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CHAPTER 1

Introduction

In this course we will consider dynamical systems that describe physical, tech-
nical, or economical processes. These should be manipulated with the help
of input variables such that certain output variables show a certain desired
behavior. Schematically, this is illustrated in Figure 1.1.

inputs outputs
system

Figure 1.1: System description as black box.

Example: If the European central bank changes its base rate, then this influ-
ences developments at the German stock and financial markets. For example,
the exchange rate between € and US-$ may rise or fall as well as share prices.
Considering the stock market as a dynamical system, then the base rate can
be viewed as an input to the system, whereas the German stock index DAX
can be regarded as an output of the system.

Note that in this example, the system is not described by mathematical equa-
tions. Therefore, this system is a black box, since the internal variables (so-
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called states) and how they are affected by the input is unknown. It is still
possible to gain insight in the relationship between the inputs and outputs.

Here we will consider instationary (i. e. time-dependent) processes. Thus the
inputs u(-) and outputs y(-) are functions of time. The internal variables of
the system, called states, that are often not explicitly available, are denoted
by z(-) and are a functions of time as well. We assume that the dynamic
behavior of the system is described by (ordinary) differential equations of first
order (Recall that higher-order systems can be reduced to first-order systems
by a linearization.)

In general, the systems considered in this course can be described by the
following definition.

Definition 1.1: A (nonlinear) control system (or controlled system) satisfies
the following equations for (almost all) € [to, t¢], to < ty < co:

z(t) = f(t,x(t),u(t)) (state equation), (1.1)
x(ty) = 2” € X (initial condition), (1.2)
y(t) = g(t,z(t),u(t)) (output equation). (1.3)
Hereby,
x : [to, tf] — X is the state (vector),
u : [to, tf] — U is the input or control (vector),
y : [to,tf] — Y is the output (vector),
and

X < R" is the state space,
U < R™ is the input space,
Y < R? is the output space.

The number n is the order of the system (also state-space dimension, if X =
R™). The system is called autonomous (time-invariant), if

f@t,2(t),u(®)) = f(x(t),ut) and g(t,z(t), u(t)) = g(z(t), u(t)),

i.e., foru(t) =0, z(t) = f(z(t)) is an autonomous differential equation.




For the systems defined above, Figure 1.1 can be extended as in Figure 1.2.
If one tries to model a physical, technical, or economical process by equations

system
w(t) = f(t x(t), u(t))
y(t) = g(t, x(t), u(t))

inputs u(t) outputs y(t)

Figure 1.2: Nonlinear system as a black box.

of the form (1.1)—(1.3), the following aspects are of importance:
a) Which are the “free” input parameters (input/control variables)?
b) Which are the state variables?

c) Which variables can be measured or observed? (all/a few state variables
or only derived quantities?)

d) What is the functional relationship?

e) Isa continuous-time modeling as in (1.1)—(1.3) appropriate or does one
need a discrete-time model, i.e., a description of the dynamics by differ-
ence equations?

Often mixed models are needed (so-called hybrid systems), since a few
model variables may be described in continuous time, others only in dis-
crete time.

f) Do the model variables behave in a deterministic or stochastic manner?

In the following we will mostly assume that we have continuous-time and de-
terministic model. Further, in this course we will only consider a simpler func-
tional relationship between the variables in (1.1)—(1.3), namely we assume
that f and g are affine linear functions.

Definition 1.2: A linear control system is given, if ¥ = R", U4 = R™, Y = RP,
and

f(tx(t), u(t)) = A(t)x(t) + Bt)u(t),
gt x(t),u(t)) = C()x(t) + D(t)u(t),

where A : [ty, t] = R™™ B : [to, tr] = R™™, C : [to, t¢] — RP*™,
D : [to, tr] — RP*™ are sufficiently smooth matrix-valued functions.




4 Chapter 1. Introduction

For autonomous systems it holds that A(t) = A, B(t) = B, C(t) =, and
D(t) = D. In this situation we talk about linear time-invariant (LTl) systems, if
the systems fulfills the equations

©(t) = Az(t) + Bu(t), =z(ty) = 2°eR", (1.4)
y(t) = Cx(t) + Du(t). (1.5)

A linear time-varying (LTV) system is given by

o(t) = A(t)x(t) + Bt)u(t), =z(ty) = 2" e R", (1.6)
y(t) = C(t)z(t) + D(t)u(t). (1.7)

Analogously, for k = 0, 1, 2, ... a linear discrete-time system is described by

Tpt1 = Akl’k -+ Bkuk, Xo = JIO € Rn, (1 8)
yr = Crry, + Dyug, (1.9)

where A, € R, B, € R™™ () € RP*" and D, € RP*™, Again, in the
time-invariant case it holds that A, = A, B, = B, C, = C, D, = D etc.

Remark 1.3: For autonomous systems we can assume w.|.0.g. that ¢, = 0: If
we move from z° to x! in the time interval [to, 1] with the control function wu(-),
then we could equivalently move from z° to z! in the time-interval [0, ¢, — o],
if we choose the control function @(t) := wu(t + to) and consider the solution
trajectory Z(t) := x(t + to).

In the following we will assume that the control function «(-) lives in a function
space Uy,q of admissible controls. We assume further that «(-) is not subject to
input constraints such as a(-) < u(-) < b(+) (“<” understood componentwise).
This would lead to questions from linear or nonlinear optimization and is widely
analysed in the optimal control of partial differential equations. This will not
addressed in this course. Here the function space U,q is the space of square-
integrable functions on [y, ;] mapping to ¢/ denoted by Ls([to, t¢];U) or the
space of piecewise continuous functions on (¢, ¢;] mapping to ¢/ denoted by
PC([to, te];U). Integration is understood in the Lebesgue sense.

To emphasize the dependence of the solution trajectories of the differential
equations (1.1), (1.4), or (1.6) on the control function u(-), we write

2(t) = 2(t;u),




where we assume that the solution of the corresponding initial value problem
on the interval [t,, t¢] exists for all u € U,q and is unique.

A central question in mathematical control theory is the following one:

Given an initial condition 2° and a target z!, can we find a i € U,q,
such that for some ¢; > ¢, > t it holds that z(¢,; 1) = x'?

A stronger question is the following one:

Given an initial condition z°, a target = as well as ¢; < ¢, can we
find a u € U,q such that z(¢;;u) = 2'?

Often the problem can be formulated in such a way that the target is 2! = 0,
so x can be interpreted as the deviation from some given reference trajectory.
A weaker objective is then to find an asymptotically stabilizing control u € U,q,
that is, it holds that }Eﬁé z(t;u) = 0. Slightly modified, the question is whether

in finite time one can enter an arbitrarily small neighborhood of zero.

Besides the existence of such control functions, the question of optimality
plays an important role. For given x; € X or given reference trajectory zc(-)
(e.g. Tt(t) = 0, if the state describes the deviation from the reference trajec-
tory), possible objective functionals are

min {t1 € [to, te] | x(t1;u) = 2}, (time-optimal control)  (1.10)
UEU ad
43
m(i]n f [2(t) — @t (t) ] dt, (minimum deviation control)  (1.11)
u€EUaq t
0 ,
., m(in) ) J |u(t)| dt. (energy minimizing control)  (1.12)
ueUy,q,x(t;u)=x to

Here | - | is an appropriate vector norm such as the Euclidean norm, but 1-
and co-norms can be useful as well. Mixtures of these cost functionals appear
quite often, in particular, we will have a closer look at combinations of (1.11)
and (1.12), while (1.10) is subject of optimal control theory. In mathematical
systems theory, the focus is often put on the input/output behavior, i. e., on u(-)
and y(-). Therefore, the cost functionals above are often formulated in terms of
y(-) instead of x(-), in particular, in the tracking problem, often y,.¢(+) is given
instead of ().

Remark 1.4: Often in the literature the cost functional

- ff 2(t) — 2| dt (1.13)

uEUad to
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or respectively in combination with (1.12)

by
i f J2(8) — 2] + [u(®)]dt (1.14)
uelUrq fa

are used. However, this often leads to trajectories of the state or control that
are difficult to realize or that put high demands of the mechanics or electron-
ics of the system since the control then tends to take only a high impact on
the system at the end of the control interval. This can be improved by using
energy-minimizing controls, but even better solutions are achieved by prescrib-
ing by using a reference trajectory z,e¢(-) With @ (t7) = x'.

Here we will mostly deal with control functions u(-) that appear in the form of
a feedback control. Thereby, the knowledge of the state or the output to steer
the system to a desired state or to correct the deviation from the desired state.
Hereby, we distinguish

« state feedback: u(t) = u(t,z(t)), in the linear case u(t) = F(t)x(t) or
u(t) = Fx(t) in the time-invariant case with F, F(t) e R™*™;

« output feedback: u(t) = u(t,y(t)), in the linear case y(t) = F(t)y(t) or
u(t) = Fy(t) in the time-invariant case with F, F(t) € R™*?.

The matrix I is galled feedback matrix or gain and which has to chosen ap-
propriately in order to achieve the desired objectives. So one of the goals of
this lecture is whether there exists such a feedback matrix and if yes, how it
can be constructed.

In the linear case, plugging in the feedback into (1.6) (respectively, into (1.4))
leads to the following closed-loop system:

« for state feedback:

z(t) = A(t)z(t) + B(t)u(t) = (A(t) + B(t)F(t))x(t).

« for output feedback:

The output feedback leads to a closed-loop system as in Figure 1.3.

The following example illustrates the questions and difficulties of mathematical
control theory.




Figure 1.3: Closed-loop system.

Example: A major question in robotics is to control the position of a single—
link rotational joint using a motor placed at the “pivot”. As a mathematical we
can use a pendulum to which we can apply a torque as external force u(-) to
control the motion of the pendulum, see (1.4).

If we neglect friction and assume that the mass is concentrated at the tip of
the pendulum, Newton’s law for rotating objects yields

ml(t) + mgsin 6(t) = u(t)
describes the counterclockwise movement of the angle between the vertical
axis and the pendulum subject to the control u(-). Scaling the variables to

m = 1 and g = 1 (for simplicity), this is a first example of a nonlinear control
system, if we set

=[] = s
)= [ ] otta0.u0) = 21

i.e., here we assume that only 9(t) can be measured but not the angular ve-
locity 6(t).

For u(t) = 0, the stationary position # = 7, @ = 0 is an unstable equilib-
rium, i.e., small perturbations will lead to an unstable motion. The objective
now is to apply a torque (control u) to correct for deviations from this unstable
equilibrium, so that the pendulum is kept in upright position.

Assuming small perturbations § — 7 in the inverted pendulum problem, we
have
sinf = —(0 — ) + o((6 — 7)?).
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(Here, h(6) = o((6 — 7)?) if limg_,~ (Hh—(—fr))Q = 0). This allows us to linearize the
control system in order to obtain a linear control system for p(t) := 6(t) — ,
namely

P(t) = p(t) = u(t).
This can be written as an LTI system, assuming only positions can be observed
with

x(t):[zgﬂ, A:[(l) (1)] B:m, c=[1 0], D=o.

Now the objective translates to: given initial values z1(0) = ¢(0), x2(0) =
©(0), find u(-) to bring z(-) to zero “as fast as possible”. It is usually an addi-
tional goal to avoid overshoot and oscillating behavior as much as possible.

In the above example we have seen that that it is important to achieve that
limy ., z(t) = 0 for all initial conditions z(t,) = z° that are sufficiently close
to the equilibrium z = 0. Either this property is inherent in the system itself,
then one does not have to do anything. Otherwise, as in the example above,
we are interested in constructing a feedback such that the closed-loop system
achieves this goal. Let us first define stability of an autonomous system.

Definition 1.5 (Stability of autonomous systems): An equilibrium point z of the
differential equation z(t) = f(z(t)) (i.e., satisfying f(z) = 0) is called

a) stable, if for each ¢ > 0 there exists a § > 0 such that

|z(to) =z <0 = Ja@t) - 7| <e V=t

b) asymptotically stable, if it is stable and if in addition,  can be chosen such
that
|x(to) —Z| <6 = tlim |z(t) — z| = 0.
—0

The importance of asymptotic stability is evident if z(-) is the deviation from a
nominal path r(-), e.g. in Example 1 this deviation is

-7

For nonlinear systems, (asymptotic) stability is not easy to check in general.




However, for LTIl systems, one normally considers the zero equilibrium and its
stability can be checked as follows. Note this in this situation one usually talks
about stability of the system instead of stability of its zero equilibrium.

Proposition 1.6 (Stability of linear systems): Let A(A) denote the spectrum

of A € R™™. The linear time-invariant differential equation z(t) = Az (t),

z(tg) = 20 is

a) asymptotically stable <« A(A) < C;

b) stable <« A(A) = C- and all imaginary eigenvalues of A are not de-
fective.
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u
mg sin@ me
(a) Pendulum as a mathematical (b) Inverted pendulum: control to up-
model of a rotational joint right position

Figure 1.4: Example: Pendulum and inverted pendulum




CHAPTER 2

Analysis of Control Systems

2.1 Controllability

First, we ask the question whether, for a given 2° € R™, it is possible to reach
a given target #! € R" with the help of a control function v € U,q. Since
controllability is only affected by the state equation (1.1), we will ignore the
output equation for now.

Definition 2.1 (Controllability): Let 2! € X < R" be given.

a) The control system (1.1) with initial condition z(#,) = 2° € X < R" is con-
trollable to x* in time t, > t, if there exists a u € U,q such that z(¢;; u) = 2.
Then the pair (¢1,2") is called controllable from (t,, 2°).

b) The control system (1.1) with initial condition z(t;) = 2° € X < R" is
controllable to x' if there exists a t; > t, such that (¢;,z!) is reachable
from (o, 2°).

c) If for all z° € X, (to,z°) is controllable to z! for all z! € X, then the control
system (1.1) is called (completely) controllable.

11
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d) The controllability set with respect to x* is defined by

l’ to UCI to,tl

t1>to
where C(z',to, t1) 1= {2° € X | Ju € Upq With z(to;v) = 2°, z(t1;u) = z'}.

Analogously one defines the reachability set with respect to 2°, namely
R(2°, to, t1) := {z' € X | Ju € Upq With 2(to; u) = 2°, z(t1;u) = z'}

and
R(2% 1) = ] R t0,11).

t1>to

Thus, the controllability set contains all initial states that can be controlled to
x!, whereas the reachability set contains all states that can be controlled to
from a given z°.

In the following we will restrict ourselves to linear systems. We will see that for
LTI systems, all controllability concepts will coincide and that C := C(z!,0) =
R" (for arbitrary x!) is equivalent to controllability. Therefore we first need the
solutions of the initial value problems (1.4) und (1.6). Here we are particularly
interested in the input-to-state mapping

R x R" x R x Uy — R™,  (to,2°,t,u) — 2(t),
which is given by following standard result form the theory of ordinary differen-
tial equations.

Theorem 2.2: a) Let ® be the fundamental solution of @(t) = A(t)z(t), i.e.
the solution of the homogeneous linear matrix differential equation

%@@$:A@ML$ O(s,s) = I, (2.1)

Then for the unique solution of the differential equation (1.6) it holds that

x(t) = ®(t,t)z° + Jt O(t, s)B(s)u(s)ds. (2.2)

to

b) The unique solution of (1.4) satisfies ®(¢, s) = (=) and therefore,

z(t) = et'2 + Jt At=9) By(s)ds = et <x0 + Jt e_AsBu(s)ds> . (2.3)

0 0
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Proof. Exercise. ]

As a consequence of Theorem 2.2 we obtain directly a representation of the
input-to-output mapping

R xR" xR x Uy — RP, (thx[))t?u) = ().

Corollary 2.3: a) The unique solution of (1.7) satisfies

y(t) = C()B(t, to)a° + C(t) J t ®(t, 5)B(s)u(s)ds + D(t)u(t). (2.4)

to

b) The unique solution of (1.5) is given by
t
y(t) = Ce'z® + J Ce = Bu(s)ds + Dul(t) (2.5)
0

— Cet (xo + Jt eAsBu(s)ds) + Du(t). (2.6)

0

In the following we will use that the fundamental solution ® fulfills the semi-
group property
O(t,t) =1,, D(t,s)=(t,7)P(7,s) (2.7)

forall ¢, s, 7 € R. Moreover, ®(t, s) is invertible for all ¢, s € R and it holds that
O(t,s) ! = B(s, ). (2.8)

To simplify the following considerations, from now on we assume that U,y =
PC([ty,©);R™). Analogously, the choice U.,q = La([to,®0); R™) would be
feasible.

First we consider the target ' = 0 and the corresponding controllability sets
with respect to ! = 0. This will not be a restriction in the case of linear
systems.
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Lemma 2.4: It holds that 2° € C(0,ty,t;) if and only if there exists a u € Up,q
with

= — f 1 (g, s)B(s)u(s)ds.

to

Proof. According to Theorem 2.2, 2V € Cy(t, 1) is equivalent to

0 =a(t)) = ®(ty, )2 + f 1 O (tq,8)B(s)u(s)ds (2.9)

to

Bty 1) (350 + L ' @(to,s)B(s)u(s)ds> (210

0
where we have used the semi-group property of ®. With the invertibility of ® it
follows that

t1

0=2"+ f O (o, s)B(s)u(s)ds
to

for a u € U,q and hence the claim. O

The term of the Gramian (matrix) will play an important role in this course.
First we give a definition.

Definition 2.5: For G € PC((—, ®0); R"*™), the matrix

P(to, t1) = r Gt)G(t)"dt

to

is called the (t¢, t1)-Gramian (matrix) of G.

Obviously, the Gramian is positive semi-definite. Further properties are given
in the following lemmas.

Lemma 2.6: It holds that

ker P(to, t1) = {x e R" | G(t)"z = 0 on [to, 1]}

Proof. For an arbitrary = € R™ it holds that

TPty t))x =" fl GGt dtx = f (G ) (Gt)Tx)dt = 0

to to Y
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Then P(tg, t1)x = 0, if and only if G(t)Tx = 0 on [to, t1]. O

Lemma 2.7: Let G be as in Definition 2.5. Then the following statements are
equivalent:

a) There exists a u € U,q such that x = SE; G(t)u(t)dt.
b) It holds that = € im P(to,t1), i.e., there exists a z € R™ with z = P(to, t1)z.

Proof. First define

L= {meR"

t1
Ju € Uy with 7 — f G(t)u(t)dt} |
to

Because of the linearity of the integral and the vector space properties of U,g4,
L is itself a subspace of R", in particular, it is a vector space.

So we have to show that £ = im P(to,t;). It is clear that im P(ty,t;) < L.
(Simply set u(t) = G(t)"z for z = P(to,t1)2.)

Now let = € £ n ker P(tg,t;). Then because of z € £ and Lemma 2.6

¢
e = 2TG(t) u(t)dt =0
to ~—~—

=0, since
zeker P(tg,t1)

which results directly in = = 0. Therefore, one obtains dim £ n ker P(to,t1) =
{0} and with the help of the dimension formula

n = dim(L + ker P(to,t1)) = dim(£) + dim(ker P(tg,t1))
> dim(im P(to, t1)) + dim(ker P(to, 1)) = n.
Overall, we get dim £ = dim(im P(to,t1)), hence £ = im P(t, t1). O

If we set G(t) = ®(ty,t)B(t), then
Plto.t) = [ @lt0, 0 BOBOT ()T @11)

is called the (to,t1)-controllability Gramian of the linear system (1.6)—(1.7).
With this, one obtains the first characterization of the controllability set.
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Theorem 2.8: Let 2! = 0 and consider the LTV system (1.6)—(1.7) with
P(to,t1) as in (2.11). Then the following assertions are satisfied:

a) C(O,to,tl) = an(to,tl),
b) P(to,t1)r =0 < x"®(t,t)B(t) = 0o0n [tg,t1].

Proof. a) Use Lemma 2.4 and Lemma 2.7.
b) Use Lemma 2.6.

O
A further very useful characterization of complete controllability of LTV sys-
tems is obtained by a more detailed analysis of the properties of the (¢, t1)-
controllability Gramian P(t¢, t1). First recall the following property of the adjoint

equation of z(t) = A(t)x(t) known from the theory of differential equations.
This adjoint equation is given by

At) = —A@) T 2(t). (2.12)

If ®(-,-) is the fundamental solution of @(t) = A(t)x(t), i.e., solution of the
linear homogeneous matrix differential equation, (2.1), then

Dd(t,s) T = d(s,t)"

is the fundamental solution of (2.12). ' In particular, every solution of the initial
value problem of (2.12) with z(t5) = zo can be written as

2(t) = ®(tg, )" 2. (2.13)

Theorem 2.9: The following statements are equivalent:

a) The LTV system (1.6) is completely controllable.

b) Every solution of the adjoint equation (2.12) has the property
2(t)"B(t)=0o0n [ty,o)foratge R = z(t) =0. (2.14)

c) Forall ¢y € R, there exists a t; € R such that P(ty,t) is positive definite.

"Proof. Let ¥ be the fundamental solution of (2.12), i.e. %\I/(t,s) =
—A@)TU(t,s), U(s,s) = I,. Then (%\If(t,s)T) D(t,s) = —V(t,s)TAL)P(t,s) =
—U(t,s)T (L@t s),s00 = (ZU(t,s)T) D(t,s) + U(t,s)T (ZP(t,s)) = ZU(t,s)TP(¢, ).
Hence, W(t,s)"®(t,s) is constant and because of the initial condition it holds that
U(t,s)T®(t,s) = I,.
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Proof. The proof follows by a ring closure argument.

a) = b): Assume that there exists a nontrivial solution of (2.12) with z(¢)T B(t)

~

0 on [ty, ®) for some #, € R, but z(f) # 0 for at least one ¢ € R.
Then =(ty) # 0, since with (2.13) it holds that z(7) = ® (o, 1) =(to)
and ®(to, ?) is invertible.

Now we choose z° € R” such that (xO)Tz(to) # 0. Since (1.6) is com-
pletely controllable, by Definition 2.1 there exist a t; > t; and u € Uyq
such that z(t1) = z(t;;u) = 0 solves (1.6) with initial condition z(ty) =
2%, With this it follows that

d T T T
3 (@OT=(0) = #(O)T=(0) + 2() (1)

= 2(t)TAM) T 2(t) + u(t)" B(t) T 2(t) —x(t)TA(t) T 2(t)
=0 on [to,0)

= 0.

Therefore, z(t)T2(t) is constant and due to the initial conditions it holds
that

2(t1) 2(t1) = x(to) "2 (to) = (%) T2(t) # 0,
which is a contradiction to x(¢;) = 0.

b) = c): This step is proven in two parts. First we show the following state-
ment:

For all ¢ty € R there exists a t; € R such that every nontrivial
solution of the adjoint equation (2.12) has the property

z(t)TB(t) # 0 on [to, t1]. (2.15)

Assume that this is not the case. This would mean that there exists a
sequence (tx)y, with t, — oo for k — oo and a sequence of solutions
(zk(+))7, of (2.12) with initial conditions |zx(to)|| = 1 for k =1, 2, ...
such that

2:(t)TB(t) = 0 on [tg, t1]. (2.16)
We assume w.l.0.g. that (zx(t0));~; is converging (otherwise, we could
find a converging subsequence, since {z € R" |||z| = 1} is compact).

Let now zy := limy_,o 2x(fo) and Z(-) be solution of (2.12) with the initial
condition Z(ty) = Z. Then z(t) # 0 (since |Z(ty)| = 1). Due to (2.14)
it holds that Z(¢)" B(t) # 0 on [to, ). Thus there exists a ¢t > t, with
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E(QTB(Q # 0. Since the solution of (2.12) depends continuously on the
initial condition, (zx(-));~; converges uniformly to Z(-). But then it holds

that z (1) " B(7) # 0 for sufficiently large k. But for ¢, — oo this leads to
a contradiction to (2.16).

In the second step we show:

If any nontrivial solution of (2.12) satisfies the property (2.15),
then P(ty,t1) > 0.

Since we already have P(t,,t1) = 0, it remains to show that ker P(to, ;) =
{0}. According to Theorem 2.8, z; € ker P(tg, t;) is equivalent to

20 ®(to, t)B(t) = 0 on [ty, t1].

Because of (2.13), z(t) = ®(to, )" 2 is the solution of (2.12) with z(¢y) =
9. Therefore, it holds that z(¢)T B(t) = 0 on [ty, t] and due to the first
step, z(t) = 0 on [ty, t1]. This implies zy = 0, hence ker P(ty,t;) = {0}
is shown.

c) = a): Let ; be chosen such that P(ty,¢1) > 0. Then every pair (¢, z°)
can be controlled to an arbitrary z! € R™ in time ¢, with

u(t) :== B(t)"®(ty, )",
where v € R™ can be determined as the solution of the equation

20 = 2(ty) = ®(to, t1)z" + f 0 ®(to, 8)B(s)B(s)T®(to, s) "vds

t1

= ®(tg,t1)x' — P(tg, t1)v.
This equation follows from (2.2) by interchanging initial and final time and
it has a unique solution due to the positive definiteness of P(t, ;).

]
For LTI systems where we can can w.l.0.g. assume t, = 0, we can say more.

First, from the explicit formula of the fundamental solution of z(t) = Ax(t), it
follows that the (0, ¢;)-controllability Gramian can be written as

t1
P(0,t)) = f e BBTe At
0

Then it follows directly that = € ker P(0, ¢,) if and only if
BTe "z = 0in [0, 4]. (2.17)
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In the following we will characterize controllability in terms of the properties of
the following matrix.

Definition 2.10 (controllability matrix): The controllability matrix of an LTI sys-
tem is
K(A,B) := [B AB A’B ... A"—lB] e R™™™,

With this we obtain a characterization of the controllability set C(0, 0, ¢) for LTI
systems.

Theorem 2.11: For an LTI system (1.4) it holds that C(0, 0, ¢) = im (A, B) for
allt > 0.

Proof. We show the statement indirectly by proving C(0,0,¢)* = (im K(4, B))+
forall ¢ > 0.

From Theorem 2.8 a) it follows with P(0,t) = P(0,¢)T > 0 that
C(0,0,t)* = (im P(0,))* = ker P(0,1).
Therefore, it remains to show that
ker P(0,t) = (im K(A, B))*: = ker K(A, B)T, (2.18)

or, in other words, P(0,t)z = 0 if and only if xTX(A, B) = 0. From Theo-
rem 2.8 b) resp. (2.17) we already know a property of the elements of the
kernel of P(0,¢) which we want to use now. First we do some preliminary
considerations. Let ¢4(z) = >77_ ;27 be the characteristic polynomial of A.
Then the Theorem of Cayley-Hamilton states that $4(A) = 0. Then because
of ay, = 1 with 5; = —a; we get

n—1
AT = Y BAT, (2.19)
j=0

Thus it holds that 2T A"B = Z;‘;& B;zTA7B. By a repeated application of

(2.19) as well as by summarizing all coefficients of 2T A’ B in ﬁj(”) we obtain
the representation

n—1
2TAB =Y BVaTAIB Wy e N (2.20)
j=0
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From this we get the following chain of equivalences:

t'K(A,B)=0 = 2'AB=0, j=0,1,...,n—1

(2.20

2 tTA’B=0 YreN,

© N\ ‘
< 0= Z ( T) tTAIB =x2"e™ B Vrel0,t]
= !
=

(217

2P0, t)e = 0.

So (2.18) follows and hence, the statement of the theorem. ]

Theorem 2.11 shows that for a controllable LTI system it holds that C(0, 0,t;) =
C(0,0,ty) for all ¢, to > 0, in particular, that C(0,0) = C(0,0,¢) forall ¢t > 0
and therefore, all controllability concepts for LTI systems coincide. For sim-
plicity, we will now write C instead of C(0,0). Further, from Theorem 2.8, it
follows that im KC(A, B) = im P(0,t). So obviously, Theorem 2.9 implies that
for a controllable LTI system it holds that P(0,¢) > 0 for all £ > 0. A very use-
ful characterization of controllability for LTl systems is given by the so-called
Hautus-Popov test.

Theorem 2.12 (Hautus-Popov lemma): Let A € R™*™ and B € R"*™. Then
the following statements are equivalent:

a) The pair (A, B) is controllable.

b) It holds that rank KC(A, B) = n.

Cc

)
)
) If v e C"\{0} is a left eigenvector of A, then vHB # 0.
)

d) It holds that rank [A — AI B] =nforall A e C.

Proof. a) < b): This follows directly from Theorem 2.11 and the equivalence
of controllability and C = R".

¢) < d): The condition v" [A — X B] = 0is true if and only if v" A4 = A"
and v"'B = 0. Sorank [A — AI B] < n, if and only if there exists a left
eigenvector v € C\{0} of A that satisfies v" B = 0.

b) = d) Assume that rank [A — A B] < n. Then there exists a v # 0 with
M[A—- X B, i.e. v"A = MM v"B = 0. Then we get

WHAIB = No"B =0 forall jeN,.
This implies v"KC(A, B) = 0 which is a contradiction to b).
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d) = b): Assume that it holds that rank IC(A, B) = r < n. Then there exists

an orthonormal basis {vy, ..., v} of K := im K(A, B). We extend this

basis to an orthonormal basis of R"” by {v,,1, ..., v,}. This implies
(lm’C<A7 B))l = Span{”r-ﬁ-la S Un}'

Define V := [v1 . vn] e R™*", Since the columns of V" are orthonor-

mal, it holds that VVT = I, = VTV. Moreover, v|, ;K(A, B) = 0 for

j =1, ..., n—r,inparticular, itholds that v, ;B = Oforj = 1, ..., n—r,

e, VIB=[%].

With the Theorem of Cayley-Hamilton (see the proof of Theorem 2.11
and (2.19)) it follows, that AKX < K, i.e., K is an A-invariant subspace
of R". Since the columns of V; := [v; ... wv,] form a basis for this
A-invariant subspace, there exists a A; € R™" with A(A4;;) < A(A) and
AV = Vi Ayy. This implies
. A A
AV =V [ ; Am] |
Now let 7 # 0 be a left eigenvector Ay, i.e., 1Ay = Ao for some
A € A(As2) < A(A). If one defines now v := V - [2], then v # 0 (since
V is orthogonal and v # 0) and it satisfies

MB=[0 M|VTB=[0 ] lBl] =0,

~ N i [An A
MA=0 M VvTA=[0 MVTAVVT =0 UH][OH AZ] VT

= A0 VT = MM
Thus it holds that v" [A — A B] = 0 in contradiction to d).
]

Part c) of the theorem gives a practical test for controllability of an LTI sys-
tem: compute all eigenvalues and left eigenvectors v; of A and then check
whether v]HB = 0. This test can still be improved from the numerical point of
view. Transforming the pair (A, B) to a staircase form instead will result in a
numerically more stable scheme, since the accuracy of the eigenvectors may
be very sensitive with respect to rounding errors, in particular, if A is almost
defective. Moreover, the decision whether UJHB = 0 is numerically difficult.
The decomposition of (A, B) used in the proof of Theorem 2.12, namely

. A Al o1 _ By
A—V[O Am]v, B—V[O}, (2.21)
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with orthogonal V' and controllable (A;;, B;) is called (orthogonal) Kalman
decomposition of (A, B). By a change of basis 7 := V Tz in state space, for
an LTI system, one obtains the equivalent system

il(t) = All'%l(t) + Alzig(t) + Bl’l,L(t),
To(t) = Ao To(t).

Therefore, the components of 7, are already fixed by the initial condition Z(0)
and cannot be influences by the control; it holds that 75 () = e22!%,(0). There-
fore, the components of Z, are called uncontrollable states, the right eigenvec-
tors of A corresponding to eigenvalues in A,, are called uncontrollable modes
of the LTI system.

Example (Example 1 revisited): After a linearization and reduction to a system
of first order, one obtains an LTI system with state space X = R? and

e[t o[

Then K(A,B) = [V}], thus rank K(A, B) = 2 and, according to Theo-
rem 2.12 a), b) the system is controllable. Alternatively, one can use the
Hautus-Popov test. We have A(A) = {—1,1}, the left eigenvector associ-
ated with \; = 1isv; = [1] and v}' B = 1 # 0; the left eigenvector associated
with Ay = —1is v, = [ Y] and v} B = —1 # 0. Hence, again controllability of
the system is shown.

2.2 Stabilizability

Now we want to consider the weaker goal of reaching the given target only
asymptotically. As a target we will take 2! = 0. First we consider LTV systems.

Definition 2.13: The LTV system (1.6)—(1.7) is called (asymptotically) stabi-
lizable, if for every initial state 2° € R", there exists a u € U,q such that the
solution of (1.6) satisfies

lim z(t;u) = 0.

t—o0

A necessary condition for the stabilizability of LTV systems is provided by the
following result.




2.2. Stabilizability 23

Theorem 2.14: If the LTV system (1.6) is stabilizable and z(-) is a bounded,
nontrivial solution of the adjoint equation (2.12) for t — oo, then

2(t)TB(t) #0 on [t, o).

Proof. Assume that there exists a solution of the adjoint equation (2.12) such
that
2(t)TB(t) =0 Vte [ty,») and tlim |z(t)]| < 0.
—00

Since by assumption z is non-trivial, it holds that z(#,) # 0 such that we can
find an initial state 2° € R" with

(%) T2(to) # 0.
Analogously to the proof of Theorem 2.9 a) = b), it follows that
()T 2(t) = (2°)T2(ty) # 0 on [ty, ). (2.22)

Let now u € U,q4 be a stabilizing control for the solution of (1.6) with z(¢y) = x°.
Then with lim;_,, z(t; ) = 0 it also holds that

Tim (¢ u) || = 0.

Since | z(t)| for t — <o is bounded, there exists a sequence (;);~; with ¢, —
oo and

k—o0

(Note: Because of the Cauchy-Schwarz inequality it holds that |z (tx)T2(tx)| <
|(tx)[|]|2(¢x)|-) With this we have constructed a contradiction to (2.22). O

For checking stabilizability of an LTI system (resp. a matrix pair (A, B))) there
exist similar characterizations as in Theorem 2.12.

Theorem 2.15 (Hautus test for stabilizability): Let A € R"*™ and B € R"*™.
Then the following statements are equivalent:

a) (A, B) is stabilizable.
b) There exists an F' € R™*" with A(A + BF) c C".
¢) In the Kalman decomposition (2.21) it holds that A(Ayy) = C.
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d) If v # 0 is a left eigenvector of A associated with the eigenvalue A with
Re(\) = 0, then vH B # 0.

e) Itholds rank [A — AI B] = nforall A € C with Re()) > 0.

Proof. Homework. Show the following ring closure a) = d) = c) = e) = b)
= a), similarly to the proof of Theorem 2.12. ]

Example (Example 1 revisited): For the system matrices

e[t e[

we obtain — as found above — A(A) = {—1,1}, where v; = [, ] is a left
eigenvector associated with the only eigenvalue with nonnegative real part
A1 = 1. We have v] B = 1 # 0, from which we infer stabilizability according to
Theorem 2.15. Note that it is sufficient to evaluate v} B, since the eigenspace
to \; is onedimensional and therefore, every eigenvector to \; is a nonzero
scalar multiple of v;.

Stabilizability could have been also checked with the following simple conse-
quence of Theorems 2.12 and 2.15.

Corollary 2.16: A controllable LTI system is stabilizable.

2.3 Observability and Detectability

First we consider again an LTV system of the form (1.6)—(1.7) and ask the
question, how much information of the state of the system can be obtained
from the output equation (1.7). In practical applications, this is a very relevant
question, since most often not the whole state is available for control design,
but only observed or measured quantities. These could be a few of the state
variables or derived quantities. For instance, in Example 1 we could only mea-
sure the position (first component of the state vector), but not the angular
velocity (second component of the state vector).
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Definition 2.17 (observability): An LTV system is called reconstructable (ob-
servable), if the following condition is satisfied:

If z(-) and Z(-) are solutions of (1.6) for the same control function
u € U,q and if

Thus, reconstructability means that systems with the same inputs and the
same outputs in the past, also had the same states in the past. On the other
hand, observability delivers the same statement for the future, where as ref-
erence time instance we take t,. We will see later that for LTI systems, both
concepts are equivalent. Statements about reconstructability and observability
can be shown easily by making use of statements of a dual system. The fol-
lowing duality principle is also useful in many other considerations in systems
and control.

Theorem 2.18 (duality): An LTV system is reconstructable, if and only if
i(t) = A(—t)"z(t) + C(—t) "u(t) (2.23)

is controllable.

Proof. If one defines z(t) := Z(t) — =(t), then reconstructability is nothing but
Ct)z(t) =0 Vi<ty = z2(t)=0 Vt<t.
This is equivalent to:
z(+) # 0 solves 2(t) = A(t)z(t) = C(t)z(t)#0 on (—oo,tp].
If we replace t by —t, then this statement becomes
z(-) #0solves 2(t) = A(—t)z(t) = C(—t)z(t) 0 on[—ty, o).

But with Theorem 2.9 this is equivalent to the controllability of (2.23). O
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With this we can easily characterize reconstructability of LTV systems.

Theorem 2.19: An LTV system is reconstructable, if and only if for all ; € R
there exists a ¢y < t; such that the (¢, t1)-reconstructability Gramian

Qlto, t1) — f " (1, 1)TC ()T () D (t, 1)t (2.24)

to

is positive definite.

Proof. This is a consequence of Theorem 2.9 applied to the dual LTV system
(2.23) and the duality principle from Theorem 2.19. ]

For LTI systems, as a consequence of the duality principle and the Hautus-
Popov lemma (Theorem 2.12) one obtains the following characterizations of
observability and reconstructability. Since both terms only involve the matrices
A and C we also talk about observability and reconstructability of the matrix
pair (A, C) € R™™ x RP*™ instead of the LTI system (1.4)—(1.5).

Corollary 2.20 (Hautus-Popov test): Let A € R"*" and C' € RP*™. Then the
following statements are equivalent:

a) The pair (A, C) is reconstructable.

b) The pair (A, C) is observable.

c) For the observability matrix

C
CA

O(A,C) = K(AT,cT)T = | CA® | cgroxn (2.25)

| CA™ |
it holds that rank O(A, C') = n.
d) If v # 0 is a right eigenvector of A, then Cv # 0.

e) It holds that

rank [A - /\I] =n

C
forall A € C.
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If one only knows the output y(t) for the design of a control, the problem of
constructing an output feedback control

u(t) = Fy(t), FeR™?,

arises in order to achieve the given goal. Due to the equivalence of observabil-
ity and reconstructability of LTI systems, one mostly uses only the observability
concept.

Remark 2.21: If one applies the Kalman decomposition (2.21) to the LTI sys-
tem z(t) = ATz(t)+CTu(t), then one obtains an orthogonal matrix W e R™*"

with AT AT -
C
T AT _ 11 21 TAT _ 1
WAW-[O AJQ]’ w'C —[0]7
where A;; € R™", C; € RP*" and r = dim(O(A, C)). This results in the
(orthogonal) observability Kalman decomposition

An O

WTAW =
lAm Agy

], CW =[C; 0]. (2.26)

With the change of basis Z(¢) := WTx(t) and a partitioning analogously to
(2.26) yields the system

In other words, the state variables in , have no influence on the output. There-
fore, they are called unobservable states, right eigenvectors of A correspond-
ing to the eigenvalues of A,, are called unobservable modes.

Analogously to the weakening of controllabilty to stabilizability, observability
can be weakened to detectability.

Definition 2.22 (detectablity): The LTI system (1.4)—(1.5) is called detectable,
if for every solution z(-) of 2(t) = Az(t) with Cz(t) = 0 it holds that
lim; o 2(t) = 0.

If in the definition one sets z(-) := z(-) —Z(-) for two solutions z(-), Z(-) of (1.4)
for the same input function u(-), the detectability can be interpreted as follows:
From Cz(t) = CZ(t) one cannot infer z(t) = Z(t), but lim; . (z(t) —Z(t)) = 0.
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In other words, the non-observable part of the state is not known, but we can
conclude its asymptotic behavior. With Theorem 2.19 and the observability
Kalman decomposition (2.26), one obtains the following variant of the duality
principle:

Corollary 2.23: The LTI system (1.4)—(1.5) is detectable, if and only if
o(t) = ATz(t) + CTu(t)

is stabilizable.

Analogously to the Hautus-Popov test for stabilizability one obtains the follow-
ing result.

Corollary 2.24 (Hautus-Popov test for detectability): Let A € R™*"™ and C' €

RP*™_Then the following statements are equivalent:

a) The pair (A, C) is detectable.

b) There exists a G € R™*? with A(A + GC) < C~.

c) In the observability Kalman decomposition (2.26) it holds that A(As) <
C-.

d) If v is a right eigenvector of A corresponding to the eigenvalue A with
Re(A) = 0, then Cv # 0.

e) It holds that

rank lA - )\[] =n

C
for all A € C with Re()\) = 0.

If one wants to stabilize an LTI system and only the output y(¢) is available for
control, then one wants to find an output feedback u(t) = Fy(t) with F' € R™*?
such that lim,;_,,, z(¢; u) = 0. Note that the existence of such a feedback is not
guaranteed, even if the system is both stabilizable and detectable.




CHAPTER 3

Stabilization, Lyapunov Equations, and Pole
Placement

In this chapter we try to answer the question, how to determine a feedback
matrix for LT| systems. From Theorem 2.15 we know that the computation of a
stabilizing control function u(-) is possible with the help of state feedbacks. For
that we need an F' € R"™*" such that A(A + BF') ¢ C~. With u(t) := Fx(t) it
follows that the solution trajectory of

#(t) = Ax(t) + Bu(t) = Ax(t) + BFa(t) = (A + BF)z(t)

is asymptotically stable, if and only if F' is stabilizing, i.e., A(A + BF) c C.

Under certain assumptions, stabilizing state feedbacks can be obtained by the
solution of linear-quadratic optimal control problems, see Chapter 4. First we
want to discuss two simpler methods:

» Lyapunov’s direct method: With the help of Lyapunov’s stability theory
and the solution of a linear system of equations, a stabilizing feedback
can be computed directly. This method is a special case of a general
theory for nonlinear systems which is based on the computation of Lya-
punov functions for nonlinear systems of the form z(t) = f(x(¢)) (with
f(0) =0, i.e., z = 0 is an equilibrium of the dynamical system). There,
one seeks a differentiable function V' : X — R such that

29
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— V(zx) = 0and V(z) = 0, if and only if z = 0;
— AV (2(t)) = VV(x(t)) - f(z(t)) < 0forall z(t) # 0.

If one can find such a function, then Lyapunov’s theorem says that z = 0
is an asymptotically stable equilibrium. By using energy-based mod-
elling techniques leading to so-called port-Hamiltonian systems, a Lya-
punov function can be obtained for free, however, it is not always possi-
ble to get a Lyapunov function in an easy way. Here will use Lyapunov
functions in an implicit way. Namely, for an LTI system with state matrix
A, we will consider Lyapunov equations of the form AP + PAT +I,, = 0.
Then the uncontrolled system is asymptotically stable, if and only if the
solution matrix P is positive definite. In this case, V(z) = 2Pz is a
Lyapunov function.

* pole placement: In general, the pole placement problem consists of com-
puting a feedback matrix F' € R™*" such that A(A + BF') = L for a set
L :={p1,...u,}. If one chooses L — C—, then the system is stabilized.
However, without further conditions, this approach cannot be general-
ized to nonlinear or LTV systems. For instance, for LTV systems, the
condition A(A(t) + B(t)F(t)) € C™ for all t > t, is neither necessary,
nor sufficient for stability of the closed-loop system. Locally, nonlinear
systems can be approximated by LTV systems. I. e., for the stabilization
of nonlinear, one should at least be able to stabilize LTV systems but
not even this is sufficient. To achieve stabilization of a nonlinear system
with the help of local stabilizations, further assumptions are necessary.
A technique that achieves this goal is model predictive control (MPC).

3.1 Lyapunov’s Stability Theory

In this section, linear matrix equations will play an essential role. Thus, we
will first look at a few important properties of such equations. Consider the
Sylvester equation

AX+XB=W (3.1)
with A € R™*" B e R™ "™ W e R™™ and the unknown matrix X € R"*™,
This is a linear equation in the n - n unknowns z;;,7 =1, ..., n,j=1,...,m.

Thus there exists a representation of (3.1) in the form Mz = w of a linear
systems of equations in R™". With the help of this representation we can
directly obtain conditions for (unique) solvability of Sylvester equations. For
this, we need the following definition.
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Definition 3.1: Let A € R"*? and B € R™*4. Then the Kronecker product (or
tensor product) of A and B is defined by

(IHB 000 aLpB
A®B = ; ; e R,
O 18 oon  Tpalt

Moreover, the vec operator is defined by vec : R**? — R™? with

-
Vec(A)z[all cee Qp1 Q12 ... Qpo ... A1y ... anjp] )

The following properties of the Kronecker products are directly obtained from
Definition 3.1:

a) (tA)®B=A® (aB) =a(A® B) forall a € R;

b) (A+B)®C=(A®C)+ (B®C);

c) AQ(B+(C)=(A®B)+ (ARC);

d) AR(B®C) = (A®B)®C;

e) (A®B)" = AT® BT;

f) (A® B)(C® D) = AC ® BD;

9) (A® B)"' = A"'® B!, if Aand B are both invertible.

An important property connects the Kronecker product and the vec operator,
with its help we can “vectorize” a Sylvester equation

Lemma 3.2: For A € R™"*"™, B e R™*™ and X € R™*™ it holds that

vec (AXB) = (B" ® A) vec (X).

Proof. Homework. O

Now we directly obtain the vectorized representation of the Sylvester equa-
tion (3.1).
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Corollary 3.3: The Sylvester equation (3.1) is equivalent to
(In®A)+ (B"®1,)) vec (X) = vec (W), (3.2)

i.e. X solves (3.1), if and only if vec (X) solves (3.2).

If one defines M := (I, ® A) + (BT ® I,,), then it is immediately clear that
the Sylvester equation has a unique solution, if and only if M is nonsingular.
A necessary and sufficient condition is that the A/ has no zero eigenvalues.
Since due to the Kronecker product structure, the eigenvalues of M can be
explicitly stated in terms of the eigenvalues of A and B, one obtains an easy
to check condition for unique solvability of (3.1). The relation between the
eigenvalues of A, B and M is stated as follows.

Theorem 3.4 (Theorem of Stephanos): Let p(x,y) be a complex polynomial
in two variables, i.e., p(z,y) = X;,_; aja’y” with z, y, a;, € C. For A €

C™™ and B € C™*™ define a matrix-valued polynomial by replacing scalar
multiplication by the Kronecker product, i.e.,

Then

Proof. Homework. O

With this we can make statements about the solution of (3.1)

Theorem 3.5: Consider the Sylvester equation (3.1). Then
a) A(M) = A((Im®A) + (BT®In)) ={A+pu : AeA(A), pe A(B)}.

b) The Sylvester equation (3.1) and hence the linear system of equations (3.2)
have a unique solution, if and only if A(A) n A(—B) = .

Proof. Homework. O

Consider now the special case of (3.1) withm =n, B = ATand W = WT.
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With this one obtains the Lyapunov equation
AX + XAT =W. (3.3)

Since the Lyapunov equation is symmetric, it follows directly that also X' is
a solution of (3.3). If the solution is unique, i.e., if according to Theorem 3.5
b), A(A) n A(—A) = &, then this unique solution is symmetric. A sufficient
condition for unique solvability is that A(4) < C, i.e., that A is Hurwitz'.
In this case one even obtains an explicit solution formula which can also be
generalized to (3.1), if A and B are both asymptotically stable.

Theorem 3.6: Let A(A), A(B) < C. Then (3.1) has a unique solution that is
given by

00]
X = —f eMwebtdt. (3.4)
0

Proof. The uniqueness of the solution follows directly from Theorem 3.5 b).
Define now Z : [0,0) — R"™*™ as the solution of the linear matrix-valued
differential equation

Z(t) = AZ(t)+ Z(t)B (3.5)

for the initial condition Z(0) = . From the theory of linear homogeneous
differential equations it follows that this initial value problem for the Sylvester
differential equation (3.5) has a unique solution on [0,00). This solution is
Z(t) = e™*WeP* as one can check easily: Z(0) = W and
Z(t) — AeMWeP! + AW BeP
— AeMWeP + MW eP' B
= AZ(t) + Z(t)B.

Here we have used that B and e?* commute. Since both A and B are Hurwitz,
lim;_,o, e = 0, lim,_,, €' = 0 and thus,

Zy = lim Z(t) = lim eMWeP' = 0.

t—00 t—00

Integration of (3.5) over [0, «0) then gives

Z, — 7(0) = AJOC Z(#)dt + fo Z(#)dtB,

'This means that A is asymptotically stable.




34 Chapter 3. Stabilization, Lyapunov Equations, and Pole Placement

therefore,

Af: Z(#)dt + f: Z(t)dtB - W

Thus, —SSO Z(t)dt is a solution of the Sylvester equation (3.1). From the
uniqueness of the solution it follows that X = — {° Z(t)dt = — {” e"WeP!dt.
O

If one considers an asymptotically stable LTI system i(t) = Ax(t) + Bu(t),
then one directly obtain from Theorem 3.6 that the controllability Gramian

o0
P = f A BBTeA ¢
0

is the unique solution of the Lyapunov equation
AP + PAT + BBT = 0. (3.6)
From this we obtain a further criterion for controllability of LTI systems

Corollary 3.7: Let A(A) = C~. Then the pair (4, B) € R™"™ x R"*™ is con-
trollable if and only if the solution of the Lyapunov equation (3.6) is positive
definite.

Remark 3.8: Note that P # lim._,,, P(0, 7), since this limit is not defined if A
is asymptotically stable. Thus P is not a “[0, co]-controllability Gramian”.

Analogously, one obtains a characterization of observability for asymptotically
stable LTI systems via the positive definiteness of the observability Gramian
which is the unique solution of the Lyapunov equation

ATQ+QA+CTC =0.
The following is the central result in Lyapunov’s stability theory.

Theorem 3.9 (Lyapunov’s theorem (1897)): Let A, W e R™ " with W = W'
negative definite. Then the following holds:

a) If A(A) < C—, then the Lyapunov equation (3.3) has a unique solution X
which is symmetric and positive definite.

b) If (3.3) has a solution X > 0, then A is asymptotically stable.




3.2. Stabilization with Lyapunov Equations 35

From Theorem 3.9 b) one obtains a test for asymptotic stability which is called
Lyapunov’s direct method?. For this one solves the Lyapunov equation AX +
XAT = —al, for some a < 0. If X > 0 (which can be checked by a Cholesky
decomposition of X), then all solutions of #(t) = Axz(t) are asymptotically
stable.

The following weaker version of Theorem 3.9 which goes back to Chen (1973)
and Wimmer (1974), the definiteness of the right-hand side can be weakened
under the additional assumption of controllability.

Theorem 3.10: Let the pair (A4, B) € R™*™ x R™™™ be controllable. Then it
holds that:

a) If A(A) < C, then the Lyapunov equation (3.6) has a unique solution P.
Moreover, it holds that P = PT > 0.

b) If (3.6) has a solution P > 0, then A is stable.

3.2 Stabilization with Lyapunov Equations

The following theorem, which goes back to Kleinman (1970) and Armstrong
(1975) and uses previous ideas from Bass, results in a first stabilization method.
In the following, by M ™ we denote the (Moore-Penrose) pseudoinverse of M,
i. e., the unique matrix that satisfies the Moore-Penrose conditions

e MM*M =M,
e MTMM* = MT,
« (MMH)T = MM*,
« (M*M)T = M*M,
Theorem 3.11: Let (4, B) € R™™ x R™™ be stabilizable and 5 € R with

B > p(A), where p(A) := max{|\| : X\ e A(A)} is the spectral radius of A. If
X is the unique solution of the Lyapunov equation

(A+BL)X + X(A+ BI,)" = 2BBT, (3.7)
then F':= —BT X" is a stabilizing feedback matrix for (A, B).

2The name “direct method” refers to the fact that no trajectories have to be computed to
check stability
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Proof. Let first (A, B) be controllable (and therefore, also stabilizable). Since
B > p(A) it holds that A(A + 1,,) = C*. To apply Theorem 3.10 a), (—(A +
BI,),v/2B) must be controllable. But this follows directly with the Hautus-
Popov test, since

nzrank[A—)\In B] YieC
~ -1, 0
< n =rank [(A + B1,) + A\, B] [ 0 \/ilm]
—xank [~ (A + p1,) -\, v2B| vieC

With Theorem 3.10 b) it follows that (3.7) has a unique solution X > 0. Since
X is invertible, the equivalence of (3.7) and

X YA+ BL)+ (A+BL)TX ' =2X"'BBTX .
This results in
XY (A-BB'X") + (A-BBTX ) X' = —28x .

Since X and thus also X! are positive definite, the right-hand side of this
Lyapunov equation is negative definite. Then with Theorem 3.9 b) it follows
that A— BBTX!is stable, i.e., ' = —BT X is a stabilizing feedback matrix,
since for invertible matrices it holds that X+ = X~!'. Let now (A, B) be stabi-
lizable. Due to Theorem 3.6 we know that (3.7) has a unique solution, which
due to the representation (3.4) is positive semi-definite. Moreover, we know by
Theorem 2.15 that (A, B) has a Kalman decomposition of the form

_ A A o1 _ By
A—Vlo Aﬂ]V, B=V E

where (A1, By) is controllable, A, is asymptotically stable and V' € R"*" is
orthogonal. Left-multiplying (3.7) with VT and right-multiplying it with V' and
partitioning

X1 Xo

as in the Kalman decomposition, then we obtain

)A( _ VTXV _ {Xn XlQ]

0 Agy + BI | | X, Xoo

X X (A + 87T 0 ~[2B/Bf 0
X1, Xo AT, (Ap+680T| | 0 0]

[An‘i'ﬁf Ao ][Xn XlQ]
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Then one obtain the following linear matrix equations

(A + BDX 1+ X1 (A + DT + Ap X, + XAl =2B,B],  (3.8)
(AQQ + /BI)XQQ + X22(A22 + BI)T = 0. (39)

The homogeneous equation (3.9) has the unique solution X3, = 0 by The-
orem 3.5 b). Since X and thus also X are positive semi-definite, we get
X12 = 0. From the controllability of (A1, B;) it follows that (3.8) has a unique
solution X;; > 0 and that F; = —BlTXfl1 is a stabilizing feedback matrix for
(A11, By). If one sets F':= [F, 0] VT, then it holds that
VT(A+ BF)V = lAn + B Iy A12] ’
O A22

i.e., A(A+ BF) = A(Ay;1 + B1Fy) u A(Ay) < C. Thus, F is a stabilizing
feedback matrix for (A, B). Moreover, it holds that

-1 -1
F=[-Bl X' 0]V =—[B] 0] lxél 8] Vi =-B'V [Xél 8] v

Moreover, by simple calculations one can check that [X(l)_f 8] VT fulfills the

Moore-Penrose conditions with respect to X = V [*13]VT. Thus, F =
—BTXT. O

The proof above make use of the fact that the uncontrollable modes of the LTI
system do not have to be stabilized such that the stabilization problem can be
transferred to the controllable case. With this one obtains a complete proof of
Theorem 2.15, since Theorem 3.11 delivers “c) = b)” under the condition that
“a) = ¢)” has already been proven.

Algorithm 3.1 Bass algorithm

Input: Stabilizable pair (A4, B) € R™*" x R™*™,

Output: Stabilizing feedback matrix /'€ R™*",i.e., A(A+ BF) c C~.
1: Set 8 = 2| A|, for an easy to calculate norm, e.g., p = 1,0, F.
2: Solve (3.7).
3: Compute X" andset ' = —BTX™,

The factor 2 in row 1 is a safety factor, that shall guarantee that the eigenvalues
of A+ (1, are sufficiently far away from the imaginary axis. The computation of
the pseudoinverse X * can be done by a spectral decomposition of the positive
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semi-definite matrix X . An alternative to the stabilization by the Lyapunov (3.7)
is the so-called algebraic Bernoulli equation (ABE)

ATX + XA— XBB"X =0. (3.10)

(which is a special algebraic Riccati equation). The following results have been
shown in [ I:

Theorem 3.12: If (A, B) € R™*" x R"*™ is stabilizable and A(A) n iR = ¢,
then the following are equivalent:

a) The ABE (3.10) has a unique stabilizing positive semi-definite solution X,
i.e., X, >0and A(A— BB"X,) c C".

b) rank X, = k, where k is the number of unstable eigenvalues of A. With
this it holds that X, = ZZT with Z € R"**,

¢) Itholds that A(A — BBTX,) = (A(A) n C~) U —(A(A) N C*).

So also the ABE can be used for the stabilization of linear time-invariant sys-
tems. The algorithm used in | ] for computing X, resp. Z is similarly
expensive as the Bartels-Stewart algorithm for solving Lyapunov equations.
Moreover, numerical experiments indicate, that stabilization properties of the
ABE solution are often better than the ones of the Lyapunov equation.

3.3 Stabilization by Pole Placement

First we will show that a system is controllable if and only if for every set
L := {ui,...u,} = C which is closed with respect to complex conjugation,
there exists a feedback matrix £’ € R™*™ with A(A + BF') = L. Therefore, we
introduce two normal forms for single input systems, that allow further charac-
terizations of controllability. Note that these normal forms are only of theoreti-
cal interest, since they cannot be computed in a numerically stable way.

Let now
da(x) = 2" + Q12"+ + ag (3.11)

be the characteristic polynomial of A. Further, we say that (4, B) and (A, B)

are system equivalent, if (ﬁ, E) can be obtained from (A, B) by a change of
basis in state space, i. e., if there exists an invertible matrix 7' € R™*" such that

(4, B) = (T'AT, T7'B).
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Lemma 3.13: Let (4, B) € R™*" x R"*! and

00 ... 0 — Q) 1
10 ... 0 —o 0
A, = 01 ... 0 —ay . B, = 0] (3.12)
_O 0 ... 1 —Oénfl_ _O_
Then it holds that
AK(A,B) = K(A,B)4,, B =K(A, B)B,, (3.13)

where IC(A, B) is the controllability matrix of (A, B). In particular, (A, B) is
controllable, if and only if (A, B) and (A, Bs) are system equivalent.

Proof. Using the Theorem of Cayley-Hamilton it follows (cf. the proof of Theo-
rem 2.11)

n—1
A= =Y A
=0
Thus we obtain
AK@&B)z[AB A’B ... A"'B _Z;Q%Auﬂ
— K(A, B)A,.

The second equation in (3.13) is immediate. Similarly as in Homework 3/1 b),
one can show that (A, B;) is controllable.

If (As, Bs) is system equivalent to (A, B), then (A, B) is controllable. On the
other hand, if (A, B) is controllable, then K(A, B) is nonsingular by Theo-
rem 2.12 and thus, by (3.13), (A, B) and (A, Bs) are system equivalent with
T :=K(A, B). O

Definition 3.14: The controller normal form of a pair (A, B) € R™" x R"*! is
given by

0 1 0 0 0
0 1 ... 0 0
Acnr = , Bene =0 (3.14)
0 0 0 1 0
| —ap —a; —ap —Qp—1 | 1]
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It is important to note that not every pair (A, B) is system equivalent to its
controller normal form as the following theorem shows.

Theorem 3.15: The pair (4, B) € R™*" x R"*! is controllable, if and only
if there exists a nonsingular matrix S € R™*" such that (Acnr, Bone) =
(S~TAS,S7IB).

Proof. Note first that ¢, is the characteristic polynomial of Acnr. Thus, by
Lemma 3.13, resp. (3.12), we have

AcneK(Acenr, Benr) = K(Acenw, Bone)As,  Bone = K(Acenr, Benr) Bs.
Now,

0 0 1

K(Acxr, Bong) = "

0 . . :

1 = ... =
which is nonsingular. Thus, (Acnr, Benr) is system equivalent to (Ag, Bs).
Thus Lemma 3.13 follows. O

Moreover, we need a property of the space im K(A, B).

Lemma 3.16: Let (4, B) e R™*" x R™*™ and b; = Be;, j =1, ..., m. Theniit
holds that

im /C(A, B) = span{A*b; : keNy, j=1,..., m}=:K.
In other words, im IC(A, B) is the smallest A-invariant subspace that contains

im B.

Proof. The statement follows from the Theorem of Cayley-Hamilton as in the
proof of Theorem 2.11, since

n—1
At =3 AT YyeN,.
j=0
Since every A-invariant subspace which contains im B also contains K, the

interpretation of im /C(A, B) as smallest A-invariant subspace that contains
im B. O
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By further noting that for system equivalent matrix pairs (A, B) and (/T, E) =
(T~'AT,T~'B) it holds that A(A + BF) = A(A + BF) = Lfor F = FT, we
have all prerequisites to prove the theorem of pole placements. the proof fol-
lows the arguments of the proof of Theorem 13 in the book of Sontag, [ I

Theorem 3.17 (pole placement): Let (A, B) € R™™ x R™™ and let the
uncontrollable eigenvalues of (A, B) be {A\¢i1, ..., A\n}. Then there exists
a feedback matrix I € R™*" such that A(A + BF) = L, if and only if
L= {1, ..\ fk, Mes1s -5 An}s Where {jiq, ..., i} © C can be chosen ar-
bitrarily as long a {y1, ..., u} is closed under complex conjugation. In case
m = 1, F'is unique.

In particular, (A, B) is controllable, if and only if for every set £ = {1, ..., .}
with £ = L, there exists an F' € R™*" with A(A + BF') = L.

Proof. First, let (A, B) be not controllable. W.Il.0.g., we can assume that
(A, B) is in Kalman form, i. e.

A [An A , B= B . with controllable pair (A, B;) € RF*xRF>™,
0 Ay 0

For an arbitrary F' = [F}  Fb] is holds that
A(A + BF) = A(AH + BlFl) ) A(AQQ) = A(AH + Blpl) U {)\kJrl, A 7>\n}

Since A(As) are the uncontrollable eigenvalues, it is clear that £ must attain
the form within the theorem statement and that (A, B) will be controllable, if
and only if £ can be chosen arbitrarily. It remains to show that A(A;; + B1F})
can be chosen arbitrarily by choosing an appropriate feedback matrix F'. If
for some set £, := {ui,...,m} = L1 one can find an F; € R™** with
A(A1y + BiFy) = Ly, then F = [F; 0] is the desired feedback matrix. Ac-
cording to the above considerations it remains to consider the case that (A, B)
is controllable. In the case m = 1 we can further assume by Theorem 3.15
that (A, B) is in controller normal form. Then one immediately sees that with

F=[fi ... f.]with f; € R we get that
[ 0 1 0 0 |
0 0 1 0
A+ BEF = ; ; ; g ;
0 0 0 1
| —ao+ fi —art+ fo —aot+ fs oo —an + fa)
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Since
Garpr(x) = 2" + (p1 — [u)2" 4 4 (a1 — fo)z + (o — f1),

F is uniquely determined by f; = o;_; — 3;_1, where

1

(x— 1) (= pn) =2 2" + Bp1x™ " + ...+ frx + So.

Let now m be arbitrary. We will transfer this case to the case m = 1. For that,
let v e R™ with b := Bv # 0. We show now that there exists a G € R™*" such
that (A + BG,b) is controllable. Then if f € R*" is the uniquely determined
vector such that A(A + BG + bf) = L, then F' := G + vf is the desired
feedback matrix. It remains to show the existence of GG. Define now a maximal
set of linearly independent vectors R = {x1, ..., z,} < R" with

x1:=b=DBv, z;—Ar;_;€imDB, (3.15)

where zy = 0. Obviously, R # ¢, since b € R and dimspanR = ¢ < n and
thus, “¢ maximal” is well-defined. Note that (3.15) can also be formulated as
follows:

rj = Axj_, + Bu for some u € R™. (3.16)

We show now that ¢ = n. That ¢ has been chosen maximally, follows from
Azxy + Bu € span{zy, ..., s} YueR™. (3.17)

(Otherwise, with z,,; := Ax, + Bu one would obtain a bigger set that satisfies
the condition which would contradict the maximality of ¢.) In particular, with
u = 0 we get

Axy € span{xy, ..., x4}

Then with (3.17) it follows that
im B < span{zy, ..., 2} — Az, = span{xy, ..., x4}
and with (3.15)
Azy e span{zy, ..., z}, k=1,... L

With this, span{xy, ..., x,} is an A-invariant subspace which contains im B.
By Lemma 3.16, im IC(A, B) is the smallest subspace of R" that fulfills this
property. Thus, with the controllability of (A, B) we get

n = dimim (A, B) < dimspan{zy, ..., x/}
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and thus dimspan{zy, ..., z;} = ¢ =n. Letnowup, e R, k=1,...,n—1
be a sequence of vectors which generates R as in (3.16), i.e.,

T — Axp_1 = Bup_1, k=2,...,n.
If one chooses u,, € R™ arbitrary and defines
X = [xl xn] e RV" U := [ul un] e R™*™

then G := UX!is well-defined, since X is nonsingular due to the linear
independence of {z1, ..., x,}. The matrix GG satisfies

Gry:=ug, k=1 ..., n,
and with (3.15) one obtains
K(A+ BG,b) = [z1 ... xn].
Thus, (A + BG, b) is controllable and the claim is shown. O

The proof of Theorem 3.15 motivates the term “controller normal form”, since
the matrix F' determining the controller can be just read off Acnr in the case
m = 1.

Remark 3.18: For computing the feedback matrix F'in the case m > 1 one has
to enforce uniqueness by imposing further constraints. This freedom should
be exploited in order to achieve, e. g., maximum robustness of the closed-loop
eigenvalues with respect to perturbations.

A suitable criterion for the numerical computation of F' consists of making
A+ BF diagonalizable and minimizing the condition number of its eigenvector
matrix X = X (F'). We obtain the minimization problem

i X(F
pnin cond(X (F))

subjectto (A + BF)X(F) = X(F)
Hn

The problem of robust pole placement was formulated and solved by Kaut-
sky, Nichols, and Van Dooren in 1985 [ ], where, besides the criterion
above, further criteria have been analyzed to measure the sensitivity of the
poles with respect to perturbations.
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CHAPTER 4

Optimal Control

For a general nonlinear system as in Definition 1.1, i.e.,

l’(t) = f(t,x(t),u(t)), $(t0) = x(]? (4.1)
y(t) = g(t, x(t), u(?)), (4.2)

for t € [to, t¢], we seek an optimal control u € U,q such that the cost functional
J : Usq — R with

te

() = hua(te) + |t (0, y(0), () 43)
to

is minimized. Here, h is a suitably chosen function, which costs to the states,

inputs, and outputs, while i measures the deviation from the desired terminal

state.

To allow for reaching the desired state asymptotically, i. e., we demand a stabi-
lization of the system, we also allow setting ¢t = co. However, first we consider
the case t; < oo, the case of an infinite time horizon is obtained by an asymp-
totic consideration.

Remark 4.1: By choosing » = 1 and h; = 0 and requesting z(t;) = 2!,
we obtain the problem of minimizing ¢;. This problem is called time-optimal

45
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control, since we try to find the control function that steers the system into the
desired state ! in the shortest possible time.

4.1 Necessary and Sufficient Optimality Conditions

The general approach to such optimal control problems is based on the La-
grange formalism: If one wants to solve a constrained optimization problem of
the form

min g(z) subjectto f(z) =0, (4.4)

zeR™

then one defines the Lagrangian (function)
L(z,A) = g(x) + A" f(),

with the Lagrange multipliers A € R™ and develops the necessary optimality
conditions from
Em(l‘, )\) = O, ﬁ)\(ZL’, )\) = 0.

Analogously, for dynamic constraints, one uses the Hamilton principle for which
one defines a Hamilton function. For autonomous systems satisfying

h(x(t), y(t), u(t)) = h(z(t), u(t)),
it is defined by

H(w(t), u(t), p(t) = h(x(t), ut) + pt)" f(2(t), u(t)), (4.5)

where 1 : [to, ] — R™ is the costate function corresponding to the Lagrange
multipliers. Note that with this, the dynamic constraints can be expressed as

Hyu(2(t), u(t), p(t)) = i(t).

The necessary optimality conditions then follow from the following theorem due
to Pontryagin [ ]. Here, this result is stated as a “minimum principle”
asin| ], where first hy = 0 is assumed.

Theorem 4.2 (Pontryagin’s maximum principle): Let u, € U,q and x,(t) :=
x(t; uy) be the corresponding solution trajectory of (4.1). If u, is optimal for
(4.3), then u, satisfies the necessary optimality conditions




4.1. Necessary and Sufficient Optimality Conditions 47

a) H(wa(t), us(t), u(t)) = infyep,, H(z(t), u(t), u(t)) for all t € [to, t¢].

b) The costate function satisfies the adjoint equation
fi(t) = —Ha(@a(t), ux(t), u(t)),

(i) wp(te) = 0 (transversality conditions).

Proof. See | , , ] ]

The case h¢ = 0 can be transferred such that the theorem above is applicable.
Therefore, one uses that

h(a(te)) — he(x(to)) = fthf(w(t)) - (t)dt

to
Lg

- f Vhi(x(t)) - f(a(t), u(t))dt,

0

which leads to the modified running cost
h(x(t), u(t) = h(x(t) U<t>> + Vhf(:c<t)> - fa(t), u(?)).

With this we get J(u) = ) + S (t))dt. Since he(x(tg)) is
constant, this term can be neglected in the opt|m|zat|on, i.e., one works with
the modified cost functional

Flu) = Jt (e, u(t))dt.

If one replaces % by h in the Hamilton function, then one can apply Theo-
rem 4.2 to 7. However, note that the transversality condition changes to

(iii)) p(te) = Vhe(x(te)).
Moreover, the necessary smoothness properties of iy must be verified.
From now on, we consider again LTI systems as in (1.4)—(1.5), i.e.,
z(t) = A:U( )+ Bu(t), x(0) = 2°,
y(t) = Cz(2),
in the time interval [0, ¢¢]. Hence, we have
f(t,x(t), u(t)) = Az(t) + Bu(t),
g(t, z(t), u(t)) = Cz(t).
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Since y(t) = Cx(t) and hence h(t, z(t),y(t),u(t)) = h(t,z(t), Cz(t), u(t))
h(t,z(t),u(t)), we will w.1. 0.g. assume that C' = I,,. By setting

e~ [4 3]

la(t)) = 5o ()M (),

then we obtain a quadratic cost functional J and thus the following problem
setting:

Definition 4.3 (linear-quadratic optimal control problem): The minimization
problem

min J (u) = (w@f)TM o) + J: liﬁgr [*?T ff] [ig;] dt> (4.7)

subject to
©(t) = Az(t) + Bu(t), z(0)=2°,

is called a linear-quadratic optimal control problem.
In control theory, such linear-quadratic optimal control problems are also called

linear-quadratic regulator problems, or for short, LQR problems. In the sequel,
we will make use of this abbreviation.

Remark 4.4: One can easily see that the assumption C' = [, is indeed not a
restriction. If the outputs should be weighted in the cost functional, then for a
quadratic cost functional one can write

y(t) " Quy(t) + z(t) " Qu(t)

a:(t)TC'TQyC'x(t) + 2() T Qux(t)
x(t)T(C’TQyC’ + Qx)x(t)

Thus, with Q := CTQ,C + @, one would obtain a cost functional of the form
(4.7).

The LQR cost functional weighs the following quantities:

« the deviation of the terminal state z(¢¢) from the target = with the help of
the term x(t;) T Mx(t;),

« the transient behavior of the state by {' = (¢)TQx(t)dt,
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* the (energy) costs that have to be used for controlling, given by the term
()T Ru(t)dt.

In Example 1, M would weigh the deviation of ¢(t;) = m and ¢(t¢) = 0. The
first term in the cost functional can be chosen to avoid an oscillatory transient
behavior, while the last term in the cost functional assesses the input energy
used to force the pendulum. Often, the mixed term z(¢)" Su(t) is not present.
It occurs, e. g., if the original system has a feed-through term Du(t) as in (1.5).
Then, as in Remark 4.4, one has

y() Quy(t) + () Qua(t)
z(t)TCTQ,Cx(t) + z(t) ' Qu(t) + 2x(t)TCTQ,Du(t) + u(t)" DTQ,Du(t)

() (CTQ,C + Q) x(t) + 2z(t) ' CTQyDu(t) + u(t)" DT Q,Du(t)

=: 2(t)"Qu(t) + 2x(t) " Su(t) + u(t) Ru(t).

By applying Pontryagin’s maximum principle one obtains now the necessary
optimality conditions. The theorem can be proven directly without using Theo-
rem 4.2, while the proof structure follows a more general proof. In the following,
let U,q be set of functions that are piecewise continuous on [0, t¢], the proof
for U.q = Lo([0, t¢],R™) is analogous.

Theorem 4.5: Consider the optimal control problem (4.7). Let u, € U,q be an
optimal control and let x.(t) = z(t; u.) be the corresponding solution trajec-
tory. Then there exists a costate function p : [0, ¢] — R" such that x, u, u.
solve the linear boundary value problem

I, 0 O0f |zt A 0 B |=x(t)
0 —I, 0| |a®)|=|Q AT S| |u®) (4.8)
0 0 0 |u®) ST BT R| |ut)
with boundary conditions
z(0) = 2%, p(ty) = Mx(t) (4.9)

Note that © enters the equation only formally and so u does not have to be
differentiable.

Proof. The proof follows ideas from the calculus of variations, namely, the first
variation has to vanish. Therefore, let u, be the optimal control. Consider the
first-order perturbation

u(t) := uy(t) + ev(t)
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with u € U,q and € € R. Then the constraint in (4.7) becomes
z(t) = Ax(t) + Bus(t) + eBo(t)

with the solution trajectory (see Chapter 2)

t

z(t) = e’ + J =B (uy(s) + ev(s)) ds

0
t

= x,(t) + 6f =9 By(s)ds

0
" J
~~

=:2(t)

= x.(t) +e2(t).
Hereby, z(-) satisfies the linear, inhomogeneous differential equation

z(t) = Az(t) + Bo(t), =2(0)=0. (4.10)
Now we introduce p(t) € R™ and the Hamilton function H(x(t), u(t), u(t)) by

(z(t) T Qux(t) + 22(t) T Su(t) + u(t)" Ru(t))
+ pu(t)T (Az(t) + Bu(t))

N | —

H(z(t), u(t), p(t)) =

Then we rewrite the cost functional as

te

T w) = go(te) Ma(ts) + f (H((t), u(t), () — p(H) T () dt.
Analogously, for u, and x, we obtain

T ) = gralt)T Mo (1) + f (Hlaa (0, ua(8), 1) — p(O) T4 (0) .
Subtracting both equations gives

(z(t) " Mxz(t) — z.(t) "Mz, ()|

t=t¢

+qu(t)T (a(t) — 2(0) At (4.11)
’ =—cZ(t)
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Now we consider the three terms on the right-hand side of (4.11) separately.
By plugging in z:(t) = z.(t) + z(t), for the first term we get
r()TMa(t) — 2. (t) T M, (t)
= 2, (1) T M, (t) + 2w, (1) T M2(t) + 22(t) T M 2(t) — 24 (t)T M, (t)
= 2ex,(t) " Mz(t) + O(£%).

For the second term we get
H((t), u(t), u(t)) — H(wa(t), us (t), u(t))

% (z(t)TQx(t) + 22(t) T Su(t) + u(t) Ru(t)) + u(t) " (Az(t) + Bu(t))
- % (20 (8)T Qs (1) + 24 () Sun () + u(t)] Run (1))
— (1) (A (t) + Buu(t)).
Now we set
u(t) = us(t) +ev(t), x(t) = zu(t) +e2(t)
and obtain (after a lengthy calculation)
H(w(t), ut), p(t) — H(wa(t), ux(t), u(t))
= e(z(1)TQ2(t) + ()T Sv(t) + u. ()"
+ u(t)TAz(t) + p(t) " Bo(t)) + O(?
= ((z:()"Q + us(t) ST + pult ) A)z(t)
+ (z:()"S + ue() TR+ p(t)TB)v(t)) + O(e?).
Further, for the last term in (4.11), with partial integration we get

- r eu(t)TE(E)dt = — ep(t)T=(0)|" + ¢ L )T (1)t

0

ST2(t) + uy(t) T Ro(t)
)

43

— —enlt)"=(t) + < | (0

where we use that z(0) = 0 due to (4.10). Altogether we have

T (u) = T (us)
=€ (Lf (@) Q + us(t) TS + pu(t)T A + fa(t) ")z (t)

+ (24(1)TS + us(t) TR + p(t)" B)v(t))dt

— pu(te) T2 (te) + x*(tf)TMz(tf)> +0(?). (4.12)
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A necessary condition for a minimum of 7 is that all directional derivatives of
J from u, vanish, i. e.,

0 — lim 2 (T (s + 20) — J(u)) forallve U,

e—0 &

If one chooses p as solution of the linear inhomogeneous differential equation
fu(t) = —(ATu(t) + Qa(t) + Sux(t)) (4.13)
with the “terminal condition”
p(te) = M, (te) (4.14)
then from (4.12) we necessarily get
T ()TS +u () R+ pu(t)TB=0 Vte[0,t] (4.15)

If we then take (4.13), (4.14), (4.15) and the first equation in (4.6), then we get
the two-point boundary value problem (4.8), (4.9). ]

Remark 4.6: The boundary value problem (4.8) is also obtained, if Pontrya-
gin’s maximum principle is applied to the LQR problem. The first row of (4.8)
corresponds to the constraint, i.e., H,(z(t), u(t), u(t)) = x(t). The second
row follows from the adjoint equation (Theorem 4.2 (ii)), while the last row of
(4.8) follows from the necessary condition for a minimum which is

Hou(x(t), u(t), u(t)) = 0.

Note that u is considered unbounded here. The boundary conditions are ex-
actly the initial value of the dynamic constraint in (4.7) and the transversality
condition in the form (iii)’ for non-vanishing h;.

Further note that for the derivation of the necessary optimality conditions, no
conditions on the matrices M, ), R, S have been necessary.

To obtain sufficient optimality conditions, we basically use that 7, > 0 must
hold for a minimum. To achieve this, we assume that M and [ & 7 | are at least
symmetric and positive semi-definite (though one can also obtain sufficient
conditions under much weaker conditions.) As sufficient optimality condition,
we obtain the following result:
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Theorem 4.7: Let ., y, u, be chosen such that [z], uT, uI]T solves the lin-

ear boundary value problem (4.8), (4.9). Further let [?T f;] and M be positive
semi-definite. Then it holds that

J(u) = T (ux) (4.16)

for all uw € U,g.

Proof. We proof the theorem as in convex optimization. Define
D(s) :== T (sux + (1 —s)v).

Note that from the linearity of ©(t) = Axz(t) + Bu(t), by setting u := su, +
(1 — s)v we obtain the solution trajectory x = sz, + (1 — s)z, where z is the
solution of (4.6) corresponding to v. The claim of the theorem is equivalent to
the statement that ®(s) attains its minimum for s = 1 for all x, u that satisfy
(1.4). Since ®(s) is quadratic in s, ®(s) has a minimum for s = 1, if and only if

dd(s) d?®(s)
ds ds?
For each symmetric matrix K, we have the identity

= 0.

s=1

=0,

s=1

% <%(3q + (1 - s)p)TK(sq + (1 - 3)?))

s=1
= (sq"Kq—sp Kq+ (1—s)p"Kq— (1—s)p" Kp)|__,
=¢'Kq—p'Kq=(q—-p) Kq.
Thus, from the condition on the first derivative, we obtain the expression

d((};iS) " = (Jf*(t) - Z(t))TMx*(t)‘t:tf + Lf(l’*<t> - Z(t))TQI*(t)

(1) TS (@ () — 2(8) 4+ (us(t) —v(1)) TS 24 (8) + (s (t) —v(t)) T Ruy (t)dt
(4.17)

Left-multiplying the second equation of (4.8) with x,.(t)T and putting in the first
and thereafter the third equation of (4.8), then one obtains

2o(t)TQua(t) = —2u(t) TATU(t) — 24 (8) T Sus(t) — (1) f2(t)
= ux(t) BT p(t) — @ () u(t) — 24(t) Sua(t) — 2 (t) T fa(2)
= (1) TS T2y (1) — wg () T Ry (t) — () T pu(t) — 24 (£) T S (2)
— (1) fu(t) (4.18)
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Analogously, after left-multiplying with z(¢)T we obtain

2(t) T Qua(t) = —2(t) TATp — 2(8) T Sus(t) — 2(t) (L)
(t)T put) = 2(8) T u(t) — 2(4) T Sua(t) — 2(4) T u(t)
—v(t) T ST, () — v(t)T Ru(t) — 27 p(t) — 2() T Su(t)
— 2(t) ") (4.19)

Putting in (4.18), (4.19) into (4.17) yields

(l’*(t) ( ))TMx*( )‘t:tf

. f (0 ilt) + 20T () — 2, (O ju(t) — (0 plt)dlt

t=t¢

= (2u(t) — 2(0) "M (t)],_, + 2O u®[Z) — o)),

Now by (4.9), 2(0) = 2° = x.(0) and pu(t;) = Ma.(t;), so 2
the identity

= 0. Using

s=1

d? /1
12 < (sq+ (1 —s)p)" K(sq+ (1 - 8)p)> =(¢—p)"K(qg—p)
for a symmetric matrix K, we obtain for the second derivative of ®(-) that

d?d
ds?

= @l =) M) 20,
el B | e e R

Here, the nonnegativity follows from the positive semi-definiteness of M and

[ ] 0

Now we have obtained a relation between the solution of the optimal control
problem and the solution of the two-point boundary value problem. In principle,
we could obtain the optimal control ., of the LQR problem by solving (4.8) and
(4.9). Significantly simpler and cheaper from the numerical point of view is the
following approach.
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4.2 Solution of the LQR Problem by Riccati Equa-
tions

4.2.1 The Finite Time Horizon Problem

The assumptions of Theorem 4.7 imply that R > 0 should be chosen in the
cost functional. Moreover, often one even has R > 0. Otherwise, there would
be costfree control parameters which is often not sensible. So in the following
we restrict ourselves to a positive definite weight matrix for the control. In this
case, R is invertible and the third equation in (4.8) can be resolved with respect
to u. Ones obtains

u(t) = =R (STz(t) + B u(t)). (4.20)
and thus,
z(t)| _ o |() _ 0 _
Lﬁ(t)] =H lﬂ(t)] ) z(0) =, u(ty) = Mx(ty), (4.21)
where o[ A- BR™ST —~BR'BT 425
N [—(Q ~SRT'ST) —(A- BR‘lST)T] ' (4.22)

In the sequel, we use the following abbreviations for better readability:
F:=A—-BR'S", G:=BR'B", H:=Q-SR!'ST, (4.23)
such that with (4.20), Ax + Bu becomes Ax — Gu and we can write H =
F -G
[—H —FT ]

Definition 4.8: A matrix € R?>"*?" s called Hamiltonian, if

(HJ) = (HJ)", where J = [_0] Ié“] : (4.24)

From (4.24) it follows directly that Hamiltonian matrices have a certain explicit
block structure.

Lemma 4.9: The matrix H € R?"*2?" is Hamiltonian, if and only if

H_l_H —FT]’ whereG =G, H=H".
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This means that (4.21) is a boundary value problem for a linear differential
equation with Hamiltonian coefficient matrix.

With the ansatz u(t) = X (t)z(t), from (4.21) und with
Alt) = X () (t) + X ()i (t),
pulte) = X(te)a(te),
and the terminal condition X (¢;) = M we get
(t) = Fx(t) — Gu(t) = Fa(t) — GX(t)xz(t) = (F — GX(t))z(t),
((t) = —Ha(t) — FTu(t) = —Hx(t) — FTX (t)xz(t)
= X()x(t) + X (1) (1)
= X(t)z(t) + X(t)Fz(t) — X(t)GX (t)x(t).
From the latter equation we obtain
XWx(t) = —(H+ FTX(t) + X()F — X()GX (t))x(t). (4.25)
Thus, if X (-) satisfies the Riccati differential equation
X(t)=-R(X() == —(H+ F'X(t) + X() F — X(t)GX (1)), t € [0, t]
(4.26)

with the terminal condition
X(tg) = M, (4.27)

then (4.25) is satisfied. One can show that (4.26), (4.27) has a unique solution
on [0, t¢]. Since with X (-) also X (-)T is a solution, together with uniqueness, it
follows that X (t) = X (¢)T for all ¢ € [0, t¢]. Further, one can show that X (¢) is
positive definite on the whole time interval. The proofs can be found in [ ]
Now one obtains the following result that can also be shown for LTV systems
(see [ )2

Theorem 4.10: If R > 0, then under the assumptions of Theorem 4.7, one can
show that the optimal control u,(-) that solves the LQR problem is given by

us(t) = =R (ST + BTX,.(1))z(t) Vtel0, t], (4.28)

where X, (-) is the unique solution of the Riccati differential equation (4.26)
with terminal condition (4.27).

The “optimal costs” are

(«°)" X, (0)2°. (4.29)
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Proof. The form of the optimal control (4.28) follows directly from the boundary
value problem (4.8)—(4.9) and by putting in u(t) = X.(t)z.(t) in (4.20). The
optimal costs are obtained by considering the value function

V(x(t) = 2(t) X () (t),

where X (-) is the solution of the Riccati differential equation (4.26) ist. By
putting in 2(t) = Ax(t) + Bu(t), (4.26) and (4.28) we get

%V(x*(m = 04 (1) "X ()24 (1) + 20 (1) T Xu ()24 () + ()T X (1) (8)

— 20, (1) T X ()4 (1) + 2 (8) T X (1), (2)
= 22, (1) TAT X, (1) 24 (1) 4 2us (1) T BT X, (8) 24 (1)
— 2. () (H + FTX,(t) + Xo(O)F — X, ()G X, (1)) 24 (1)
= 220, ()" X (1) BRT'BT X, ()24 (1) — 24 (1) " Hay (1)
+ 2. (1) Gy (t)
= 2, (1) T Hao (1) — 2, (t) TGy (1)

With this, the cost functional for the optimal control can be written as

T (us) = %x*(tf)T Maa(ty) — % L " %V(x*(t))dt
— 3 () M (1) — V() ZY)
= 5 (@) M (1) — 2 (10) Xt (1) + 2, (0) X, (0)2,(0)
= 507X, (0, 0),
where we use that X (t;) = M. 0

Remark 4.11: Note that the optimal control in w,(-) in (4.28) is given as linear
state feedback. So one obtains a closed-loop system, even though this is
not directly clear from the boundary value problem (4.8)—(4.9). The ansatz
u(t) = X (t)z(t) is motivated by our goal to achieve a feedback control.

With this, one has an alternative for solving the LQR problem, namely be solv-
ing the “terminal value problem” for the Riccati differential equation. To do
s0, the equation can be vectorized using the vec operator and the Kronecker
product and usind standard methods for initial value problems, where by a
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transformation t — t; — t, a terminal value problem can be turned into an
initial value problem. On the other hand, it is much more advisable to use spe-
cial methods for Riccati differential equations that exploit the given structure

[CL90, : 1

4.2.2 The Infinite Time Horizon Problem

As already discussed in the introduction, it is often sufficient to reach the tar-
get asymptotically. This leads to the question of an optimal stabilization with
respect to the cost functional in (4.7) with ¢; = oo, where we now set M = 0.
To be able to achieve a stabilization, we must assume stabilizability. Since we
aim again for a solution in terms of a feedback control, (4.20) motivates the
ansatz u(t) = Xxz(t) for a constant matrix X = XT e R™*", With this ansatz
one obtains (analogously to the finite time-horizon case)

#(t) = (F — GX)z(t), (4.30)
ji(t) = —Ha(t) — FTu(t) = —Qo — FTXa(t)
— Xi(t) = X(F — GX)z(t).

Now, the last equation is equivalent to
(H+F'X + XF - XGX)z(t)=0 VYte[0, ). (4.31)
Thus, if X satisfies the algebraic Riccati equation (ARE)
0=R(X):=H+F'X+XF—-XGX, (4.32)

then (4.31) is satisfied. However, note that in contrast to the Riccati differential
equation, (4.32) has in general infinitely many solutions and even nonsym-
metric solutions are possible. The structure of the solution set of (4.32) has
been addressed in many research articles and is most completely described
in [ ]. We will see in the sequel, that we need a particular solution of the
ARE. Since the solution trajectory of the state that is generated by our ap-
proach satisfies the linear homogeneous differential equation (4.30) such that
the solution can be written as z(t) = e~ ¥)20 we must necessarily have

AF-GX)cC,

otherwise, we would not achieve a stabilization of the system. This motivates
the following definition.
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Definition 4.12: A solution X € R™*" of the ARE (4.32) is called stabilizing, if
A(F-GX)cC.

In other words, to compute a stabilizing feedback matrix K € R™*™ with the
help of he LQR problem, we need a stabilizing solution of the ARE, since

F-GX=F-BR'B'X
=A-BR'(B'X+S")
= A+ BK withK := —R'(BTX +57).
It remains to discuss when and how a stabilizing solution can be computed. In
the following, this solution will be denoted by X..

First, let X be an arbitrary solution of the ARE (4.32) and 7" := [ % [ |. Then
for the Hamiltonian matrix H from (4.22) it holds that

i [ L O1[F =G| [L ©
s S | W

_|F-GX -G _|F-GX -G
[—R(X) —(F—GX)T] [ 0 —(F -GX)T
This implies
H [ﬁg} _ Bg] (F — GX), (4.33)

i.e., A(F — GX) < A(H) and the columns of [ %2 | span an H-invariant sub-
space. This is true for every solution of the ARE, for the stabilizing solution we
need an n-dimensional H-invariant subspace corresponding to the eigenval-
ues in the open left complex half-plane. First we discuss the question whether
such a subspace actually exists. Therefore, we need a few properties of the
spectrum of Hamiltonian matrices.

Lemma 4.13: If H e R****" is Hamiltonian and A € A(#) with corresponding
right eigenvector z € C?, then —\ € A(H) with corresponding left eigenvector
Jx,where J =9 ]

Proof. Homework. O

Since for real matrices, with \ also X is an eigenvalue, eigenvalues of Hamilto-
nian matrices always occur in quadruples of A\, A, —\, A, except if they are real
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or imaginary, in which case they appear as pairs A\, —\. Overall, the spectrum
of a Hamiltonian matrix can be written as

AH) = A, - A U {=A1 o = A (4.34)

with Re()\;) < Oforall j € {1, ..., n}. To guarantee the existence of a stabi-
lizing solution of the ARE, it follows from (4.33) that the corresponding Hamil-
tonian matrix may not have any eigenvalues on the imaginary axis in which
case exactly n eigenvalues of ‘H are in the left complex half-plane and an n-
dimensional ‘H-invariant subspace associated with these eigenvalues exists.
This can already be achieved with minimal requirements on the LQR problem
as the following result shows.

Theorem 4.14: Let H = _F[; —_ET € R?"*2" Hamiltonian, where (F, G) is

stabilizable and (F', H) is detectable and G, H > 0. Then

Re(A) # 0 forall A e A(H).

Proof. Assume that A\ = w € A(#H). Because of Lemma 4.13 we can assume
w.l.o..g that w > 0. Let [ 7] # 0 with 2;, x5 € C™ an eigenvector associated

with «w. Then we get
H [“ﬂ — [ml] . (4.35)
T2 )

Left-multiplying [ 21" leads to
S [il} = o Fo) — 2l Gry — 2 Hay — 28 Fay
2 ~—_—— Y= Y~ =
= = = =«
= [28 2w E;] = w( 2hr; + 2lry ) = 2w Re(Q).
= -

Since 3 + v = 0 is the real part of the first expression, 8 > 0, v > 0 and since
the second expression is purely imaginary, we get 3 = v = 0. Hence,

.il?lHH =0, Hxry=0 and x';G =0, Gxy=0.
From the first equation in (4.35) one obtains

wzxy = Fry — Grg = Fuay
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and thus,

F—wl,
[ };‘*’ ]xlzo. (4.36)

Analogously, with the help of the second equation in (4.35) we obtain
oh [F —wl, G]|=0. (4.37)

Since z; # 0 or x5 # 0, (4.36) contradicts the assumed detectability or (4.37)
contradicts the assumed stabilizability. ]

The stabilizing solution of the ARE can now be obtained as follows:.

Lemma4.15:Let U = [wi, ..., w,|,V = [vi, ..., v,] € R™" be such
that span{[ 5! ], ..., [o"]} is the n-dimensional #-invariant subspace asso-
ciated with {1, ..., A\,} © C~ (with the same notation as in (4.34)). If U is

invertible, then X, = VU ! is the stabilizing solution of the ARE (4.32).

Proof. By the assumption we have

[_ﬁ;{ __ﬁT] m - [g] 7. AZ) = Ao M)

Left-multiplying the first block row with U ! gives
U'FU-U'GV = Z.
Then from the second block row we get
~HU -F'V=VZ=VU 'FU-VU 'GV.

Right-multiplying this equation with U~!, then we get that X, = VU ! solves

the ARE. Moreover,
(Ul . Ul,-1 . 1,
im lvl = im {V]U =1im lX*]

So X, is the stabilizing solution of the ARE. ]

The following results summarize some further properties of the stabilizing so-
lution X, of the ARE.
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Lemma 4.16: Let U = [uy, ..., u,|,V = [vi, ..., v,] € R be such
that span{[ %! ], ..., [ ]} is the n-dimensional H-invariant subspace associ-
ated with {\;, ..., \,} = C~ (with the same notation as in (4.34)). Then VTU
is symmetric. If further, G and H are positive semi-definite, then VU > 0.

Proof. By assumption we have

[

with A(Z) = {\1, ..., \,}. Left-multiplying the first block row of (4.38) with VT
results in
VIFU -VTGV =VTUZ.

Transposing the second block row of (4.38) and right-multiplying with U gives
—UTHU -VTAU = Z"VU. (4.39)

Finally, adding (4.2.2) and (4.39) leads to
ZWWU+Vv'uzZ =-V'GV —UTHU. (4.40)

This is a Lyapunov equation in the “unknown” VTU. Since by assumption Z is
Hurwitz, with Theorem 3.6 we see that (4.40) has a unique solution and

Q0
VU = J ZHVTGV + UTQU)e? dt.
0

Since due to ¢Z't = (¢?))T and G = GT, H = H” the integrand is symmetric,
VTU is also symmetric. Moreover, if G and H are positive semi-definite, by
Sylvester’s law of intertia, this is also the case for the integrand and therefore,
the entire right-hand side.

O

The next lemma shows that under our assumptions on the LQR problem. the
invertibility of the matrix U in Lemma 4.15 is guaranteed.

Lemma 4.17:If U, V are as in Lemma 4.16, G, H positive semi-definite, and
(F,G) is stabilizable, then U is invertible.
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Proof. Suppose U is singular. Then there exists a vector z # 0 with Uz = 0.
Left-multiplying the first block row of (4.38) with (V)T and right-multiplying
with z, then one gets

ZVIA Uz —2"VIGVz=2"VTUZz2. (4.41)
—

=0

Due to Lemma 4.16 it follows
JVIGVz = —2"VTUZz = —(Uz2)"VZz = 0.

Since G is symmetric positive semi-definite, we obtain GV z = 0. Thus the
first block row of (4.38) right-multiplied with 2 yields UZz = 0. Since z € ker U
has be chosen arbitrarily, we get Zz € ker U for all z € ker U and hence, Z-
invariance of ker U. Thus, there exists an eigenvalue of Z,i.e.,a \; (1 < j <
n), and a vector 0 # z; € ker U with Zz; = A;z;. Right-multiplication of the
second block row of (4.38) with z; gives

—Q Uz —F'Vz =VZz =\Vz,
=0

i.e., (\jI, + FAT)Vz; = 0. We have already shown GV z = 0 for arbitrary
z € ker U. This holds particularly for z;. With this it follows

(V)" [N+ F G]=0.

Due to the stabilizability of (F, G) with Theorem 2.15 we get 'z, = 0. So we

have

Since z; # 0 it follows rank [ /] < n which contradicts the assumption that the
columns of [ {/ | span an n-dimensional H-invariant subspace. O

With the two lemma above we can formulate the following result about the
stabilizing solution of the ARE.

Theorem 4.18: Consider the ARE
0=Q+F'X+XF-XGX (4.42)

with G = GT > 0, H = H" > 0, and stabilizable (F,G). Assume further

that the corresponding Hamiltonian matrix # = [_FQ __I?T} with spectrum as in
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(4.34) has no imaginary eigenvalues and that the H-invariant subspace with
{\, ..., Ay} be spanned by the columns of [{/] with U, V' e R™". Then
the ARE (4.42) has a unique stabilizing solution X, which is symmetric and
positive definite.

Proof. First, with Lemma 4.17 it holds that U is invertible. Thus there exists
X, = VU™! and the first block row of # [V ] = [V ] Z, right-multiplied with
U-1, gives

F-GX,=UzU".

Thus, by Definition 4.12, X, is stabilizing, since A(UZU ') = A(Z) = {\1, ..., A}
The symmetry follows with Lemma 4.16, since with VU = UTV we obtain

X, =VU'=UuTUTvU = VU = (vu )T = XT.

Under the given assumptions and with Lemma 4.16, VU > 0. Due to the

congruence
UTX, U=V,

also X, > 0 by Sylvester’s inertia theorem. It remains to show uniqueness.
Thus assume that X, and X, are two stabilizing solutions of the ARE (4.42),
i.e.,

0=H+F'X, +X,F—X,.GX,,
0=H+F'X, + X,F — X,GX,.

Subtraction of both equations leads to
0=(F-GX.) (X, - X,) + (X, - X,) (F - GX.).

This is a homogeneous Sylvester equation and since by assumption A(F —
GX.), A(F-GX,) c C, it follows from Theorem 3.6 that X, — X, = 0, i.e.,
the uniqueness of the stabilizing solution. O
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