com-
puting a feedback matrix F P Rmˆn such that ΛpA ` BF q “ L for a set
L :“ tµ1, . . . µnu. If one chooses L Ă C´, then the system is stabilized.
However, without further conditions, this approach cannot be general-
ized to nonlinear or LTV systems. For instance, for LTV systems, the
condition ΛpAptq ` BptqF ptqq P C´ for all t ě t0 is neither necessary,
nor sufficient for stability of the closed-loop system. Locally, nonlinear
systems can be approximated by LTV systems. I. e., for the stabilization
of nonlinear, one should at least be able to stabilize LTV systems but
not even this is sufficient. To achieve stabilization of a nonlinear system
with the help of local stabilizations, further assumptions are necessary.
A technique that achieves this goal is model predictive control (MPC).

3.1 Lyapunov’s Stability Theory

In this section, linear matrix equations will play an essential role. Thus, we
will first look at a few important properties of such equations. Consider the
Sylvester equation

AX `XB “ W (3.1)

with A P Rnˆn, B P Rmˆm, W P Rnˆm and the unknown matrix X P Rnˆm.
This is a linear equation in the n ¨ n unknowns xij , i “ 1, . . . , n, j “ 1, . . . ,m.
Thus there exists a representation of (3.1) in the form Mx “ w of a linear
systems of equations in Rmn. With the help of this representation we can
directly obtain conditions for (unique) solvability of Sylvester equations. For
this, we need the following definition.
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Definition 3.1: Let A P Rnˆp and B P Rmˆq. Then the Kronecker product (or
tensor product) of A and B is defined by

AbB :“

»

—

–

a11B . . . a1,pB
...

...
an,1B . . . an,pB

fi

ffi

fl

P Rnmˆpq.

Moreover, the vec operator is defined by vec : Rnˆp Ñ Rn¨p with

vecpAq “
“

a11 . . . an,1 a12 . . . an,2 . . . a1,p . . . an,p
‰T
.

The following properties of the Kronecker products are directly obtained from
Definition 3.1:

a) pαAq bB “ Ab pαBq “ αpAbBq for all α P R;

b) pA`Bq b C “ pAb Cq ` pB b Cq;

c) Ab pB ` Cq “ pAbBq ` pAb Cq;

d) Ab pB b Cq “ pAbBq b C;

e) pAbBqT “ AT bBT;

f) pAbBqpC bDq “ AC bBD;

g) pAbBq´1 “ A´1 bB´1, if A and B are both invertible.

An important property connects the Kronecker product and the vec operator,
with its help we can “vectorize” a Sylvester equation

Lemma 3.2: For A P Rnˆn, B P Rmˆm and X P Rnˆm it holds that

vec pAXBq “
`

BT
b A

˘

vec pXq .

Proof. Homework.

Now we directly obtain the vectorized representation of the Sylvester equa-
tion (3.1).
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Corollary 3.3: The Sylvester equation (3.1) is equivalent to
`

pIm b Aq `
`

BT
b In

˘˘

vec pXq “ vec pW q , (3.2)

i. e. X solves (3.1), if and only if vec pXq solves (3.2).

If one defines M :“ pIm b Aq `
`

BT b In
˘

, then it is immediately clear that
the Sylvester equation has a unique solution, if and only if M is nonsingular.
A necessary and sufficient condition is that the M has no zero eigenvalues.
Since due to the Kronecker product structure, the eigenvalues of M can be
explicitly stated in terms of the eigenvalues of A and B, one obtains an easy
to check condition for unique solvability of (3.1). The relation between the
eigenvalues of A, B and M is stated as follows.

Theorem 3.4 (Theorem of Stephanos): Let ppx, yq be a complex polynomial
in two variables, i. e., ppx, yq “

ř`
j,k“1 αjkx

jyk with x, y, αjk P C. For A P

Cnˆn and B P Cmˆm define a matrix-valued polynomial by replacing scalar
multiplication by the Kronecker product, i. e.,

ppA,Bq :“
ÿ̀

j,k“1

αjkpA
j
bBk

q.

Then
ΛpppA,Bqq “ tppλ, µq : λ P ΛpAq, µ P ΛpBqu.

Proof. Homework.

With this we can make statements about the solution of (3.1)

Theorem 3.5: Consider the Sylvester equation (3.1). Then

a) ΛpMq “ Λ
`

pIm b Aq ` pB
T b Inq

˘

“ tλ` µ : λ P ΛpAq, µ P ΛpBqu.

b) The Sylvester equation (3.1) and hence the linear system of equations (3.2)
have a unique solution, if and only if ΛpAq X Λp´Bq “ H.

Proof. Homework.

Consider now the special case of (3.1) with m “ n, B “ AT and W “ WT.
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With this one obtains the Lyapunov equation

AX `XAT
“ W. (3.3)

Since the Lyapunov equation is symmetric, it follows directly that also XT is
a solution of (3.3). If the solution is unique, i. e., if according to Theorem 3.5
b), ΛpAq X Λp´Aq “ H, then this unique solution is symmetric. A sufficient
condition for unique solvability is that ΛpAq Ă C´, i. e., that A is Hurwitz1.
In this case one even obtains an explicit solution formula which can also be
generalized to (3.1), if A and B are both asymptotically stable.

Theorem 3.6: Let ΛpAq, ΛpBq Ă C´. Then (3.1) has a unique solution that is
given by

X “ ´

ż 8

0

eAtW eBtdt. (3.4)

Proof. The uniqueness of the solution follows directly from Theorem 3.5 b).
Define now Z : r0,8q Ñ Rnˆm as the solution of the linear matrix-valued
differential equation

9Zptq “ AZptq ` ZptqB (3.5)

for the initial condition Zp0q “ W . From the theory of linear homogeneous
differential equations it follows that this initial value problem for the Sylvester
differential equation (3.5) has a unique solution on r0,8q. This solution is
Zptq “ eAtW eBt as one can check easily: Zp0q “ W and

9Zptq “ AeAtW eBt ` eAtWBeBt

“ AeAtW eBt ` eAtW eBtB

“ AZptq ` ZptqB.

Here we have used that B and eBt commute. Since both A and B are Hurwitz,
limtÑ8 eAt “ 0, limtÑ8 eBt “ 0 and thus,

Z8 :“ lim
tÑ8

Zptq “ lim
tÑ8

eAtW eBt “ 0.

Integration of (3.5) over r0,8q then gives

Z8 ´ Zp0q “ A

ż 8

0

Zptqdt`

ż 8

0

ZptqdtB,

1This means that A is asymptotically stable.
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therefore,

A

ż 8

0

Zptqdt`

ż 8

0

ZptqdtB “ ´W.

Thus, ´
ş8

0
Zptqdt is a solution of the Sylvester equation (3.1). From the

uniqueness of the solution it follows that X “ ´
ş8

0
Zptqdt “ ´

ş8

0
eAtW eBtdt.

If one considers an asymptotically stable LTI system 9xptq “ Axptq ` Buptq,
then one directly obtain from Theorem 3.6 that the controllability Gramian

P “

ż 8

0

eAtBBTeA
Ttdt

is the unique solution of the Lyapunov equation

AP ` PAT
`BBT

“ 0. (3.6)

From this we obtain a further criterion for controllability of LTI systems

Corollary 3.7: Let ΛpAq Ă C´. Then the pair pA,Bq P Rnˆn ˆ Rnˆm is con-
trollable if and only if the solution of the Lyapunov equation (3.6) is positive
definite.

Remark 3.8: Note that P ‰ limτÑ8 P p0, τq, since this limit is not defined if A
is asymptotically stable. Thus P is not a “r0,8s-controllability Gramian”.

Analogously, one obtains a characterization of observability for asymptotically
stable LTI systems via the positive definiteness of the observability Gramian
which is the unique solution of the Lyapunov equation

ATQ`QA` CTC “ 0.

The following is the central result in Lyapunov’s stability theory.

Theorem 3.9 (Lyapunov’s theorem (1897)): Let A, W P Rnˆn with W “ WT

negative definite. Then the following holds:

a) If ΛpAq Ă C´, then the Lyapunov equation (3.3) has a unique solution X
which is symmetric and positive definite.

b) If (3.3) has a solution X ą 0, then A is asymptotically stable.
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From Theorem 3.9 b) one obtains a test for asymptotic stability which is called
Lyapunov’s direct method2. For this one solves the Lyapunov equation AX `

XAT “ ´αIn for some α ă 0. If X ą 0 (which can be checked by a Cholesky
decomposition of X), then all solutions of 9xptq “ Axptq are asymptotically
stable.

The following weaker version of Theorem 3.9 which goes back to Chen (1973)
and Wimmer (1974), the definiteness of the right-hand side can be weakened
under the additional assumption of controllability.

Theorem 3.10: Let the pair pA,Bq P Rnˆn ˆ Rnˆm be controllable. Then it
holds that:

a) If ΛpAq Ă C´, then the Lyapunov equation (3.6) has a unique solution P .
Moreover, it holds that P “ PT ą 0.

b) If (3.6) has a solution P ą 0, then A is stable.

3.2 Stabilization with Lyapunov Equations

The following theorem, which goes back to Kleinman (1970) and Armstrong
(1975) and uses previous ideas from Bass, results in a first stabilization method.
In the following, by M` we denote the (Moore-Penrose) pseudoinverse of M ,
i. e., the unique matrix that satisfies the Moore-Penrose conditions

• MM`M “M ,

• M`MM` “M`,

• pMM`qT “MM`,

• pM`MqT “M`M .

Theorem 3.11: Let pA,Bq P Rnˆn ˆ Rnˆm be stabilizable and β P R with
β ą ρpAq, where ρpAq :“ maxt|λ| : λ P ΛpAqu is the spectral radius of A. If
X is the unique solution of the Lyapunov equation

pA` βInqX `XpA` βInq
T
“ 2BBT, (3.7)

then F :“ ´BTX` is a stabilizing feedback matrix for pA,Bq.

2The name “direct method” refers to the fact that no trajectories have to be computed to
check stability
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Proof. Let first pA,Bq be controllable (and therefore, also stabilizable). Since
β ą ρpAq it holds that ΛpA ` βInq Ă C`. To apply Theorem 3.10 a), p´pA `
βInq,

?
2Bq must be controllable. But this follows directly with the Hautus-

Popov test, since

n “ rank
“

A´ λIn B
‰

@λ P C

ô n “ rank
”

pA` βInq ` rλIn B
ı

„

´In 0
0

?
2Im



“ rank
”

´pA` βInq ´ rλIn
?

2B
ı

@ rλ P C.

With Theorem 3.10 b) it follows that (3.7) has a unique solution X ą 0. Since
X is invertible, the equivalence of (3.7) and

X´1
pA` βInq ` pA` βInq

TX´1
“ 2X´1BBTX´1.

This results in

X´1
`

A´BBTX´1
˘

`
`

A´BBTX´1
˘T
X´1

“ ´2βX´1.

Since X and thus also X´1 are positive definite, the right-hand side of this
Lyapunov equation is negative definite. Then with Theorem 3.9 b) it follows
that A´BBTX´1 is stable, i. e., F “ ´BTX` is a stabilizing feedback matrix,
since for invertible matrices it holds that X` “ X´1. Let now pA,Bq be stabi-
lizable. Due to Theorem 3.6 we know that (3.7) has a unique solution, which
due to the representation (3.4) is positive semi-definite. Moreover, we know by
Theorem 2.15 that pA,Bq has a Kalman decomposition of the form

A “ V

„

A11 A12

0 A22



V T, B “ V

„

B1

0



,

where pA11, B1q is controllable, A22 is asymptotically stable and V P Rnˆn is
orthogonal. Left-multiplying (3.7) with V T and right-multiplying it with V and
partitioning

pX “ V TXV “

„

X11 X12

XT
12 X22



as in the Kalman decomposition, then we obtain

„

A11 ` βI A12

0 A22 ` βI

 „

X11 X12

XT
12 X22



`

„

X11 X12

XT
12 X22

 „

pA11 ` βIq
T 0

AT
12 pA22 ` βIq

T



“

„

2B1B
T
1 0

0 0



.
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Then one obtain the following linear matrix equations

pA11 ` βIqX11 `X11pA11 ` βIq
T
` A12X

T
12 `X12A

T
12 “ 2B1B

T
1 , (3.8)

pA22 ` βIqX22 `X22pA22 ` βIq
T
“ 0. (3.9)

The homogeneous equation (3.9) has the unique solution X22 “ 0 by The-
orem 3.5 b). Since X and thus also pX are positive semi-definite, we get
X12 “ 0. From the controllability of pA11, B1q it follows that (3.8) has a unique
solution X11 ą 0 and that F1 “ ´B

T
1 X

´1
11 is a stabilizing feedback matrix for

pA11, B1q. If one sets F :“
“

F1 0
‰

V T, then it holds that

V T
pA`BF qV “

„

A11 `B1F1 A12

0 A22



,

i. e., ΛpA ` BF q “ ΛpA11 ` B1F1q Y ΛpA22q Ă C´. Thus, F is a stabilizing
feedback matrix for pA,Bq. Moreover, it holds that

F “
“

´BT
1 X

´1
11 0

‰

V T
“ ´

“

BT
1 0

‰

„

X´1
11 0
0 0



V T
“ ´BTV

„

X´1
11 0
0 0



V T.

Moreover, by simple calculations one can check that V
”

X´1
11 0
0 0

ı

V T fulfills the

Moore-Penrose conditions with respect to X “ V
“

X11 0
0 0

‰

V T. Thus, F “

´BTX`.

The proof above make use of the fact that the uncontrollable modes of the LTI
system do not have to be stabilized such that the stabilization problem can be
transferred to the controllable case. With this one obtains a complete proof of
Theorem 2.15, since Theorem 3.11 delivers “c) ñ b)” under the condition that
“a) ñ c)” has already been proven.

Algorithm 3.1 Bass algorithm

Input: Stabilizable pair pA,Bq P Rnˆn ˆ Rnˆm.
Output: Stabilizing feedback matrix F P Rmˆn, i. e., ΛpA`BF q Ă C´.

1: Set β “ 2}A}p for an easy to calculate norm, e. g., p “ 1,8,F.
2: Solve (3.7).
3: Compute X` and set F “ ´BTX`.

The factor 2 in row 1 is a safety factor, that shall guarantee that the eigenvalues
ofA`βIn are sufficiently far away from the imaginary axis. The computation of
the pseudoinverseX` can be done by a spectral decomposition of the positive
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semi-definite matrixX. An alternative to the stabilization by the Lyapunov (3.7)
is the so-called algebraic Bernoulli equation (ABE)

ATX `XA´XBBTX “ 0. (3.10)

(which is a special algebraic Riccati equation). The following results have been
shown in [BBQO07]:

Theorem 3.12: If pA,Bq P Rnˆn ˆ Rnˆm is stabilizable and ΛpAq X iR “ H,
then the following are equivalent:

a) The ABE (3.10) has a unique stabilizing positive semi-definite solution X˚,
i. e., X˚ ě 0 and Λ

`

A´BBTX˚
˘

Ă C´.

b) rankX˚ “ k, where k is the number of unstable eigenvalues of A. With
this it holds that X˚ “ ZZT with Z P Rnˆk.

c) It holds that Λ
`

A´BBTX˚
˘

“ pΛpAq X C´q Y ´pΛpAq X C`q.

So also the ABE can be used for the stabilization of linear time-invariant sys-
tems. The algorithm used in [BBQO07] for computing X, resp. Z is similarly
expensive as the Bartels-Stewart algorithm for solving Lyapunov equations.
Moreover, numerical experiments indicate, that stabilization properties of the
ABE solution are often better than the ones of the Lyapunov equation.

3.3 Stabilization by Pole Placement

First we will show that a system is controllable if and only if for every set
L :“ tµ1, . . . µnu Ă C which is closed with respect to complex conjugation,
there exists a feedback matrix F P Rmˆn with ΛpA`BF q “ L. Therefore, we
introduce two normal forms for single input systems, that allow further charac-
terizations of controllability. Note that these normal forms are only of theoreti-
cal interest, since they cannot be computed in a numerically stable way.

Let now
φApxq “ xn ` αn´1x

n´1
` . . .` α1x` α0 (3.11)

be the characteristic polynomial of A. Further, we say that pA,Bq and
`

rA, rB
˘

are system equivalent, if
`

rA, rB
˘

can be obtained from pA,Bq by a change of
basis in state space, i. e., if there exists an invertible matrix T P Rnˆn such that

`

rA, rB
˘

“
`

T´1AT, T´1B
˘

.
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Lemma 3.13: Let pA,Bq P Rnˆn ˆ Rnˆ1 and

As “

»

—

—

—

—

—

–

0 0 . . . 0 ´α0

1 0 . . . 0 ´α1

0 1 . . . 0 ´α2

...
...
. . .

...
...

0 0 . . . 1 ´αn´1

fi

ffi

ffi

ffi

ffi

ffi

fl

, Bs “

»

—

—

—

—

—

–

1
0
0
...
0

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.12)

Then it holds that

AKpA,Bq “ KpA,BqAs, B “ KpA,BqBs, (3.13)

where KpA,Bq is the controllability matrix of pA,Bq. In particular, pA,Bq is
controllable, if and only if pA,Bq and pAs, Bsq are system equivalent.

Proof. Using the Theorem of Cayley-Hamilton it follows (cf. the proof of Theo-
rem 2.11)

An “ ´
n´1
ÿ

j“0

αjA
j.

Thus we obtain

AKpA,Bq “
”

AB A2B . . . An´1B ´
řn´1
j“0 αjA

jB
ı

“ KpA,BqAs.

The second equation in (3.13) is immediate. Similarly as in Homework 3/1 b),
one can show that pAs, Bsq is controllable.

If pAs, Bsq is system equivalent to pA,Bq, then pA,Bq is controllable. On the
other hand, if pA,Bq is controllable, then KpA,Bq is nonsingular by Theo-
rem 2.12 and thus, by (3.13), pA,Bq and pAs, Bsq are system equivalent with
T :“ KpA,Bq.

Definition 3.14: The controller normal form of a pair pA,Bq P Rnˆn ˆ Rnˆ1 is
given by

ACNF “

»

—

—

—

—

—

–

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
´α0 ´α1 ´α2 . . . ´αn´1

fi

ffi

ffi

ffi

ffi

ffi

fl

, BCNF “

»

—

—

—

—

—

–

0
0
...
0
1

fi

ffi

ffi

ffi

ffi

ffi

fl

. (3.14)
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It is important to note that not every pair pA,Bq is system equivalent to its
controller normal form as the following theorem shows.

Theorem 3.15: The pair pA,Bq P Rnˆn ˆ Rnˆ1 is controllable, if and only
if there exists a nonsingular matrix S P Rnˆn such that pACNF, BCNFq “

pS´1AS, S´1Bq.

Proof. Note first that φA is the characteristic polynomial of ACNF. Thus, by
Lemma 3.13, resp. (3.12), we have

ACNFKpACNF, BCNFq “ KpACNF, BCNFqAs, BCNF “ KpACNF, BCNFqBs.

Now,

KpACNF, BCNFq “

»

—

—

—

—

–

0 . . . 0 1
... . .

.
. .
.
˚

0 . .
.
. .
. ...

1 ˚ . . . ˚

fi

ffi

ffi

ffi

ffi

fl

which is nonsingular. Thus, pACNF, BCNFq is system equivalent to pAs, Bsq.
Thus Lemma 3.13 follows.

Moreover, we need a property of the space imKpA,Bq.

Lemma 3.16: Let pA,Bq P RnˆnˆRnˆm and bj “ Bej , j “ 1, . . . , m. Then it
holds that

imKpA,Bq “ spantAkbj : k P N0, j “ 1, . . . , mu “: K.

In other words, imKpA,Bq is the smallest A-invariant subspace that contains
imB.

Proof. The statement follows from the Theorem of Cayley-Hamilton as in the
proof of Theorem 2.11, since

An`ν “
n´1
ÿ

j“0

β
pνq
j Aj @ ν P N0.

Since every A-invariant subspace which contains imB also contains K, the
interpretation of imKpA,Bq as smallest A-invariant subspace that contains
imB.
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By further noting that for system equivalent matrix pairs pA,Bq and p rA, rBq “
pT´1AT, T´1Bq it holds that ΛpA` BF q “ Λ

`

rA` rB rF
˘

“ L for rF “ FT , we
have all prerequisites to prove the theorem of pole placements. the proof fol-
lows the arguments of the proof of Theorem 13 in the book of Sontag, [Son98].

Theorem 3.17 (pole placement): Let pA,Bq P Rnˆn ˆ Rnˆm and let the
uncontrollable eigenvalues of pA,Bq be tλk`1, . . . , λnu. Then there exists
a feedback matrix F P Rmˆn such that ΛpA ` BF q “ L, if and only if
L “ tµ1, . . . , µk, λk`1, . . . , λnu, where tµ1, . . . , µku Ă C can be chosen ar-
bitrarily as long a tµ1, . . . , µku is closed under complex conjugation. In case
m “ 1, F is unique.

In particular, pA,Bq is controllable, if and only if for every set L “ tµ1, . . . , µnu
with L “ L, there exists an F P Rmˆn with ΛpA`BF q “ L.

Proof. First, let pA,Bq be not controllable. W. l. o. g., we can assume that
pA,Bq is in Kalman form, i. e.

A “

„

A11 A12

0 A22



, B “

„

B1

0



, with controllable pair pA1, B1q P Rkˆk
ˆRkˆm.

For an arbitrary F “
“

F1 F2

‰

is holds that

ΛpA`BF q “ ΛpA11 `B1F1q Y ΛpA22q “ ΛpA11 `B1F1q Y tλk`1, . . . , λnu.

Since ΛpA22q are the uncontrollable eigenvalues, it is clear that L must attain
the form within the theorem statement and that pA,Bq will be controllable, if
and only if L can be chosen arbitrarily. It remains to show that ΛpA11 `B1F1q

can be chosen arbitrarily by choosing an appropriate feedback matrix F . If
for some set L1 :“ tµ1, . . . , µku “ L1 one can find an F1 P Rmˆk with
ΛpA11 ` B1F1q “ L1, then F “

“

F1 0
‰

is the desired feedback matrix. Ac-
cording to the above considerations it remains to consider the case that pA,Bq
is controllable. In the case m “ 1 we can further assume by Theorem 3.15
that pA,Bq is in controller normal form. Then one immediately sees that with
F “

“

f1 . . . fn
‰

with fj P R we get that

A`BF “

»

—

—

—

—

—

–

0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1
´α0 ` f1 ´α1 ` f2 ´α2 ` f3 . . . ´αn´1 ` fn

fi

ffi

ffi

ffi

ffi

ffi

fl

.
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Since

φA`BF pxq “ xn ` pαn´1 ´ fnqx
n´1

` . . .` pα1 ´ f2qx` pα0 ´ f1q,

F is uniquely determined by fj “ αj´1 ´ βj´1, where

px´ µ1q ¨ ¨ ¨ px´ µnq “: xn ` βn´1x
n´1

` . . .` β1x` β0.

Let now m be arbitrary. We will transfer this case to the case m “ 1. For that,
let v P Rm with b :“ Bv ‰ 0. We show now that there exists a G P Rmˆn such
that pA ` BG, bq is controllable. Then if f P R1ˆn is the uniquely determined
vector such that ΛpA ` BG ` bfq “ L, then F :“ G ` vf is the desired
feedback matrix. It remains to show the existence of G. Define now a maximal
set of linearly independent vectors R “ tx1, . . . , x`u Ă Rn with

x1 :“ b “ Bv, xj ´ Axj´1 P imB, (3.15)

where x0 “ 0. Obviously, R ‰ H, since b P R and dim spanR “ ` ď n and
thus, “` maximal” is well-defined. Note that (3.15) can also be formulated as
follows:

xj “ Axj´1 `Bu for some u P Rm. (3.16)

We show now that ` “ n. That ` has been chosen maximally, follows from

Ax` `Bu P spantx1, . . . , x`u @u P Rm. (3.17)

(Otherwise, with x``1 :“ Ax``Bu one would obtain a bigger set that satisfies
the condition which would contradict the maximality of `.) In particular, with
u “ 0 we get

Ax` P spantx1, . . . , x`u.

Then with (3.17) it follows that

imB Ă spantx1, . . . , x`u ´ Ax` “ spantx1, . . . , x`u

and with (3.15)

Axk P spantx1, . . . , x`u, k “ 1, . . . , `.

With this, spantx1, . . . , x`u is an A-invariant subspace which contains imB.
By Lemma 3.16, imKpA,Bq is the smallest subspace of Rn that fulfills this
property. Thus, with the controllability of pA,Bq we get

n “ dim imKpA,Bq ď dim spantx1, . . . , x`u
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and thus dim spantx1, . . . , x`u “ ` “ n. Let now uk P Rm, k “ 1, . . . , n ´ 1
be a sequence of vectors which generates R as in (3.16), i. e.,

xk ´ Axk´1 “ Buk´1, k “ 2, . . . , n.

If one chooses un P Rm arbitrary and defines

X :“
“

x1 . . . xn
‰

P Rnˆn, U :“
“

u1 . . . un
‰

P Rmˆn,

then G :“ UX´1 is well-defined, since X is nonsingular due to the linear
independence of tx1, . . . , xnu. The matrix G satisfies

Gxk :“ uk, k “ 1, . . . , n,

and with (3.15) one obtains

KpA`BG, bq “
“

x1 . . . xn
‰

.

Thus, pA`BG, bq is controllable and the claim is shown.

The proof of Theorem 3.15 motivates the term “controller normal form”, since
the matrix F determining the controller can be just read off ACNF in the case
m “ 1.

Remark 3.18: For computing the feedback matrix F in the casem ą 1 one has
to enforce uniqueness by imposing further constraints. This freedom should
be exploited in order to achieve, e. g., maximum robustness of the closed-loop
eigenvalues with respect to perturbations.

A suitable criterion for the numerical computation of F consists of making
A`BF diagonalizable and minimizing the condition number of its eigenvector
matrix X “ XpF q. We obtain the minimization problem

min
FPRmˆn

condpXpF qq

subject to pA`BF qXpF q “ XpF q

»

—

–

µ1

. . .

µn

fi

ffi

fl

.

The problem of robust pole placement was formulated and solved by Kaut-
sky, Nichols, and Van Dooren in 1985 [KNVD85], where, besides the criterion
above, further criteria have been analyzed to measure the sensitivity of the
poles with respect to perturbations.
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CHAPTER 4

Optimal Control

For a general nonlinear system as in Definition 1.1, i. e.,

9xptq “ fpt, xptq, uptqq, xpt0q “ x0, (4.1)
yptq “ gpt, xptq, uptqq, (4.2)

for t P rt0, tfs, we seek an optimal control u P Uad such that the cost functional
J : Uad Ñ R with

J puq “ hfpxptfqq `

ż tf

t0

hpt, xptq, yptq, uptqqdt (4.3)

is minimized. Here, h is a suitably chosen function, which costs to the states,
inputs, and outputs, while hf measures the deviation from the desired terminal
state.

To allow for reaching the desired state asymptotically, i. e., we demand a stabi-
lization of the system, we also allow setting tf “ 8. However, first we consider
the case tf ă 8, the case of an infinite time horizon is obtained by an asymp-
totic consideration.

Remark 4.1: By choosing h ” 1 and hf ” 0 and requesting xptfq “ x1 ,
we obtain the problem of minimizing tf . This problem is called time-optimal

45
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control, since we try to find the control function that steers the system into the
desired state x1 in the shortest possible time.

4.1 Necessary and Sufficient Optimality Conditions

The general approach to such optimal control problems is based on the La-
grange formalism: If one wants to solve a constrained optimization problem of
the form

min
xPRn

gpxq subject to fpxq “ 0, (4.4)

then one defines the Lagrangian (function)

Lpx, λq “ gpxq ` λTfpxq,

with the Lagrange multipliers λ P Rm and develops the necessary optimality
conditions from

Lxpx, λq “ 0, Lλpx, λq “ 0.

Analogously, for dynamic constraints, one uses the Hamilton principle for which
one defines a Hamilton function. For autonomous systems satisfying

hpxptq, yptq, uptqq ” hpxptq, uptqq,

it is defined by

Hpxptq, uptq, µptqq “ hpxptq, uptqq ` µptqTfpxptq, uptqq, (4.5)

where µ : rt0, tfs Ñ Rn is the costate function corresponding to the Lagrange
multipliers. Note that with this, the dynamic constraints can be expressed as

Hµpxptq, uptq, µptqq “ 9xptq.

The necessary optimality conditions then follow from the following theorem due
to Pontryagin [PBGM62]. Here, this result is stated as a “minimum principle”
as in [Pin93], where first hf “ 0 is assumed.

Theorem 4.2 (Pontryagin’s maximum principle): Let u˚ P Uad and x˚ptq :“
xpt;u˚q be the corresponding solution trajectory of (4.1). If u˚ is optimal for
(4.3), then u˚ satisfies the necessary optimality conditions
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a) Hpx˚ptq, u˚ptq, µptqq “ infuPUad
Hpx˚ptq, uptq, µptqq for all t P rt0, tfs.

b) The costate function satisfies the adjoint equation

9µptq “ ´Hxpx˚ptq, u˚ptq, µptqq,

(iii) µptfq “ 0 (transversality conditions).

Proof. See [MS82, Pin93, PBGM62].

The case hf ı 0 can be transferred such that the theorem above is applicable.
Therefore, one uses that

hfpxptfqq ´ hfpxpt0qq “

ż tf

t0

∇hfpxptqq ¨ 9xptqdt

“

ż tf

t0

∇hfpxptqq ¨ fpxptq, uptqqdt,

which leads to the modified running cost

rhpxptq, uptqq “ hpxptq, uptqq `∇hfpxptqq ¨ fpxptq, uptqq.

With this we get J puq “ hfpxpt0qq `
ştf
t0
rhpxptq, uptqqdt. Since hfpxpt0qq is

constant, this term can be neglected in the optimization, i. e., one works with
the modified cost functional

rJ puq “
ż tf

t0

rhpxptq, uptqqdt.

If one replaces h by rh in the Hamilton function, then one can apply Theo-
rem 4.2 to rJ . However, note that the transversality condition changes to

(iii’) µptfq “ ∇hfpxptfqq.

Moreover, the necessary smoothness properties of hf must be verified.

From now on, we consider again LTI systems as in (1.4)–(1.5), i. e.,

9xptq “ Axptq `Buptq, xp0q “ x0,

yptq “ Cxptq,
(4.6)

in the time interval r0, tfs. Hence, we have

fpt, xptq, uptqq “ Axptq `Buptq,

gpt, xptq, uptqq “ Cxptq.
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Since yptq “ Cxptq and hence hpt, xptq, yptq, uptqq “ hpt, xptq, Cxptq, uptqq ”
hpt, xptq, uptqq, we will w. l. o. g. assume that C “ In. By setting

hpt, xptq, uptqq “
1

2

„

xptq
uptq

T „
Q S
ST R

 „

xptq
uptq



,

hfpxptqq “
1

2
xptqTMxptq,

then we obtain a quadratic cost functional J and thus the following problem
setting:

Definition 4.3 (linear-quadratic optimal control problem): The minimization
problem

minJ puq “ 1

2

˜

xptfq
TMxptfq `

ż tf

0

„

xptq
uptq

T „
Q S
ST R

 „

xptq
uptq



dt

¸

subject to
9xptq “ Axptq `Buptq, xp0q “ x0,

(4.7)

is called a linear-quadratic optimal control problem.

In control theory, such linear-quadratic optimal control problems are also called
linear-quadratic regulator problems, or for short, LQR problems. In the sequel,
we will make use of this abbreviation.

Remark 4.4: One can easily see that the assumption C “ In is indeed not a
restriction. If the outputs should be weighted in the cost functional, then for a
quadratic cost functional one can write

yptqTQyyptq ` xptq
TQxxptq “ xptqTCTQyCxptq ` xptq

TQxxptq

“ xptqT
`

CTQyC `Qx

˘

xptq

Thus, with Q :“ CTQyC ` Qx one would obtain a cost functional of the form
(4.7).

The LQR cost functional weighs the following quantities:

• the deviation of the terminal state xptfq from the target px with the help of
the term xptfq

TMxptfq,

• the transient behavior of the state by
ştf
0
xptqTQxptqdt,
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• the (energy) costs that have to be used for controlling, given by the term
ştf
0
uptqTRuptqdt.

In Example 1, M would weigh the deviation of ϕptfq “ π and 9ϕptfq “ 0. The
first term in the cost functional can be chosen to avoid an oscillatory transient
behavior, while the last term in the cost functional assesses the input energy
used to force the pendulum. Often, the mixed term xptqTSuptq is not present.
It occurs, e. g., if the original system has a feed-through term Duptq as in (1.5).
Then, as in Remark 4.4, one has

yptqTQyyptq ` xptq
TQxxptq

“ xptqTCTQyCxptq ` xptq
TQxxptq ` 2xptqTCTQyDuptq ` uptq

TDTQyDuptq

“ xptqT
`

CTQyC `Qx

˘

xptq ` 2xptqTCTQyDuptq ` uptq
TDTQyDuptq

“: xptqTQxptq ` 2xptqTSuptq ` uptqTRuptq.

By applying Pontryagin’s maximum principle one obtains now the necessary
optimality conditions. The theorem can be proven directly without using Theo-
rem 4.2, while the proof structure follows a more general proof. In the following,
let Uad be set of functions that are piecewise continuous on r0, tfs, the proof
for Uad “ L2pr0, tfs,Rmq is analogous.

Theorem 4.5: Consider the optimal control problem (4.7). Let u˚ P Uad be an
optimal control and let x˚ptq “ xpt;u˚q be the corresponding solution trajec-
tory. Then there exists a costate function µ : r0, tfs Ñ Rn such that x˚, µ, u˚
solve the linear boundary value problem

»

–

In 0 0
0 ´In 0
0 0 0

fi

fl

»

–

9xptq
9µptq
9uptq

fi

fl “

»

–

A 0 B
Q AT S
ST BT R

fi

fl

»

–

xptq
µptq
uptq

fi

fl (4.8)

with boundary conditions

xp0q “ x0, µptfq “Mxptfq (4.9)

Note that 9u enters the equation only formally and so u does not have to be
differentiable.

Proof. The proof follows ideas from the calculus of variations, namely, the first
variation has to vanish. Therefore, let u˚ be the optimal control. Consider the
first-order perturbation

uptq :“ u˚ptq ` εvptq
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with u P Uad and ε P R. Then the constraint in (4.7) becomes

9xptq “ Axptq `Bu˚ptq ` εBvptq

with the solution trajectory (see Chapter 2)

xptq “ eAtx0
`

ż t

0

eApt´sqB pu˚psq ` εvpsqq ds

“ x˚ptq ` ε

ż t

0

eApt´sqBvpsqds
looooooooomooooooooon

“:zptq

“ x˚ptq ` εzptq.

Hereby, zp¨q satisfies the linear, inhomogeneous differential equation

9zptq “ Azptq `Bvptq, zp0q “ 0. (4.10)

Now we introduce µptq P Rn and the Hamilton function Hpxptq, uptq, µptqq by

Hpxptq, uptq, µptqq “ 1

2

`

xptqTQxptq ` 2xptqTSuptq ` uptqTRuptq
˘

` µptqT pAxptq `Buptqq

Then we rewrite the cost functional as

J puq “ 1

2
xptfq

TMxptfq `

ż tf

0

`

Hpxptq, uptq, µptqq ´ µptqT 9xptq
˘

dt.

Analogously, for u˚ and x˚ we obtain

J pu˚q “
1

2
x˚ptfq

TMx˚ptfq `

ż tf

0

`

Hpx˚ptq, u˚ptq, µptqq ´ µptqT 9x˚ptq
˘

dt.

Subtracting both equations gives

J puq ´ J pu˚q “
1

2

`

xptqTMxptq ´ x˚ptq
TMx˚ptq

˘
ˇ

ˇ

t“tf

`

ż tf

0

pHpxptq, uptq, µptqq ´Hpx˚ptq, u˚ptq, µptqqq dt

`

ż tf

0

µptqT p 9x˚ptq ´ 9xptqq
looooooomooooooon

“´ε 9zptq

dt (4.11)
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Now we consider the three terms on the right-hand side of (4.11) separately.
By plugging in xptq “ x˚ptq ` εzptq, for the first term we get

xptqTMxptq ´ x˚ptq
TMx˚ptq

“ x˚ptq
TMx˚ptq ` 2εx˚ptq

TMzptq ` ε2zptqTMzptq ´ x˚ptq
TMx˚ptq

“ 2εx˚ptq
TMzptq `O

`

ε2
˘

.

For the second term we get

Hpxptq, uptq, µptqq ´Hpx˚ptq, u˚ptq, µptqq

“
1

2

`

xptqTQxptq ` 2xptqTSuptq ` uptqTRuptq
˘

` µptqTpAxptq `Buptqq

´
1

2

`

x˚ptq
TQx˚ptq ` 2x˚ptq

TSu˚ptq ` uptq
T
˚Ru˚ptq

˘

´ µptqTpAx˚ptq `Bu˚ptqq.

Now we set
uptq “ u˚ptq ` εvptq, xptq “ x˚ptq ` εzptq

and obtain (after a lengthy calculation)

Hpxptq, uptq, µptqq ´Hpx˚ptq, u˚ptq, µptqq
“ ε

`

x˚ptq
TQzptq ` x˚ptq

TSvptq ` u˚ptq
TSTzptq ` u˚ptq

TRvptq

` µptqTAzptq ` µptqTBvptq
˘

`O
`

ε2
˘

“ ε
``

x˚ptq
TQ` u˚ptq

TST
` µptqTA

˘

zptq

`
`

x˚ptq
TS ` u˚ptq

TR ` µptqTB
˘

vptq
˘

`O
`

ε2
˘

.

Further, for the last term in (4.11), with partial integration we get

´

ż tf

0

εµptqT 9zptqdt “ ´ εµptqTzptq
ˇ

ˇ

tf

0
` ε

ż tf

0

9µptqTzptqdt

“ ´εµptfq
Tzptfq ` ε

ż tf

0

9µptqTzptqdt,

where we use that zp0q “ 0 due to (4.10). Altogether we have

J puq ´ J pu˚q

“ ε

˜

ż tf

0

`

px˚ptq
TQ` u˚ptq

TST ` µptqTA` 9µptqTqzptq

` px˚ptq
TS ` u˚ptq

TR ` µptqTBqvptq
˘

dt

´ µptfq
Tzptfq ` x˚ptfq

TMzptfq

¸

`O
`

ε2
˘

. (4.12)
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A necessary condition for a minimum of J is that all directional derivatives of
J from u˚ vanish, i. e.,

0 “ lim
εÑ0

1

ε
pJ pu˚ ` εvq ´ J pu˚qq for all v P Uad.

If one chooses µ as solution of the linear inhomogeneous differential equation

9µptq “ ´pATµptq `Qx˚ptq ` Su˚ptqq (4.13)

with the “terminal condition”

µptfq “Mx˚ptfq (4.14)

then from (4.12) we necessarily get

x˚ptq
TS ` u˚ptq

TR ` µptqTB ” 0 @t P r0, tfs (4.15)

If we then take (4.13), (4.14), (4.15) and the first equation in (4.6), then we get
the two-point boundary value problem (4.8), (4.9).

Remark 4.6: The boundary value problem (4.8) is also obtained, if Pontrya-
gin’s maximum principle is applied to the LQR problem. The first row of (4.8)
corresponds to the constraint, i. e., Hµpxptq, uptq, µptqq “ 9xptq. The second
row follows from the adjoint equation (Theorem 4.2 (ii)), while the last row of
(4.8) follows from the necessary condition for a minimum which is

Hupxptq, uptq, µptqq “ 0.

Note that u is considered unbounded here. The boundary conditions are ex-
actly the initial value of the dynamic constraint in (4.7) and the transversality
condition in the form (iii)’ for non-vanishing hf .

Further note that for the derivation of the necessary optimality conditions, no
conditions on the matrices M, Q, R, S have been necessary.

To obtain sufficient optimality conditions, we basically use that Juu ě 0 must
hold for a minimum. To achieve this, we assume thatM and

“

Q S

ST R

‰

are at least
symmetric and positive semi-definite (though one can also obtain sufficient
conditions under much weaker conditions.) As sufficient optimality condition,
we obtain the following result:
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Theorem 4.7: Let x˚, µ, u˚ be chosen such that
“

xT˚ , µ
T, uT˚

‰T
solves the lin-

ear boundary value problem (4.8), (4.9). Further let
“

Q S

ST R

‰

and M be positive
semi-definite. Then it holds that

J puq ě J pu˚q (4.16)

for all u P Uad.

Proof. We proof the theorem as in convex optimization. Define

Φpsq :“ J psu˚ ` p1´ sqvq .

Note that from the linearity of 9xptq “ Axptq ` Buptq, by setting u :“ su˚ `
p1 ´ sqv we obtain the solution trajectory x “ sx˚ ` p1 ´ sqz, where z is the
solution of (4.6) corresponding to v. The claim of the theorem is equivalent to
the statement that Φpsq attains its minimum for s “ 1 for all x, u that satisfy
(1.4). Since Φpsq is quadratic in s, Φpsq has a minimum for s “ 1, if and only if

dΦpsq

ds

ˇ

ˇ

ˇ

ˇ

s“1

“ 0,
d2Φpsq

ds2

ˇ

ˇ

ˇ

ˇ

s“1

ě 0.

For each symmetric matrix K, we have the identity

d

ds

ˆ

1

2
psq ` p1´ sqpqTKpsq ` p1´ sqpq

˙
ˇ

ˇ

ˇ

ˇ

s“1

“
`

sqTKq ´ spTKq ` p1´ sqpTKq ´ p1´ sqpTKp
˘
ˇ

ˇ

s“1

“ qTKq ´ pTKq “ pq ´ pqTKq.

Thus, from the condition on the first derivative, we obtain the expression

dΦpsq

ds

ˇ

ˇ

ˇ

ˇ

s“1

“ px˚ptq ´ zptqq
TMx˚ptq

ˇ

ˇ

t“tf
`

ż tf

0

px˚ptq ´ zptqq
TQx˚ptq

`u˚ptq
TST

px˚ptq´ zptqq`pu˚ptq´vptqq
TSTx˚ptq`pu˚ptq´vptqq

TRu˚ptqdt
(4.17)

Left-multiplying the second equation of (4.8) with x˚ptqT and putting in the first
and thereafter the third equation of (4.8), then one obtains

x˚ptq
TQx˚ptq “ ´x˚ptq

TATµptq ´ x˚ptq
TSu˚ptq ´ x˚ptq

T 9µptq

“ u˚ptq
TBTµptq ´ 9x˚ptq

Tµptq ´ x˚ptq
TSu˚ptq ´ x˚ptq

T 9µptq

“ ´u˚ptq
TSTx˚ptq ´ u˚ptq

TRu˚ptq ´ 9x˚ptq
Tµptq ´ x˚ptq

TSu˚ptq

´ x˚ptq
T 9µptq (4.18)
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Analogously, after left-multiplying with zptqT we obtain

zptqTQx˚ptq “ ´zptq
TATµ´ zptqTSu˚ptq ´ zptq

T 9µptq

“ vptqTBTµptq ´ 9zptqTµptq ´ zptqTSu˚ptq ´ zptq
T 9µptq

“ ´vptqTSTx˚ptq ´ vptq
TRu˚ptq ´ 9zTµptq ´ zptqTSu˚ptq

´ zptqT 9µptq (4.19)

Putting in (4.18), (4.19) into (4.17) yields

dΦpsq

ds

ˇ

ˇ

ˇ

ˇ

s“1

“ px˚ptq ´ zptqq
TMx˚ptq

ˇ

ˇ

t“tf

`

ż tf

0

zptqT 9µptq ` 9zptqTµptq ´ x˚ptq
T 9µptq ´ 9x˚ptq

Tµptqdt

“ px˚ptq ´ zptqq
TMx˚ptq

ˇ

ˇ

t“tf
` zptqTµptq

ˇ

ˇ

t“ff

t“0
´ x˚ptq

Tµptq
ˇ

ˇ

t“tf

t“0

Now by (4.9), zp0q “ x0 “ x˚p0q and µptfq “Mx˚ptfq, so dΦpsq
ds

ˇ

ˇ

ˇ

s“1
“ 0. Using

the identity

d2

ds2

ˆ

1

2
psq ` p1´ sqpqTKpsq ` p1´ sqpq

˙

“ pq ´ pqTKpq ´ pq

for a symmetric matrix K, we obtain for the second derivative of Φp¨q that

d2Φ

ds2

ˇ

ˇ

ˇ

ˇ

s“1

“ px˚ptq ´ zptqq
TMpx˚ptq ´ zptqq

ˇ

ˇ

t“tf

`

ż tf

0

„

x˚ptq ´ zptq
u˚ptq ´ vptq

T „
Q S
ST R

 „

x˚ptq ´ zptq
u˚ptq ´ vptq



dt ě 0.

Here, the nonnegativity follows from the positive semi-definiteness of M and
“

Q S

ST R

‰

.

Now we have obtained a relation between the solution of the optimal control
problem and the solution of the two-point boundary value problem. In principle,
we could obtain the optimal control u˚ of the LQR problem by solving (4.8) and
(4.9). Significantly simpler and cheaper from the numerical point of view is the
following approach.
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4.2 Solution of the LQR Problem by Riccati Equa-
tions

4.2.1 The Finite Time Horizon Problem

The assumptions of Theorem 4.7 imply that R ě 0 should be chosen in the
cost functional. Moreover, often one even has R ą 0. Otherwise, there would
be costfree control parameters which is often not sensible. So in the following
we restrict ourselves to a positive definite weight matrix for the control. In this
case,R is invertible and the third equation in (4.8) can be resolved with respect
to u. Ones obtains

uptq “ ´R´1
`

STxptq `BTµptq
˘

. (4.20)

and thus,
„

9xptq
9µptq



“ H

„

xptq
µptq



, xp0q “ x0, µptfq “Mxptfq, (4.21)

where

H “

„

A´BR´1ST ´BR´1BT

´
`

Q´ SR´1ST
˘

´
`

A´BR´1ST
˘T



. (4.22)

In the sequel, we use the following abbreviations for better readability:

F :“ A´BR´1ST, G :“ BR´1BT, H :“ Q´ SR´1ST, (4.23)

such that with (4.20), Ax ` Bu becomes Ax ´ Gµ and we can write H “
“

F ´G
´H ´FT

‰

.

Definition 4.8: A matrix H P R2nˆ2n is called Hamiltonian, if

pHJq “ pHJqT, where J “
„

0 In
´In 0



. (4.24)

From (4.24) it follows directly that Hamiltonian matrices have a certain explicit
block structure.

Lemma 4.9: The matrix H P R2nˆ2n is Hamiltonian, if and only if

H “

„

F ´G
´H ´FT



, where G “ GT, H “ HT.
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This means that (4.21) is a boundary value problem for a linear differential
equation with Hamiltonian coefficient matrix.

With the ansatz µptq “ Xptqxptq, from (4.21) und with

9µptq “ 9Xptqxptq `Xptq 9xptq,

µptfq “ Xptfqxptfq,

and the terminal condition Xptfq “M we get

9xptq “ Fxptq ´Gµptq “ Fxptq ´GXptqxptq “ pF ´GXptqqxptq,

9µptq “ ´Hxptq ´ FTµptq “ ´Hxptq ´ FTXptqxptq

“ 9Xptqxptq `Xptq 9xptq

“ 9Xptqxptq `XptqFxptq ´XptqGXptqxptq.

From the latter equation we obtain

9Xptqxptq “ ´
`

H ` FTXptq `XptqF ´XptqGXptq
˘

xptq. (4.25)

Thus, if Xp¨q satisfies the Riccati differential equation

9Xptq “ ´RpXptqq :“ ´
`

H ` FTXptq `XptqF ´XptqGXptq
˘

, t P r0, tfs
(4.26)

with the terminal condition
Xptfq “M, (4.27)

then (4.25) is satisfied. One can show that (4.26), (4.27) has a unique solution
on r0, tfs. Since with Xp¨q also Xp¨qT is a solution, together with uniqueness, it
follows that Xptq “ XptqT for all t P r0, tfs. Further, one can show that Xptq is
positive definite on the whole time interval. The proofs can be found in [KK85].
Now one obtains the following result that can also be shown for LTV systems
(see [KK85]).

Theorem 4.10: If R ą 0, then under the assumptions of Theorem 4.7, one can
show that the optimal control u˚p¨q that solves the LQR problem is given by

u˚ptq “ ´R
´1
`

ST
`BTX˚ptq

˘

x˚ptq @ t P r0, tfs, (4.28)

where X˚p¨q is the unique solution of the Riccati differential equation (4.26)
with terminal condition (4.27).

The “optimal costs” are

J pu˚q “
1

2

`

x0
˘T
X˚p0qx

0. (4.29)
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Proof. The form of the optimal control (4.28) follows directly from the boundary
value problem (4.8)–(4.9) and by putting in µptq “ X˚ptqx˚ptq in (4.20). The
optimal costs are obtained by considering the value function

V pxptqq :“ xptqTXptqxptq,

where Xp¨q is the solution of the Riccati differential equation (4.26) ist. By
putting in 9xptq “ Axptq `Buptq, (4.26) and (4.28) we get

d

dt
V px˚ptqq “ 9x˚ptq

TX˚ptqx˚ptq ` x˚ptq
T 9X˚ptqx˚ptq ` x˚ptq

TX˚ptq 9x˚ptq

“ 2 9x˚ptq
TX˚ptqx˚ptq ` x˚ptq

T 9X˚ptqx˚ptq

“ 2x˚ptq
TATX˚ptqx˚ptq ` 2u˚ptq

TBTX˚ptqx˚ptq

´ x˚ptq
T
pH ` FTX˚ptq `X˚ptqF ´X˚ptqGX˚ptqqx˚ptq

“ ´2x˚ptq
TX˚ptqBR

´1BTX˚ptqx˚ptq ´ x˚ptq
THx˚ptq

` x˚ptq
TGx˚ptq

“ ´x˚ptq
THx˚ptq ´ x˚ptq

TGx˚ptq.

With this, the cost functional for the optimal control can be written as

J pu˚q “
1

2
x˚ptfq

TMx˚ptfq ´
1

2

ż tf

0

d

dt
V px˚ptqqdt

“
1

2

`

x˚ptfq
TMx˚ptfq ´ V px˚ptqq|

t“tf
t“0

˘

“
1

2

`

x˚ptfq
TMx˚ptfq ´ x˚ptfq

TX˚ptfqx˚ptfq ` x˚p0q
TX˚p0qx˚p0q

˘

“
1

2
x˚p0q

TX˚p0qx˚p0q,

where we use that Xptfq “M .

Remark 4.11: Note that the optimal control in u˚p¨q in (4.28) is given as linear
state feedback. So one obtains a closed-loop system, even though this is
not directly clear from the boundary value problem (4.8)–(4.9). The ansatz
µptq “ Xptqxptq is motivated by our goal to achieve a feedback control.

With this, one has an alternative for solving the LQR problem, namely be solv-
ing the “terminal value problem” for the Riccati differential equation. To do
so, the equation can be vectorized using the vec operator and the Kronecker
product and usind standard methods for initial value problems, where by a
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transformation t Ñ tf ´ t, a terminal value problem can be turned into an
initial value problem. On the other hand, it is much more advisable to use spe-
cial methods for Riccati differential equations that exploit the given structure
[CL90, Die92, KL85].

4.2.2 The Infinite Time Horizon Problem

As already discussed in the introduction, it is often sufficient to reach the tar-
get asymptotically. This leads to the question of an optimal stabilization with
respect to the cost functional in (4.7) with tf “ 8, where we now set M “ 0.
To be able to achieve a stabilization, we must assume stabilizability. Since we
aim again for a solution in terms of a feedback control, (4.20) motivates the
ansatz µptq “ Xxptq for a constant matrix X “ XT P Rnˆn. With this ansatz
one obtains (analogously to the finite time-horizon case)

9xptq “ pF ´GXqxptq, (4.30)

9µptq “ ´Hxptq ´ FTµptq “ ´Qx´ FTXxptq

“ X 9xptq “ XpF ´GXqxptq.

Now, the last equation is equivalent to
`

H ` FTX `XF ´XGX
˘

xptq “ 0 @ t P r0, 8q. (4.31)

Thus, if X satisfies the algebraic Riccati equation (ARE)

0 “ RpXq :“ H ` FTX `XF ´XGX, (4.32)

then (4.31) is satisfied. However, note that in contrast to the Riccati differential
equation, (4.32) has in general infinitely many solutions and even nonsym-
metric solutions are possible. The structure of the solution set of (4.32) has
been addressed in many research articles and is most completely described
in [LR95]. We will see in the sequel, that we need a particular solution of the
ARE. Since the solution trajectory of the state that is generated by our ap-
proach satisfies the linear homogeneous differential equation (4.30) such that
the solution can be written as xptq “ epF´GXqtx0, we must necessarily have

ΛpF ´GXq Ă C´,

otherwise, we would not achieve a stabilization of the system. This motivates
the following definition.
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Definition 4.12: A solution X P Rnˆn of the ARE (4.32) is called stabilizing, if
ΛpF ´GXq Ă C´.

In other words, to compute a stabilizing feedback matrix K P Rmˆn with the
help of he LQR problem, we need a stabilizing solution of the ARE, since

F ´GX “ F ´BR´1BTX

“ A´BR´1
`

BTX ` ST
˘

“ A`BK with K :“ ´R´1
`

BTX ` ST
˘

.

It remains to discuss when and how a stabilizing solution can be computed. In
the following, this solution will be denoted by X˚.

First, let X be an arbitrary solution of the ARE (4.32) and T :“
“

In 0
X In

‰

. Then
for the Hamiltonian matrix H from (4.22) it holds that

T´1HT “
„

In 0
´X In

 „

F ´G
´H ´FT

 „

In 0
X In



“

„

F ´GX ´G
´RpXq ´pF ´GXqT



“

„

F ´GX ´G
0 ´pF ´GXqT



This implies

H
„

In
X



“

„

In
X



pF ´GXq, (4.33)

i. e., ΛpF ´ GXq Ă ΛpHq and the columns of
“

In
X

‰

span an H-invariant sub-
space. This is true for every solution of the ARE, for the stabilizing solution we
need an n-dimensional H-invariant subspace corresponding to the eigenval-
ues in the open left complex half-plane. First we discuss the question whether
such a subspace actually exists. Therefore, we need a few properties of the
spectrum of Hamiltonian matrices.

Lemma 4.13: If H P R2nˆ2n is Hamiltonian and λ P ΛpHq with corresponding
right eigenvector x P C2n, then ´λ P ΛpHq with corresponding left eigenvector
Jx, where J “

“

0 In
´In 0

‰

.

Proof. Homework.

Since for real matrices, with λ also λ is an eigenvalue, eigenvalues of Hamilto-
nian matrices always occur in quadruples of λ, λ, ´λ, λ, except if they are real
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or imaginary, in which case they appear as pairs λ, ´λ. Overall, the spectrum
of a Hamiltonian matrix can be written as

ΛpHq “ tλ1, . . . , λnu Y t´λ1, . . . , ´λnu (4.34)

with Repλjq ď 0 for all j P t1, . . . , nu. To guarantee the existence of a stabi-
lizing solution of the ARE, it follows from (4.33) that the corresponding Hamil-
tonian matrix may not have any eigenvalues on the imaginary axis in which
case exactly n eigenvalues of H are in the left complex half-plane and an n-
dimensional H-invariant subspace associated with these eigenvalues exists.
This can already be achieved with minimal requirements on the LQR problem
as the following result shows.

Theorem 4.14: Let H “

„

F ´G
´H ´FT



P R2nˆ2n Hamiltonian, where pF,Gq is

stabilizable and pF,Hq is detectable and G, H ě 0. Then

Repλq ‰ 0 for all λ P ΛpHq.

Proof. Assume that λ “ ıω P ΛpHq. Because of Lemma 4.13 we can assume
w. l. o. .g that ω ě 0. Let r x1x2 s ‰ 0 with x1, x2 P Cn an eigenvector associated
with ıω. Then we get

H
„

x1

x2



“ ıω

„

x1

x2



. (4.35)

Left-multiplying r x1x2 s
H leads to

“

xH2 xH1
‰

H
„

x1

x2



“ xH2Fx1
loomoon

:“α

´xH2Gx2
loomoon

:“γ

´xH1Hx1
loomoon

:“β

´xH2Fx1
loomoon

“α

“
“

xH2 xH1
‰

ıω

„

x1

x2



“ ıωp xH2 x1
loomoon

“:ζ

` xH1 x2
loomoon

“ζ

q “ 2ıωRepζq.

Since β ` γ ě 0 is the real part of the first expression, β ě 0, γ ě 0 and since
the second expression is purely imaginary, we get β “ γ “ 0. Hence,

xH1H “ 0, Hx1 “ 0 and xH2G “ 0, Gx2 “ 0.

From the first equation in (4.35) one obtains

ıωx1 “ Fx1 ´Gx2 “ Fx1
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and thus,
„

F ´ ıωIn
H



x1 “ 0. (4.36)

Analogously, with the help of the second equation in (4.35) we obtain

xH2
“

F ´ ıωIn G
‰

“ 0. (4.37)

Since x1 ‰ 0 or x2 ‰ 0, (4.36) contradicts the assumed detectability or (4.37)
contradicts the assumed stabilizability.

The stabilizing solution of the ARE can now be obtained as follows:.

Lemma 4.15: Let U “
“

u1, . . . , un
‰

, V “
“

v1, . . . , vn
‰

P Rnˆn be such
that span tr u1v1 s , . . . , r

un
vn su is the n-dimensional H-invariant subspace asso-

ciated with tλ1, . . . , λnu Ă C´ (with the same notation as in (4.34)). If U is
invertible, then X˚ “ V U´1 is the stabilizing solution of the ARE (4.32).

Proof. By the assumption we have
„

F ´G
´H ´FT

 „

U
V



“

„

U
V



Z, ΛpZq “ tλ1, . . . , λnu.

Left-multiplying the first block row with U´1 gives

U´1FU ´ U´1GV “ Z.

Then from the second block row we get

´HU ´ FTV “ V Z “ V U´1FU ´ V U´1GV.

Right-multiplying this equation with U´1, then we get that X˚ “ V U´1 solves
the ARE. Moreover,

im

„

U
V



“ im

„

U
V



U´1
“ im

„

In
X˚



.

So X˚ is the stabilizing solution of the ARE.

The following results summarize some further properties of the stabilizing so-
lution X˚ of the ARE.
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Lemma 4.16: Let U “
“

u1, . . . , un
‰

, V “
“

v1, . . . , vn
‰

P Rnˆn be such
that span tr u1v1 s , . . . , r

un
vn su is the n-dimensional H-invariant subspace associ-

ated with tλ1, . . . , λnu Ă C´ (with the same notation as in (4.34)). Then V TU
is symmetric. If further, G and H are positive semi-definite, then V TU ě 0.

Proof. By assumption we have

H
„

U
V



“

„

U
V



Z (4.38)

with ΛpZq “ tλ1, . . . , λnu. Left-multiplying the first block row of (4.38) with V T

results in
V TFU ´ V TGV “ V TUZ.

Transposing the second block row of (4.38) and right-multiplying with U gives

´ UTHU ´ V TAU “ ZTV TU. (4.39)

Finally, adding (4.2.2) and (4.39) leads to

ZTV TU ` V TUZ “ ´V TGV ´ UTHU. (4.40)

This is a Lyapunov equation in the “unknown” V TU . Since by assumption Z is
Hurwitz, with Theorem 3.6 we see that (4.40) has a unique solution and

V TU “

ż 8

0

eZ
Tt
pV TGV ` UTQUqeZtdt.

Since due to eZ
Tt “ peZtqT and G “ GT, H “ HT the integrand is symmetric,

V TU is also symmetric. Moreover, if G and H are positive semi-definite, by
Sylvester’s law of intertia, this is also the case for the integrand and therefore,
the entire right-hand side.

The next lemma shows that under our assumptions on the LQR problem. the
invertibility of the matrix U in Lemma 4.15 is guaranteed.

Lemma 4.17: If U, V are as in Lemma 4.16, G, H positive semi-definite, and
pF,Gq is stabilizable, then U is invertible.
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Proof. Suppose U is singular. Then there exists a vector z ‰ 0 with Uz “ 0.
Left-multiplying the first block row of (4.38) with pV zqT and right-multiplying
with z, then one gets

zTV TA Uz
loomoon

“0

´zTV TGV z “ zTV TUZz. (4.41)

Due to Lemma 4.16 it follows

zTV TGV z “ ´zTV TUZz “ ´pUzqTV Zz “ 0.

Since G is symmetric positive semi-definite, we obtain GV z “ 0. Thus the
first block row of (4.38) right-multiplied with z yields UZz “ 0. Since z P kerU
has be chosen arbitrarily, we get Zz P kerU for all z P kerU and hence, Z-
invariance of kerU . Thus, there exists an eigenvalue of Z, i. e., a λj (1 ď j ď
n), and a vector 0 ‰ zj P kerU with Zzj “ λjzj . Right-multiplication of the
second block row of (4.38) with zj gives

´Q Uzj
loomoon

“0

´FTV zj “ V Zzj “ λjV zj,

i. e.,
`

λjIn ` FAT
˘

V zj “ 0. We have already shown GV z “ 0 for arbitrary
z P kerU . This holds particularly for zj . With this it follows

pV zjq
T
“

λjIn ` F G
‰

“ 0.

Due to the stabilizability of pF,Gq with Theorem 2.15 we get V zj “ 0. So we
have

„

U
V



zj “ 0.

Since zj ‰ 0 it follows rank r UV s ă n which contradicts the assumption that the
columns of r UV s span an n-dimensional H-invariant subspace.

With the two lemma above we can formulate the following result about the
stabilizing solution of the ARE.

Theorem 4.18: Consider the ARE

0 “ Q` FTX `XF ´XGX (4.42)

with G “ GT ě 0, H “ HT ě 0, and stabilizable pF,Gq. Assume further

that the corresponding Hamiltonian matrix H “

”

F ´G
´Q ´FT

ı

with spectrum as in
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(4.34) has no imaginary eigenvalues and that the H-invariant subspace with
tλ1, . . . , λnu be spanned by the columns of r UV s with U, V P Rnˆn. Then
the ARE (4.42) has a unique stabilizing solution X˚ which is symmetric and
positive definite.

Proof. First, with Lemma 4.17 it holds that U is invertible. Thus there exists
X˚ :“ V U´1 and the first block row of H r UV s “ r UV sZ, right-multiplied with
U´1, gives

F ´GX˚ “ UZU´1.

Thus, by Definition 4.12,X˚ is stabilizing, since Λ
`

UZU´1
˘

“ ΛpZq “ tλ1, . . . , λnu.
The symmetry follows with Lemma 4.16, since with V TU “ UTV we obtain

X˚ “ V U´1
“ U´TUTV U´1

“ U´TV TUU´1
“
`

V U´1
˘T
“ XT

˚ .

Under the given assumptions and with Lemma 4.16, V TU ě 0. Due to the
congruence

UTX˚U “ V TU,

also X˚ ě 0 by Sylvester’s inertia theorem. It remains to show uniqueness.
Thus assume that X˚ and rX˚ are two stabilizing solutions of the ARE (4.42),
i. e.,

0 “ H ` FTX˚ `X˚F ´X˚GX˚,

0 “ H ` FT
rX˚ ` rX˚F ´ rX˚G rX˚.

Subtraction of both equations leads to

0 “
`

F ´GX˚
˘T`

X˚ ´ rX˚
˘

`
`

X˚ ´ rX˚
˘`

F ´G rX˚
˘

.

This is a homogeneous Sylvester equation and since by assumption ΛpF ´

GX˚q, Λ
`

F ´G rX˚
˘

Ă C´, it follows from Theorem 3.6 that X˚´ rX˚ “ 0, i. e.,
the uniqueness of the stabilizing solution.
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