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Preface

This document is based in large parts on the hand-written lecture notes of
Christian Schröder who gave this course on model reduction at the TU Berlin in
the winter term 2016/17. Special thanks go to Martijn Nagtegaal, Nora Heinrich,
and Ines Ahrens for finding so many typos in the initial version of these lecture
notes from winter term 2017/18. I believe that there are more errors and typos
in this document, please send an email to matthias.voigt@uni-hamburg.de
if you find any.

There are not many textbooks on model reduction, the most commonly known
one has been written by A. C. Antoulas:

A. C. Antoulas. Approximation of Large-Scale Dynamical Systems, vol-
ume 6 of Adv. Des. Control. SIAM Publications, Philadelphia, PA, 2005.
doi:10.1137/1.9780898718713.

Most aspects discussed in this course have also been covered by Peter Ben-
ner on the Gene Golub SIAM Summer School 2013 at Fudan University in
Shanghai, China. Some more applications and illustrative examples on model
reduction can be found in his slides that you can download from the summer
school’s website1. Since this course is strongly based on control-theoretic ba-
sics, I recommend to read Chapters 3 and 4 of

K. Zhou, J. C. Doyle, and K. Glover. Robust and Optimal Control, Prentice-
Hall, Englewood Cliffs, NJ, 1996.

to look up these concepts. Further, more recent results discussed here will be
cited throughout the lecture notes, so that you can read the original sources.

1http://g2s3.cs.ucdavis.edu/lecturers/Benner/Benner-lectures-online.pdf
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CHAPTER 1

Introduction

1.1 What is Model Reduction?

Today, for the study of real-world processes, one usually sets up mathematical
models usually consisting of differential (or differential-algebraic) equations that
describe the behavior of the system under consideration. However, there is an
ever-increasing need for higher accuracy which means that these models get
more and more complex. The simulation, optimization, and control using such
models then often leads to a very high demand in computational resources,
both in terms of consumed time and memory – often even forbidding perform-
ing the desired task at all. Therefore, there is need for replacing the complex
mathematical model by a much simpler model, that approximately behaves like
the original model but which is computationally much less demanding. The
process of finding this simpler representation is called model reduction. The
typical set-up is depicted in Figure 1.1.

In this course we mainly consider control systems of the general form

9xptq “ fpt, xptq, uptqq, xpt0q “ x0

yptq “ gpt, xptq, uptqq,
(1.1)

where I “ rt0, tfs is a time interval of interest, x : I Ñ Rn is the state function
with initial value x0 P Rn, u : I Ñ Rm is the input function, y : I Ñ Rp is the
output function, and f : IˆRnˆRm Ñ Rn and g : IˆRnˆRm Ñ Rp. Usually,
the input is a function that can be used to control the state of the system to

1
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Figure 1.1: The broad setup of model reduction.

achieve a desired behavior. The output consists of “quantities of interest” that
can often be measured in the real physical process.

The goal of model reduction is to replace the functions f and g in (1.1) by a
reduced-order model

9
rxptq “ rfpt, rxptq, uptqq, rxpt0q “ rx0

ryptq “ rgpt, rxptq, uptqq,
(1.2)

where rx : I Ñ Rr with r ! n is the reduced state function with initial value
rx0 P Rr, and rf : IˆRrˆRm Ñ Rn, rg : IˆRrˆRm Ñ Rp. This model should
be constructed such that }y ´ ry} is “small” for all admissible inputs u. This will
be made precise later. Note that we are only interested in the map from the
input to the output, not in the evolution of the state itself.

In this course we focus on linear time-invariant systems, which are of the sim-
pler form

9xptq “ Axptq `Buptq,

yptq “ Cxptq `Duptq,
(1.3)

for some matrices A P Rnˆn, B P Rnˆm, C P Rpˆn, and D P Rpˆm. Normally,
we will also assume that xpt0q “ xp0q “ 0.

We will discuss a rigorous mathematical theory for model reduction. We will dis-
cuss efficient numerical algorithms as well as theorems on the approximation
quality, e. g., we state and prove error bounds. We will also touch on aspects
of structure-preservation. This means, that if the original model has a certain
structure, then also the reduced model should have this structure to account for
physical properties that are encoded in the model.



1.2. Examples of Large-Scale Dynamical Systems 3

1.2 Examples of Large-Scale Dynamical Systems

1.2.1 A Controlled Discretized Heat Equation

Consider the temperature distribution T pt, ξq of a one-dimensional beam of
length ` “ 1. Here, ξ P r0, 1s is the space variable and t ě 0 denotes the time.
On the right end of the beam we impose the boundary condition T pt, 1q “ 0 for
all t ě 0. On the left end we have a heat source that results in a controllable
temperature flux

´
B

Bξ
T pt, 0q “ uptq.

The heat diffusion inside the beam is described by the heat equation

B

Bt
T pt, ξq “ k ¨

B2

Bξ2
T pt, ξq for all ξ P p0, 1q, t ą 0.

Moreover, we are interested in the average beam temperature, i. e., our output
is

yptq “

ż 1

0
T pt, ξqdξ.

Finally, we need an initial condition which is given by

T p0, ξq “ 0 for all ξ P r0, 1s.

Now we discretize in space at n equidistant points and obtain

xptq “

»

—

–

x1ptq
...

xnptq

fi

ffi

fl

:“

»

—

—

—

–

T pt, 0q
T
`

t, 1
n

˘

...
T
`

t, n´1
n

˘

fi

ffi

ffi

ffi

fl

.

For i “ 2, 3, . . . , n´ 1 we find

9xiptq “
B

Bt
T
`

t, i´1
n

˘

“ k ¨
B2

Bξ2
T
`

t, i´1
n

˘

« k ¨ n2
`

T
`

t, i´2
n

˘

´ 2T
`

t, i´1
n

˘

` T
`

t, in
˘˘

“ k ¨ n2 pxi´1ptq ´ 2xiptq ` xi`1ptqq .

Analogously, we find

9xnptq « k ¨ n2pxn´1ptq ´ 2xnptqq,

since xn`1ptq :“ T pt, nnq “ 0. Moreover, we have

9x1ptq “
B

Bt
T pt, 0q “ k ¨

B2

Bξ2
T pt, 0q

« k ¨ n

ˆ

B

Bξ
T
`

t, 1
n

˘

´
B

Bξ
T pt, 0q

˙

« k ¨ n pnpx2ptq ´ x1ptqq ` uptqq .
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For the output we take a piecewise constant approximation, i. e.,

yptq “

ż 1

0
T pt, ξqdξ «

1

n

n´1
ÿ

i“0

T pt, inq “
1

n

n
ÿ

i“1

xiptq.

The zero initial conditions imply xp0q “ 0. Our final controlled discretized heat
equation now attains the form

9xptq “ Axptq `Buptq, xp0q “ 0,

yptq “ Cxptq,
(1.4)

where

A “ kn2

»

—

—

—

—

—

–

´1 1
1 ´2 1

. . . . . . . . .
1 ´2 1

1 ´2

fi

ffi

ffi

ffi

ffi

ffi

fl

P Rnˆn, B “ kn

»

—

—

—

–

1
0
...
0

fi

ffi

ffi

ffi

fl

P Rnˆ1,

C “
1

n

“

1 . . . 1
‰

P R1ˆn.

(1.5)

The larger n the better the solution of the PDE will be approximated, but the size
of the system of ODEs in (1.4) and (1.5) will also grow and thus its evaluation
will be more expensive.

Let k “ 1 and n “ 1000. Using the method of balanced truncation (discussed
later), we can approximate the system by

9
rxptq “ rArxptq ` rBuptq, rxp0q “ 0,

ryptq “ rCrxptq,

with

rA “

»

–

´2.256 1.775 ´0.6057
´1.775 ´16.63 12.21
´0.6057 ´12.21 ´40.66

fi

fl , rB “

»

–

´1.074
´0.4136
´0.1442

fi

fl ,

rC “
“

´1.074 0.4136 ´0.1442
‰

.

Simulation with various inputs shows that the outputs y and ry are almost the
same.

1.2.2 Further Examples

Here will briefly mention a few more examples to illustrate the importance of
model reduction in practice.
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Electrical Circuits. Electrical circuits containing only inductors, capacitors,
and resistors can be modeled using modified modal analysis. This results in a
linear system of the form

E 9xptq “ Axptq `Buptq,

yptq “ BTxptq,
(1.6)

where the state xp¨q contains the node potentials and currents through induc-
tors and voltage sources. The input up¨q contains the currents of the current
sources as well as the voltages of the voltage sources. The output yp¨q con-
tains the negative of the voltages of the current sources and the currents of the
voltage sources. Here the matrices E, A, and B have the form

E “

»

–

ACCAT
C 0 0

0 L 0
0 0 0

fi

fl , A “

»

–

´ARGAT
R ´AL ´AV

AT
L 0 0

AT
V 0 0

fi

fl ,

B “

»

–

´AI 0
0 0
0 ´I

fi

fl ,

(1.7)

where G, L, C are positive definite matrices containing the conductances, in-
ductances, and capacities of the resistors, inductors, and capacitors, respec-
tively. The matrices AC , AR, AL, AV , and AI are incidence matrices that de-
scribe the network topology of the circuit. This model differs from (1.3), namely
an additional matrix E is in front of 9x and moreover, E is singular. This means,
that not all of the equations in (1.6) are differential equations, but there are also
algebraic equations that result from Kirchhoff’s laws. Therefore, such a system
is called a differential-algebraic system. Moreover, the system (1.6) with (1.7)
has certain symmetries that account for the physical properties of the circuit.
For example, (1.6) with (1.7) is a passive system, meaning that

ż T

0
yptqTuptqdt ě 0

for all T ě 0 and all smooth solution trajectories with Exp0q “ 0. This prop-
erty must be reflected in the reduced-order model in order to get meaningful
simulation results. In other words, structure-preserving methods are of great
importance in applications.

Structural Mechanics. The goal of structural mechanics is the computation
of mechanical deformations and internal forces and stresses within mechanical
structures, such as buildings, bridges, machines, etc. Using the finite element
method, the mechanical structure is decomposed into masses that are stiffly
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connected. This leads to a large ordinary differential equation of second order
of the form

M :xptq `D 9xptq `Kxptq “ Buptq,

yptq “ C1xptq ` C2 9xptq,
(1.8)

where the state xp¨q is the displacement of the masses from the equilibrium po-
sition and the input up¨q is an external force. Moreover, M and K are the pos-
itive definite mass and stiffness matrices and D is a positive definite damping
matrix. Using a linearization, one can in principal rewrite (1.8) as a first-order
system as in (1.3) and do model reduction on the first-order system. However,
often it is important to have a reduced-order model of the form (1.8). It is often
not possible to gain such a system when using methods for first-order systems.
There are methods that work directly on (1.8), but there are still many open
research problems.



CHAPTER 2

Basics of Systems and Control Theory

In this chapter we consider linear time-invariant (LTI) control systems

9xptq “ Axptq `Buptq, xpt0q “ x0,

yptq “ Cxptq `Duptq,
(2.1)

where A P Rnˆn, B P Rnˆm, C P Rpˆn, D P Rpˆm, x : rt0, tfs Ñ Rn
is the state of the system, u : rt0, tfs Ñ Rm denotes a control input and
y : rt0, tfs Ñ Rp is a measurable output. The set of LTI systems with state-
space dimension n, m inputs, and p outputs is denoted by Σn,m,p and we write
rA,B,C,Ds P Σn,m,p. The goal of this chapter is to give a basic analysis and
discussion of such systems in order to set the foundations for the model re-
duction methods we discuss later. Here we will rather skip the proofs or keep
them short since this will mainly be the topic of the course on control theory. A
more detailed introduction to the concepts presented here can be found in the
textbook [ZDG96, Chapters 3 & 4].

2.1 Properties of LTI Systems

Next we discuss some fundamental properties of LTI dynamical systems. In
the next definition we assume for simplicity that tf “ 8 and that Uad :“
PCprt0, tfs,Rmq is the set of admissible inputs, i. e., the set of all piecewise
continuous functions mapping from rt0, tfs to Rm, but in principal we could also
take Uad “ L2prt0, tfs,Rmq.

7
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Definition 2.1: The LTI system rA,B,C,Ds P Σn,m,p is called

a) asymptotically stable, if all solutions of the linear homogeneous ODE 9xptq “
Axptq satisfy limtÑ8 xptq “ 0 for all initial conditions xpt0q “ x0.

b) controllable, if for all initial conditions xpt0q “ x0 and all x1 P Rn, there
exists a t1 ą t0 and a control function u P Uad such that xpt1q “ x1.

c) stabilizable, if for all initial conditions xpt0q “ x0 there exists a control func-
tion u P Uad such that limtÑ8 xptq “ 0.

d) observable, if for two solution trajectories (obtained with the same input u P
Uad) xp¨q and rxp¨q it holds

Cxptq “ Crxptq @t ě t0 ñ xptq “ rxptq @t ě t0.

e) detectable, if for any solution xp¨q of 9xptq “ Axptq with Cxptq ” 0 it follows
that limtÑ8 xptq “ 0.

The following lemma characterizes these properties algebraically.

Lemma 2.2: The LTI system rA,B,C,Ds P Σn,m,p is

a) asymptotically stable ô ΛpAq Ă C´ :“ tλ P C : Re pλq ă 0u,

b) controllable ô rank
“

λIn ´A B
‰

“ n @λ P C
ô rank

“

B AB . . . An´1B
‰

“ n,

c) stabilizable ô rank
“

λIn ´A B
‰

“ n @λ P C` :“ tλ P C : Re pλq ě 0u
ô DF P Rmˆn such that ΛpA`BF q Ă C´,

d) observable ô rank

„

λIn ´A
C



“ n @λ P C

ô rank

»

—

—

—

–

C
CA

...
CAn´1

fi

ffi

ffi

ffi

fl

“ n,

e) detectable ô rank

„

λIn ´A
C



“ n @λ P C`

ô DG P Rnˆp such that ΛpA`GCq Ă C´.

Remark 2.3: a) Stabilizability weakens the concept of controllability in the
sense that not all possible states are reachable, but uncontrollable parts
tend to zero.
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b) Detectability weakens observability in the same sense as stabilizability
weakens controllability: not all of x can be observed but unobserved parts
are asymptotically stable, i. e., deviations vanish over time.

c) The above concepts are dual in the sense that an LTI system is observable
(detectable) if and only if the dual system

9zptq “ ATzptq ` CTvptq

is controllable (stabilizable).

The following considerations motivate the Gramians that we define next. First
we consider the input-to-state map

ζptq “ eAtB,

which is motivated by the fact that for xp0q “ x0 “ 0 and impulsive inputs
u “ u0 ¨ δ (where u0 P Rm and δ denotes the Dirac delta distribution), we
obtain

xptq “ eAtx0 `

ż t

0
eApt´τqBupτqdτ

“

ż t

0
eApt´τqBu0δpτqdτ

“ eAtBu0 “ ζptqu0.

Note that the above is formally not correct, since δ is not a function mapping
from R to R, but a distribution (often called generalized function) that is defined
by

δ : C8pR,Rnq Ñ Rn, f ÞÑ fp0q.

So actually we have more correctly

xptq :“ δ
´

eApt´¨qBu0

¯

“ eAtBu0.

Consider on the other hand the state-to-output map

ηptq “ CeAt,

which is motivated by the fact that for xp0q “ x0 and uptq ” 0, we obtain

yptq “ CeAtx0 ` C

ż t

0
eApt´τqBupτqdτ

“ CeAtx0 “ ηptqx0.

For the analysis of LTI control systems we now make use of the following Grami-
ans.
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Definition 2.4: The matrix

P pT q “

ż T

0
eAtBBTeA

Ttdt

is called the p0, T q-controllability Gramian of the system (2.1).

The matrix

QpT q “

ż T

0
eA

TtCTCeAtdt

is called the p0, T q-observability Gramian of the system (2.1).

Remark 2.5: For a system (2.1), P pT q and QpT q can be used to identify states
of the system that are easily reachable and easily observable in the interval
p0, T q in the following sense:

a) For a reachable state x˚ of the system (2.1), one can show that puptq “
BTeA

Tpt˚´tqP pt˚q
:x˚, where P pt˚q: is the Moore-Penrose inverse of P pt˚q,

controls the system from xp0q “ 0 to xpt˚q “ x˚. Moreover, among all such
controls, puptq is the one with minimal L2-norm.

b) For any t˚ ą 0 and x0 P Rn, we have

xT0Qpt˚qx0 “

ż t˚

0
xT0 eA

TtCTCeAtx0dt “

ż t˚

0

›

›CeAtx0

›

›

2

2
dt “ }yx0p¨q}

2
L2
.

Now we consider the above Gramians for T Ñ8.

Lemma 2.6: If A in (2.1) is asymptotically stable, then

a) the infinite controllability and observability Gramians

P “ lim
TÑ8

P pT q “

ż 8

0
eAtBBTeA

Ttdt

and

Q “ lim
TÑ8

QpT q “

ż 8

0
eA

TtCTCeAtdt

exist,

b) they solve the two Lyapunov equations

AP ` PAT “ ´BBT,

ATQ`QA “ ´CTC.



2.2. Laplace Transformation and Transfer Functions 11

c) If pA,Bq is controllable and pA,Cq is observable, it moreover holds that
P “ PT ą 0 and Q “ QT ą 0. (Otherwise we just have P “ PT ě 0 and
Q “ QT ě 0.)

Proof. Exercise or lecture “Control Theory”.

2.2 Laplace Transformation and Transfer Functions

In applications it is often useful to consider a dynamical system in the frequency
domain. When doing so, the system can be treated using tools from linear
algebra instead of from differential equations. A function f : r0,8q Ñ Rn
is called exponentially bounded, if there exist numbers M and α such that
}fptq}2 ďMeαt for all t ě 0. The value α is called a bounding exponent.

Definition 2.7: Let f : r0,8q Ñ Rn be exponentially bounded with bounding
exponent α. Then

L tfu psq :“

ż 8

0
fpτqe´sτdτ

for Re psq ą α is called the Laplace transform of f . The process of forming the
Laplace transform is called Laplace transformation.

It can be shown that the integral converges uniformly in a domain of the form
Re psq ě β for all β ą α.

Moreover, the following two fundamental properties hold.

Theorem 2.8: Let f, g, h : r0,8q Ñ Rn be given. Then the following two
statements hold true:

a) The Laplace transformation is linear, i. e., if f and g are exponentially
bounded, then h :“ γf ` δg is also exponentially bounded and

L thu “ γL tfu ` δL tgu

holds for all γ, δ P C.

b) If f P PC1pr0,8q,Rnq and 9f is exponentially bounded, then f is exponen-
tially bounded and

L
 

9f
(

psq “ sLtfupsq ´ fp0q.
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Now we apply the Laplace transformation to the system rA,B,C,Ds P Σn,m,p.
Assume that each of the Laplace transformsXpsq :“ Ltxupsq, Upsq :“ Ltuupsq,
and Y psq :“ Ltyupsq exist. By using Theorem 2.8, we obtain the Laplace trans-
formed system

sXpsq ´ xp0q “ AXpsq `BUpsq,

Y psq “ CXpsq `DUpsq.

Under the assumption that xp0q “ 0, we obtain the relation

Y psq “
`

CpsIn ´Aq
´1B `D

˘

Upsq.

This leads to the following definition.

Definition 2.9: The function

Gpsq :“ CpsIn ´Aq
´1B `D P Rpsqpˆm

is called the transfer function of the system rA,B,C,Ds P Σn,m,p. Here,
Rpsqpˆm denotes the set of all pˆm matrices that have real-rational functions
as entries.

The following properties of rational functions will play an important role in the
characterization of transfer functions.

Definition 2.10 (Properness): Let Gpsq P Rpsqpˆm be given. We call Gpsq

a) strictly proper, if limωÑ8 }Gpiωq}2 “ 0;

b) proper, if limωÑ8 }Gpiωq}2 ă 8;

c) improper, if limωÑ8 }Gpiωq}2 “ 8.

Since limωÑ8piωIn´Aq
´1 “ 0, it easy to see that transfer function of systems

rA,B,C,Ds P Σn,m,p are always proper, improper transfer functions can only
be realized by DAE systems. Furthermore, the transfer function of a system
rA,B,C,Ds P Σn,m,p is strictly proper if and only if D “ 0. Now we define the
notions of poles and zeros of rational matrices. For this we need the following
terms.

Definition 2.11 (Unimodular matrix, monic/coprime polynomials): Let Rrss de-
note the set of polynomials with real coefficients.

a) A polynomial matrix Upsq P Rrssnˆn is called unimodular, if its determinant
is a nonzero constant in R.

b) A polynomial ppsq P Rrss is called monic, if its leading coefficient is one.
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c) Two polynomials ppsq, qpsq P Rrss are called coprime, if their greatest com-
mon divisor is 1.

Matrices with rational entries can, via multiplication with suitable unimodular
matrices, be transformed to Smith-McMillan form, described in the next theo-
rem.

Theorem 2.12 (Smith-McMillan form): For Gpsq P Rpsqpˆm there exist unimod-
ular matrices Upsq P Rrsspˆp and V psq P Rrssmˆm, such that

U´1psqGpsqV ´1psq “

„

rGpsq 0
0 0



with rGpsq “ diag

ˆ

ε1psq

ψ1psq
, . . . ,

εrpsq

ψrpsq

˙

(2.2)
for some monic and coprime polynomials εjpsq, ψjpsq P Rrss such that εjpsq
divides εj`1psq and ψj`1psq divides ψjpsq for j “ 1, . . . , r ´ 1.

The Smith-McMillan form can now be utilized to define poles and zeros of ra-
tional matrices.

Definition 2.13 (Poles and zeros): Let Gpsq P Rpsqpˆm with Smith-McMillan
form (2.2) be given. Then λ P C is called

a) a zero of Gpsq if εrpλq “ 0;

b) a pole of Gpsq if ψ1pλq “ 0.

Roughly speaking, the poles of Gpsq are the points λ0 P C where we have
limλÑλ0 }Gpλq} “ 8. The zeros are the points λ0 P C where a rank drop
occurs, i. e., those points where the rank of Gpλ0q is strictly less than the rank
for all other matrices Gpλq, where λ is in some neighborhood of λ0.

2.3 Realizations

It is also possible to assign a dynamical system rA,B,C,Ds P Σn,m,p to a
given proper transfer function Gpsq P Rpsqpˆm which is, however, not unique.
This leads to the following definitions.

Definition 2.14: Assume that the system rA,B,C,Ds P Σn,m,p has the proper
transfer functionGpsq P Rpsqpˆm. Then we say that rA,B,C,Ds is a realization
of Gpsq. The smallest n ě 0 such that rA,B,C,Ds P Σn,m,p is a realization of
Gpsq is called the McMillan degree of Gpsq. A realization rA,B,C,Ds P Σn,m,p
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of Gpsq is called minimal, if n is the McMillan degree of Gpsq.

Remark 2.15: a) Realizations are not unique. If rA,B,C,Ds P Σn,m,p is a
realization of Gpsq, then for any nonsingular matrix T P Rnˆn, the system

“

T´1AT, T´1B,CT,D
‰

P Σn,m,p

is also a realization of Gpsq. Transformations of the above kind are also
called state-space transformations.

b) A realization is minimal, if and only if it is both controllable and observable.

If a realization is not minimal, we can obtain a minimal realization by using
Kalman decompositions. There is a controllability Kalman decomposition, mean-
ing that for rA,B,C,Ds P Σn,m,p there exists an orthogonal matrix Q P Rnˆn
such that

QTAQ “

„

A11 A12

0 A22



, QTB “

„

B1

0



, CQ “
“

C1 C2

‰

where the system rA11, B1, C1, Ds P Σr,m,p is controllable. In the above de-
composition we have ΛpAq “ ΛpA11q Y ΛpA22q. Here, the eigenvalues λ P
ΛpA22q are called uncontrollable modes of the system rA,B,C,Ds sinceBTv “
0 holds for all eigenvectors v P Cnzt0u of AT associated with eigenvalues in
ΛpA22q.

On the other hand, there is the observability Kalman decomposition, i. e., there
exists an orthogonal matrix rQ P Rnˆn such that

rQTA rQ “

«

rA11 0
rA21

rA22

ff

, rQTB “

«

rB1

rB2

ff

, C rQ “
”

rC1 0
ı

,

where the system r rA11, rB1, rC1, Ds P Σ
rr,m,p is observable. Similarly as above,

eigenvalues λ P Λp rA22q are called unobservable modes, since it holds Cv “ 0
for all eigenvectors v P Cnzt0u of A associated with eigenvalues in Λp rA22q.

A minimal realization is then obtained by first computing a controllability Kalman
decomposition and applying an observability Kalman decomposition to the re-
sulting controllable subsystem.

2.4 Hardy Spaces

In this section we consider linear spaces of rational functions in Rpsqpˆm.
These spaces are normed spaces or even inner product spaces that allow for
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geometric concepts such as length of transfer functions or distances and angles
between them. Later this will be useful to measure the approximation quality of
reduced-order models in terms of distances between the transfer functions of
the original model and the reduced one.

2.4.1 The Hilbert Space Hpˆm
2

The space Hpˆm
2 is defined by

Hpˆm
2 :“

"

G : C` Ñ Cpˆm : G is analytic in C` and
ż 8

´8

}Gpiωq}2F dω ă 8

*

.

Since every G P Hpˆm
2 is analytic, there exists a unique continuation to the

imaginary axis. The space Hpˆm
2 is a Hilbert space with the inner product

xF,GyH2 :“
1

2π

ż 8

´8

tr
´

F piωqHGpiωq
¯

dω.

This inner product induces the H2-norm

}G}H2
:“ xG,Gy

1{2
H2
“

ˆ

1

2π

ż 8

´8

}Gpiωq}2F dω

˙1{2

.

We are now interested in rational functions, i. e., in functions that are in RHpˆm
2 :“

Hpˆm
2 X Rpsqpˆm. First we have the following.

Lemma 2.16: The following statements are equivalent:

a) The function G is an element of RHpˆm
2 .

b) The function G is strictly proper and all its poles are in C´.

c) The function G can be realized by a system rA,B,C,Ds with ΛpAq Ă C´
and D “ 0.

The H2-norm of a transfer function can be utilized to bound the norm of the
output by the norm of the input as follows. For this we will make use of the
following result. It basically says that the L2-norm of a function on R is equal to
the L2-norm of its Fourier transform on iR (scaled by a constant).

Theorem 2.17 (Plancherel’s Theorem): Let f P L1pR,Rnq X L2pR,Rnq. Then
the Fourier transform of f , given by

F piωq :“ Ftfupiωq :“

ż 8

´8

fptqe´iωtdt
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exists, it satisfies F P L2piR,Cnq and, moreover, it holds

}f}2L2
“

1

2π

ż 8

´8

}F piωq}22 dω.

When we consider functions f with fptq “ 0 for all t ă 0, then the Fourier trans-
form of f coincides with the Laplace transform of f restricted to the imaginary
axis.

In fact, it can even be shown that the Laplace transform of f P L2pr0,8q,Cnq
will always give a result that is in Hn

2 . Conversely, applying the inverse Laplace
transform to F P Hn

2 will return a function in L2pr0,8q,Cnq. Summarizing, we
can write

L tL2pr0,8q,Cnqu “ Hn
2 .

Now we show that the H2-norm bounds the L8-norm of the output by the L2-
norm of the input.

Theorem 2.18: Let rA,B,C,Ds P Σn,m,p with a transfer function G P RHpˆm
2

be given. Then it holds

}G}H2
ě sup

uPL2pr0,8q,Rmq
u‰0

}y}L8
}u}L2

.

Proof. Since G P RHpˆm
2 , we have D “ 0 and therefore, it holds

yptq “

ż t

0
CeApt´τqBupτqdτ.

Set

gptq :“

#

CeAtB, t ě 0,

0, t ă 0.
, ruptq :“

#

uptq, t ě 0,

0, t ă 0.
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Taking norms, we obtain

}yptq}2 “

›

›

›

›

ż t

´8

gpt´ τqrupτqdτ

›

›

›

›

2

ď

ż t

´8

}gpt´ τq}F }rupτq}2 dτ

ď

ˆ
ż t

´8

}gpt´ τq}2F dτ

˙1{2 ˆż t

´8

}rupτq}22 dτ

˙1{2

ď

ˆ
ż 8

´8

}gpt´ τq}2F dτ

˙1{2 ˆż 8

´8

}rupτq}22 dτ

˙1{2

,

where the last inequality follows from the Cauchy-Schwarz inequality. It can be
shown that (exercise!)

F tgu piωq “ CpiωIn ´Aq
´1B.

Using Plancherel’s Theorem we obtain
ż 8

´8

}gpt´ τq}2F dτ “
1

2π

ż 8

´8

›

›CpiωIn ´Aq
´1B

›

›

2

F
dω “ }G}2H2

.

Therefore, we obtain }yptq}2 ď }G}H2
}u}L2

. Since this inequality holds for
all t ě 0, we can take the supremum on the left-hand side and obtain the
result.

For SISO (single-input single-output) systems, it even holds

}G}H2
“ sup

uPL2pr0,8q,Rmq
u‰0

}y}L8
}u}L2

,

i. e., the H2-norm is the L2–L8-induced norm of the system. For general MIMO
(multi-input multi-output) systems, the interpretation of the H2-norm is more in-
volved. The H2-norm can be computed by using Plancherel’s Theorem noticing
that

}G}H2
“

ˆ

1

2π

ż 8

´8

}Gpiωq}2F dω

˙1{2

“

ˆ
ż 8

0

›

›CeAtB
›

›

2

F
dt

˙1{2

“

ˆ
ż 8

0
tr
´

CeAtBBTeA
TtCT

¯

dt

˙1{2

“ tr
´

CPCT
¯1{2

,

where P is the controllability Gramian of the system. A similar expression can
be obtained using the observability Gramian.
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2.4.2 The Banach Space Hpˆm
8

The space Hpˆm
8 is defined by

Hpˆm
8 :“

"

G : C` Ñ Cpˆm : G is analytic in C` and sup
ωPR

}Gpiωq}2 ă 8

*

.

Again, since every G P Hpˆm
8 is analytic, there exists a unique continuation

to the imaginary axis. The space Hpˆm
8 is a Banach space equipped with the

H8-norm

}G}H8 :“ sup
ωPR

}Gpiωq}2 .

Again, we focus on rational functions, i. e., in functions that are in RHpˆm
8 :“

Hpˆm
8 X Rpsqpˆm. First we have the following.

Lemma 2.19: The following statements are equivalent:

a) The function G is an element of RHpˆm
8 .

b) The function G is proper and all its poles are in C´.

c) The function G can be realized by a system rA,B,C,Ds with ΛpAq Ă C´.

Now we show that the H8-norm bounds the L2-norm of the output by the L2-
norm of the input..

Theorem 2.20: Let rA,B,C,Ds P Σn,m,p with a transfer function G P RHpˆm
8

be given. Then it holds

}G}H8 ě sup
uPL2pr0,8q,Rmq

u‰0

}y}L2

}u}L2

.

Proof. It can be shown that an asymptotically stable system with an input u P
L2pr0,8q,Rmq results in an output y P L2pr0,8q,Rpq. (This can be proven
using Young’s convolution inequality [Bog07, Theorem 3.9.4].)

With Upsq :“ Ltuupsq and Y psq :“ Ltyupsq and using Plancherel’s Theorem
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we obtain

}y}2L2
“

1

2π

ż 8

´8

}Y piωq}22 dω

“
1

2π

ż 8

´8

}GpiωqUpiωq}22 dω

ď
1

2π

ż 8

´8

}Gpiωq}22 }Upiωq}
2
2 dω

ď sup
ωPR

}Gpiωq}22 ¨
1

2π

ż 8

´8

}Upiωq}22 dω

“ sup
ωPR

}Gpiωq}22 ¨ }u}
2
L2
.

It can also be shown that

}G}H8 “ sup
uPL2pr0,8q,Rmq

u‰0

}y}L2

}u}L2

,

i. e., the bound is tight. The proof of this is more lengthy, and therefore, it is omit-
ted. There are also several algorithms for computing the H8-norm. The most
established ones are based on an iteration on structured matrices or pencils.
They are too involved to be discussed at this point.
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CHAPTER 3

Eigenvalue-Based Approaches

Consider a linear system rA,B,C,Ds P Σn,m,p with transfer function Gpsq P
Rpsqpˆm. Assume that we have a partition of the system as

A “

„

A11 A12

A21 A22



, B “

„

B1

B2



, C “
“

C1 C2

‰

,

where Aij P Rniˆnj , Bi P Rniˆm, and Ci P Rpˆni for i, j “ 1, 2. Then the
system rA11, B1, C1, Ds P Σn1,m,p is called a truncation of the original sys-
tem rA,B,C,Ds P Σn,m,p. Assume that it has the transfer function G1psq P
Rpsqpˆm. The goal is to find a good truncation in the following sense:

a) The state-space dimension n1 is small compared to n.

b) The output y1 of rA11, B1, C1, Ds is similar to output y of rA,B,C,Ds for the
same input u, i. e., }y ´ y1} is small in some suitable norm. This norm can
be often estimated using the norm of Gpsq ´G1psq such as the H2-norm or
H8-norm.

c) If the original model is asymptotically stable, then also the reduced one
should be asymptotically stable. In particular, both transfer functions should
be in RHpˆm

8 .

It is important to note that without any further assumptions, nothing can be
said about asymptotic stability, controllability, or observability of the reduced-
order system, even if the original system is asymptotically stable, controllable,
or observable.

21
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Example: Consider the system rA,B,C,Ds P Σ2,1,1 with

A “

„

1 5
4

´7
4 ´2



, B “

„

0
1



, C “
“

0 1
‰

, D “ 5.

Then we have ΛpAq “
 

´1
4 ,´

3
4

(

, i. e., the system is asymptotically stable.
Moreover, we have

rank
“

B AB
‰

“ rank

„

0 5
4

1 ´2



“ 2,

rank

„

C
CA



“ rank

„

0 1
´7

4 ´2



“ 2,

this means that the system is controllable and observable.

Taking the truncation for n1 “ 1, we obtain the reduced-order model
r1, 0, 0, 5s P Σ1,1,1 which is unstable, uncontrollable, and unobservable.

Most often, good truncations are achieved by performing a state-space trans-
formation (Note that this does not change the transfer function!). Let T “
“

T1 T2

‰

P Rnˆn be an invertible matrix with T1 P Rnˆn1 and T2 P Rnˆn2

be given and define T´1 :“
“

W1 W2

‰T with W1 P Rnˆn1 and W2 P Rnˆn2 .
Then we consider the transformed system rT´1AT, T´1B,CT,Ds P Σn,m,p

and obtain the truncation (keeping the first n1 rows and columns) by setting
rA11, B1, C1, Ds “

“

WT
1 AT1,W

T
1 B,CT1, D

‰

P Σn1,m,p.

Note that the above is “model reduction by projection” : We assume that the
state xp¨q lives approximately in low-dimensional subspace imT1. With xptq «
T1x1ptq we obtain

T1 9x1ptq « AT1x1ptq `Buptq,

y1ptq “ CT1x1ptq `Duptq.

Next we “make the state equation square” again by imposing a Petrov-Galerkin
condition

imW1 K pT1 9x1ptq ´ pAT1x1ptq `Buptqqq .

This results in

WT
1 T1 9x1ptq “WT

1 AT1x1ptq `W
T
1 Buptq.

By choosing T1 and W1 bi-orthogonal, i. e., WT
1 T1 “ In1 , we obtain an ODE

as state equation. This bi-orthogonality is automatically fulfilled by the above
construction of the truncation. It remains to choose good projection matrices
T1 and W1. This principle can also be generalized to non-linear systems.
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3.1 Modal Truncation

In this chapter we discuss eigenvalue-based methods for model reduction. As-
sume that we have given a system rA,B,C,Ds P Σn,m,p. Assume that we
have given a state-space transformation T P Rnˆn such that

T´1AT “

„

A11 0
0 A22



, T´1B “

„

B1

B2



, CT “

„

C1

C2



. (3.1)

Then for the transfer function we obtain

Gpsq “ CpsIn ´Aq
´1B `D “

`

C1psIn1 ´A11q
´1B1 `D

˘

`
`

C2psIn2 ´A22q
´1B2

˘

“: G1psq `G2psq.

If we can determine the above decomposition such that n1 ! n and }G2} is
small, we get

}G´G1} “ }G2}

and therefore, rA11, B1, C1, Ds P Σn1,m,p is a good reduced-order model. This
process is called modal truncation (or modal approximation, modal reduction).
Here we discuss the computation of such reduced-order models.

Theorem 3.1: Assume that the system rA,B,C,Ds P Σn,m,p is asymptotically
stable (controllable, stabilizable, observable, detectable). Then the reduced-
order model rA11, B1, C1, Ds P Σn1,m,p in (3.1) is asymptotically stable (con-
trollable, stabilizable, observable, detectable).

Proof. Exercise.

Theorem 3.2: Let the system rA,B,C,Ds P Σn,m,p be asymptotically stable
with transfer function G P RHpˆm

8 and assume that A is diagonalizable. As-
sume that there is an invertible matrix T P Cnˆn such that

T´1AT “

»

—

–

λ1

. . .
λn

fi

ffi

fl

, T´1B “

»

—

–

pbT1
...
pbTn

fi

ffi

fl

, CT “
“

pc1 . . . pcn
‰

and let the reduced-order model be
“

rA, rB, rC, rD
‰

P Σr,m,p with

rA “

»

—

–

λ1

. . .
λr

fi

ffi

fl

, rB “

»

—

–

pbT1
...
pbTr

fi

ffi

fl

, rC “
“

pc1 . . . pcr
‰

, rD “ D,
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and with the transfer function rG P RHpˆm
8 . Then it holds

›

›G´ rG
›

›

H8 ď
n
ÿ

j“r`1

}pcj}2 ¨
›

›pbj
›

›

2
ˇ

ˇRe pλjq
ˇ

ˇ

.

Proof. We have

Gpsq “
n
ÿ

j“1

1

s´ λj
pcjpb

T
j `D

and
rGpsq “

r
ÿ

j“1

1

s´ λj
pcjpb

T
j `D.

Therefore, we have

›

›G´ rG
›

›

H8 “

›

›

›

›

›

n
ÿ

j“r`1

1

¨ ´ λj
pcjpb

T
j

›

›

›

›

›

H8

ď

n
ÿ

j“r`1

›

›

›

›

1

¨ ´ λj
pcjpb

T
j

›

›

›

›

H8
.

Moreover, it holds
›

›

›

›

1

¨ ´ λj
pcjpb

T
j

›

›

›

›

H8
“ sup

ωPR

›

›

›

›

1

iω ´ λj
pcjpb

T
j

›

›

›

›

2

“

›

›

›
pcjpb

T
j

›

›

›

2
¨ sup
ωPR

ˇ

ˇ

ˇ

ˇ

1

iω ´ λj

ˇ

ˇ

ˇ

ˇ

“ }pcj}2 ¨
›

›pbj
›

›

2
¨

ˇ

ˇ

ˇ

ˇ

1

Re pλjq

ˇ

ˇ

ˇ

ˇ

,

where the latter equality follows from the fact that iω ´ λj is minimized for
ω “ Impλjq.

Remark 3.3: a) In classical modal truncation, the eigenvalues are ordered with
respect to distance to the imaginary axis, i. e.,

0 ą Re pλ1q ě Re pλ2q ě . . . ě Re pλnq.

There a good numerical algorithms for approximating eigenvalues closest to
the imaginary axis. However, the error bound suggests to order the eigen-
values such that

}pc1}2 ¨
›

›pb1
›

›

2
ˇ

ˇRe pλ1q
ˇ

ˇ

ě
}pc2}2 ¨

›

›pb2
›

›

2
ˇ

ˇRe pλ2q
ˇ

ˇ

ě . . . ě
}pcn}2 ¨

›

›pbn
›

›

2
ˇ

ˇRe pλnq
ˇ

ˇ

.

There are also algorithms that handle this sorting of the eigenvalues (see
Section 3.2).
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b) Modal truncation generates good local approximations of the transfer func-
tion. This means that the reduced-order model has a good approximation
quality near those values on the imaginary axis that are close to some
λ P ΛpA11q and can have a worse approximation quality near an eigenvalue
λ P ΛpAq, if λ is close to the imaginary axis, but λ R ΛpA11q.

c) There are problems if A is non-diagonalizable or if T is ill-conditioned, i. e.,
the condition number κpT q :“ }T }2 ¨

›

›T´1
›

›

2
is large. Then

›

›pbj
›

›

2
and }pcj}2

can be large, even if B and C are of moderate norm. In this case, the state-
space dimension of the reduced-order model often has to be increased to
achieve a good approximation error.

d) The transformation matrix T can be chosen to be real by treating complex
conjugate eigenvalues as pairs. This results in a real reduced-order model.

3.2 The Dominant Pole Algorithm

As mentioned above it is desirable to order the eigenvalues such that

}pc1}2 ¨
›

›pb1
›

›

2
ˇ

ˇRe pλ1q
ˇ

ˇ

ě
}pc2}2 ¨

›

›pb2
›

›

2
ˇ

ˇRe pλ2q
ˇ

ˇ

ě . . . ě
}pcn}2 ¨

›

›pbn
›

›

2
ˇ

ˇRe pλnq
ˇ

ˇ

.

The dominant pole algorithm that we will discuss now is doing exactly this. First
we show that the vectors pbj and pcj have a special structure.

Lemma 3.4: Let rA,B,C,Ds P Σn,m,p be an asymptotically stable system with
transfer function G P RHpˆm

8 . Assume that A is diagonalizable. Then it holds

Gpsq “
n
ÿ

j“1

Rj
s´ λj

`D

with the residues Rj “ pCxjqpvHj Bq, where xj , vj P Cn denote the right and
left eigenvectors ofA associated with the eigenvalue λj for j “ 1, . . . , n. More-
over, here we assume the normalization condition vHj xj “ 1 for j “ 1, . . . , n.

Proof. Let T P Cnˆn be such that T´1AT “ diag pλ1, . . . , λnq. Then we have
that

T “
“

x1 . . . xn
‰

, T´1 “

»

—

–

vH1
...
vHn

fi

ffi

fl

.
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Using the notation of Theorem 3.2, we obtain
»

—

–

pb1
...
pbn

fi

ffi

fl

:“ T´1B “

»

—

–

vH1 B
...

vHnB

fi

ffi

fl

,
“

pc1 . . . pcn
‰

:“ CT “
“

Cx1 . . . Cxn
‰

,

which gives the result.

We now derive the dominant pole algorithm for SISO systems [RM06b]. The
case of MIMO systems is conceptually slightly different, see also Remark 3.5.
So, assume that we have given an asymptotically stable system

“

A, b, cT, 0
‰

P

Σn,1,1 with the transfer function Gpsq P Rpsq. Here we set the feedthrough term
D “ 0 to simplify the presentation, but it is no problem to include it as well.
Then we have

Gpsq “
Y psq

Upsq
“ cTpsIn ´Aq

´1b,

GHpsq “
Y psq

Upsq
“ bTpsIn ´Aq

´Hc,

where Upsq and Y psq are the Laplace transforms of u and y, respectively. This
can be reformulated

„

sIn ´A ´b
cT 0

 „

Xpsq
Upsq



“

„

0
Y psq



,

„

psIn ´Aq
H c

´bT 0

 „

V psq

Upsq



“

„

0

Y psq



,

(3.2)

with auxiliary vectors Xpsq and V psq (where Xpsq is the Laplace transform of
the state of

“

A, b, cT, 0
‰

P Σn,1,1). If λ P C is a pole ofGpsq, then limsÑλ |Gpsq| “
8 and one can choose limsÑλ Upsq “ 0, while Y psq ” 1. This yields that
limsÑλXpsq “ x and limsÑλ V psq “ v are right and left eigenvectors of A
associated with the eigenvalue λ and the normalization conditions cTx “ 1 and
´bTv “ 1.

We want to determine the most dominant poles of Gpsq, i. e., those λj P ΛpAq,
where |Rj |{|Re pλjq| is the largest. We do this iteratively in a search in possibly
growing subspaces. Assume that we have subspaces spanned by pX P Cnˆk
and pV P Cnˆk for some k ! n. Then we can project the eigenvalue problem
for the matrix pencil sIn ´ A P Rrssnˆn to a small eigenvalue problem for the
matrix pencil

spV H
pX ´ pV HA pX P Crsskˆk.

Assume that this pencil has only semi-simple eigenvalues and that pV H
pX is

invertible. Then one could alternatively consider the eigenvalue problem for the
projected matrix ppV H

pXq´1
pV HA pX P Ckˆk. For this matrix pencil, we can easily
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determine all eigenvalues rλj P C and the associated right and left eigenvectors
rxj P Ck and rvj P Ck for j “ 1, . . . , k. Then we obtain the eigenvalue and
eigenvector approximations for the original problem as

pλj “ rλj , pxj “ pXrxj , pvj “ pV rvj , j “ 1, . . . , k.

These approximations can now be sorted according to our dominance mea-
sure, i. e., we sort the eigenvalues such that

ˇ

ˇcTpx1pv
H
1 b

ˇ

ˇ

ˇ

ˇRe
`

pλ1

˘ˇ

ˇ

ě

ˇ

ˇcTpx2pv
H
2 b

ˇ

ˇ

ˇ

ˇRe
`

pλ2

˘ˇ

ˇ

ě . . . ě

ˇ

ˇcTpxkpv
H
k b

ˇ

ˇ

ˇ

ˇRe
`

pλk
˘ˇ

ˇ

.

So pλ1 is our current approximation for the most dominant pole. If
›

›Apx1 ´

pλ1px1

›

›

2
ă ε (or

›

›

pvH1 A ´
pλ1pv

H
1

›

›

2
ă ε) for some small tolerance ε ą 0, then

we assume that the eigenvalue pλ1 and the corresponding eigenvectors have
converged.

If this is not the case, we expand the matrices pX and pV in order to enrich
the spaces im pX and im pV in which we search for the eigenvectors. This is
done by plugging in our current dominant pole approximation pλ1 into (3.2) and
compute px :“ X

`

pλ1

˘

and pv :“ V
`

pλ1

˘

(with Y psq :“ 1). Then the expanded

projection matrices are
”

pX px
ı

and
”

pV pv
ı

. For numerical stability, it advised
to orthogonalize their columns afterwards.

On the other hand, if pλ1 has converged to an eigenvalue λ1 with right and
left eigenvectors x1, v1 P Cn, then we want to ensure that we do not not find
it again in the next iterations. So we want to deflate this eigenvalue and its
eigenvectors. This is done by projecting the system rA, b, cT, 0s, namely we
replace it by

“

A,rb,rcT, 0
‰

with

rb :“

ˆ

In ´
x1v

H
1

vH1 x1

˙

b, rcT :“ cT
ˆ

In ´
x1v

H
1

vH1 x1

˙

.

First of all, note that the matrix In ´
x1vH1
vH1 x1

is a projector. Projecting the sys-
tem like this has the effect that the residue of the deflated eigenvalue is zero,
since rcTx1 “ 0 and vH1 rb “ 0 and the residues of the other eigenvalues remain
unchanged (exercise!). Therefore, the already converged eigenvalues are not
found again, since there dominance value is set to zero. To summarize this
section we formulate the above results as Algorithm 3.1.
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Algorithm 3.1 Dominant pole algorithm

Input: Asymptotically stable system rA, b, cT, 0s P Σn,1,1 with transfer function
Gpsq P Rpsq; an initial pole estimate λ P C, tolerance ε ą 0, number of
desired dominant poles k.

Output: k dominant poles Λ “ tλ1, . . . , λku Ă C of Gpsq with the associated
right and left eigenvectors of A stored in R, L P Cnˆk.

1: Initialize kfound :“ 0, Λ “ tu, R “ r s, L “ r s, pX “ r s, pV “ r s.
2: while k ą kfound do
3: Solve the linear system

„

λIn ´A ´b
cT 0

 „

px
u



“

„

0
1



for px P Cn.
4: Solve the linear system

„

pλIn ´Aq
H c

´bT 0

 „

pv
u



“

„

0
1



for pv P Cn.
5: Expand the search spaces: Set pX :“

”

pX px
ı

and pV :“
”

pV pv
ı

and
orthogonalize.

6: Compute the eigenvalues and eigenvectors of the matrix pencil spV H
pX ´

pV HA pX P Crss`ˆ` and compute eigenvalue and eigenvector approxima-
tions, sort them according to the dominance measure and store them as
pΛ :“

 

pλ1, . . . , pλ`
(

, pX :“
“

px1 . . . px`
‰

, pV :“
“

pv1 . . . pv`
‰

.
7: while

›

›Apx1 ´ pλ1px1

›

› ă ε do
8: Deflate the found eigenvalue: Set

kfound :“ kfound ` 1, λkfound :“ pλ1,

Λ :“ ΛY tλkfoundu, R :“
“

R px1

‰

, L :“
“

L pv1

‰

,

b :“

ˆ

In ´
px1pv

H
1

pvH1 px1

˙

b, cT :“ cT
ˆ

In ´
px1pv

H
1

pvH1 px1

˙

.

9: Set

pΛ :“
 

pλ2, . . . , pλ`
(

“:
 

pλ1, . . . , pλ`´1

(

,

pX :“
“

px2 . . . px`
‰

“:
“

px1 . . . px`´1

‰

,

pV :“
“

pv2 . . . pv`
‰

“:
“

pv1 . . . pv`´1

‰

.

10: end while
11: Set the new pole estimate λ “ pλ1.
12: end while
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Remark 3.5: a) The dominant pole algorithm presented here is a subspace ac-
celerated version of an algorithm that was originally designed as a Newton
method to find roots of G´1psq.

b) It is not guaranteed that the method finds the most dominant poles, but it of-
ten works well in practice (in particular, if there are only a few very dominant
poles). Convergence of poles can be enhanced by using a Newton scheme
or a Rayleigh quotient iteration to update the pole estimates.

c) The projections in (3.2) should not be constructed explicitly. It is rather ad-
vised to compute the action of the projection on a vector z P Cn if needed.
This means that we we compute

ˆ

In ´
xvH

vHx

˙

z “ z ´
vHz

vHx
¨ x

using two inner products and one scaled vector addition.

d) The algorithm can be modified to deal with MIMO systems [RM06a]. The
most drastic changes are in lines 3 and 4 of Algorithm 3.1, where we replace
the linear systems by

pλIn ´Aqpx “ Bu, pλIn ´Aq
H
pv “ Cw,

where u P Cm and w P Cp are chosen to be the right and left singular
vectors of Gpλq corresponding to its largest singular value.

e) The algorithm can also be modified to output real R and L in order to obtain
a real reduced-order model. For this, pairs of complex conjugate eigenval-
ues have to be deflated together.
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CHAPTER 4

Balancing-Based Approaches

In this chapter we discuss another kind of transformation that simultaneously
transforms the controllability and observability Gramians to diagonal form. Then
we can sort the transformed states according to their input or output energy and
truncate those which are hard to control or hard to observe.

4.1 Input and Output Energy

Consider a system rA,B,C,Ds P Σn,m,p. Here we consider the system for
t P R and assume that xp´8q “ 0. Assume that we have an input u P
L2pp´8, 0s,Rmq steering the state to xp0q “ x0 P Rn. Then

Eu :“

ˆ
ż 0

´8

}upτq}22 dτ

˙1{2

“ }u}L2pp´8,0s,Rmq

is called the input energy and if y P L2pr0,8q,Rpq, then

Ey :“

ˆ
ż 8

0
}ypτq}22 dτ

˙1{2

“ }y}L2pr0,8q,Rpq

is called the output energy. In many applications these can be interpreted as
actual physical energies of the system.

For the initial state xp0q “ x0 P Rn we define

Eupx0q :“ inf
uPL2pp´8,0s,Rmq
xp´8q“0, xp0q“x0

}u}L2pp´8,0s,Rmq , (4.1)

31
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which is the minimal energy needed to steer the system from the state zero
state to the state x0 in an arbitrary time. If Eupx0q is small, then the state x0

is easy to reach, otherwise it is hard to reach. Note that Eupx0q “ 8 is also
possible. Then the state x0 is unreachable and the system is uncontrollable.

Now assume that xp0q “ x0 and that u|r0,8q “ 0. Then we have yptq “

CeAtx0. We define

Eypx0q :“ }y}L2pr0,8q,Rpq “
›

›CeA¨x0

›

›

L2pr0,8q,Rpq
,

which is the output energy gained from the state x0. If Eypx0q is large, then x0

is easy to observe, otherwise it is hard to observe. If Eypx0q “ 0, the the state
x0 is unobservable, and therefore the system is unobservable.

The next theorem shows that the Eupx0q and Eypx0q can be expressed by
the controllability and observability Gramians, respectively, which make them
feasible for numerical computations.

Theorem 4.1: Let rA,B,C,Ds P Σn,m,p be asymptotically stable and control-
lable. Then the following two statements are satisfied:

a) It holds
Eupx0q

2 “ xT0P
´1x0,

where P is the controllability Gramian of the system. Moreover, u˚ptq :“

BTe´A
TtP´1x0 is a trajectory for which the infimum in (4.1) is attained.

b) It holds
Eypx0q

2 “ xT0Qx0,

where Q is the observability Gramian of the system.

Proof. a) Let px, uq be an arbitrary solution trajectory with xp´8q “ 0, xp0q “
x0, and Eu ă 8. Then we have

xp0q “

ż 0

´8

e´AτBupτqdτ.

We show that Eu ě Eu˚ for the above defined u˚. Define v :“ u´u˚. Then
we have

ż 0

´8

u˚pτq
Tvpτqdτ “ xT0P

´1

ˆ
ż 0

´8

e´AτBupτqdτ

´

ż 0

´8

e´AτBBTe´A
Tτdτ

loooooooooooooomoooooooooooooon

“P

P´1x0

˙

“ xT0P
´1px0 ´ x0q “ 0.
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Hence we obtain

E2
u “

ż 0

´8

upτqTupτqdτ

“

ż 0

´8

pvpτq ` u˚pτqq
Tpvpτq ` u˚pτqqdτ

“

ż 0

´8

vpτqTvpτqdτ
looooooooomooooooooon

ě0

`2

ż 0

´8

u˚pτq
Tvpτqdτ

loooooooooomoooooooooon

“0

`

ż 0

´8

u˚pτq
Tu˚pτqdτ

looooooooooomooooooooooon

ě0

ě E2
u˚ .

Moreover, we have

E2
u˚ “ xT0P

´1

ż 0

´8

e´AτBBTe´A
TτdτP´1x0 “ xT0P

´1PP´1x0

“ xT0P
´1x0.

b) We have

Eypx0q
2 “

ż 8

0
ypτqTypτqdτ “ xT0

ż 8

0
eA

TτCTCeAτdτx0 “ xT0Qx0.

This completes the proof.

Now consider an eigendecomposition of P , i. e., P “ UΣUT with orthogonal
U “

“

u1 . . . un
‰

and Σ “ diagpσ1, . . . , σnq, where σ1 ě σ2 ě . . . ě σn.
Then the energy needed to reach the state x0 “ ui from xp´8q “ 0 is given
by Eupuiq2 “ uTi P

´1ui “ 1{σi. Thus eigenvectors of P corresponding to
large eigenvalues are easy to reach and eigenvectors of P corresponding to
small eigenvalues are hard to reach. The eigenvectors corresponding to zero
eigenvalues are unreachable. Analogously, the eigenvectors corresponding to
large eigenvalues of Q are easy to observe, the ones corresponding to small
eigenvalues are hard to observe and those corresponding to zero eigenvalues
are unobservable.

4.2 Balancing Transformations and Balanced Trunca-
tion

We motivate the concept of balancing transformations by means of an example.
The application of theses transformations then leads to the method of balanced
truncation that was discussed first in [Moo81].
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Example: Consider the parameter-dependent system rApαq, Bpαq, Cpαq, Ds P
Σ2,1,1 with

Apαq “

„

´1 ´ 4
α

4α ´2



, Bpαq “

„

1
2α



, Cpαq “
“

´1 2
α

‰

, D “ 0

for α ą 0. This system is asymptotically stable, controllable, and observable.
Thus the controllability and observability Gramians P pαq and Qpαq are sym-
metric positive definite, where

P pαq “

„

1
2 0
0 α2



, Qpαq “

„

1
2 0
0 1

α2



.

The eigenvectors of P and Q are e1 “ r
1
0 s and e2 “ r

0
1 s.

Assume that the state function xp¨q “
”

x1p¨q
x2p¨q

ı

is expressed as a (time-

dependent) linear combination of the eigenvectors of P pαq, in our case we
get

xptq “ β1pα, tqe1 ` β2pα, tqe2.

Intuitively, if a state ei is hard to reach, then its coefficient βi is negligible, so
truncating it should not change the system’s dynamics drastically. In our exam-
ple we have two cases:

a) α ! 1: In this case, e2 is much harder to reach than e1. Thus we truncate
x2 and obtain the reduced-order model r´1, 1,´1, 0s P Σ1,1,1.

b) α " 1: In this case, e1 is much harder to reach than e2. Thus we truncate
x1 and obtain the reduced-order model

“

´ 2, 2α, 2
α , 0

‰

P Σ1,1,1.

Alternatively, we could express xp¨q as a (time-dependent) linear combination
of the eigenvectors of Qpαq, in our case we get

xptq “ γ1pα, tqe1 ` γ2pα, tqe2.

Similarly as above, if a state ei is hard to observe, then its coefficient γi is
negligible, so truncating it should not change the system’s dynamics too much.
Again we have two cases in our example:

a) α ! 1: In this case, e1 is much harder to observe than e2. Thus we truncate
x1 and obtain the reduced-order model

“

´ 2, 2α, 2
α , 0

‰

P Σ1,1,1.

b) α " 1: In this case, e2 is much harder to observe than e1. Thus we truncate
x2 and obtain the reduced-order model r´1, 1,´1, 0s P Σ1,1,1.
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Remark 4.2: a) Both approaches lead to different reduced-order models. In
general, this would be OK, but in the above example this leads to contradic-
tory reduced-order models.

b) The behavior in the example can be explained as follows: If α ! 1, then e2

is very hard to reach, but at the same time it is also very easy to observe
and thus has a considerable influence on the output function.

c) The transfer function of the system is Gpsq “ 3s`8
s2`3s`18

, but the reduced-
order model depends on α, which should not be the case.

The solution of the above problems is to truncate states that are simultaneously
hard to reach and hard to oberserve. In general, finding these states is difficult,
but it is easy if P “ Q.

Definition 4.3: An asymptotically stable system rA,B,C,Ds P Σn,m,p with
controllability Gramian P and observability Gramian Q is called balanced, if
P “ Q “ diagpσ1, σ2, . . . , σnq.

If a system is not balanced, then we can find a state-space transformation that
balances the system. Before, we have to check how state-space transforma-
tions affect the Gramians.

Lemma 4.4: Let rA,B,C,Ds P Σn,m,p be asymptotically stable. Let T P Rnˆn

be invertible and define
“

rA, rB, rC, rD
‰

:“ rT´1AT, T´1B,CT,Ds. Then

a) P is the controllability Gramian of rA,B,C,Ds, if and only if rP :“ T´1PT´T

is the controllability Gramian of
“

rA, rB, rC, rD
‰

;

b) Q is the observability Gramian of rA,B,C,Ds, if and only if rQ :“ TTQT is
the observability Gramian of

“

rA, rB, rC, rD
‰

.

Proof. Exercise.

Now we show how to balance a system using so-called balancing transforma-
tions.

Theorem 4.5: Let rA,B,C,Ds P Σn,m,p be asymptotically stable, controllable,
and observable. Then there exists an invertible matrix T P Rnˆn such that
rT´1AT, T´1B,CT,Ds is balanced.

Proof. By assumption, for the Gramians P and Q we have P ą 0 and Q ą

0. Thus, there exist Cholesky decompositions P “ RRT and Q “ LLT,
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where R and L are lower triangular and invertible. Now consider the singu-
lar value decomposition LTR “ UΣV T with orthogonal U, V P Rnˆn and
Σ “ diagpσ1, σ2, . . . , σnq, σ1 ě σ2 ě . . . ě σn ě 0. Since L and R are
invertible, so is LTR and therefore, we have σn ą 0.

Set T :“ RV Σ´
1
2 . Since In “ Σ´

1
2UTLTRV Σ´

1
2 we find T´1 “ Σ´

1
2UTLT.

For the controllability Gramian rP of the transformed system we have

rP “ T´1PT´T

“ Σ´
1
2UTLTRRTLUΣ´

1
2

“ Σ´
1
2UTUΣV TV ΣUTUΣ´

1
2 “ Σ.

Analogously, for the transformed observability Gramian rQ we obtain

rQ “ TTQT

“ Σ´
1
2V TRTLLTRV Σ´

1
2

“ Σ´
1
2V TV ΣUTUΣV TV Σ´

1
2 “ Σ “ rP .

i. e., the transformed system is balanced.

Example: We revisit the above example. We have

R “

«

1?
2

0

0 α

ff

, L “

«

1?
2

0

0 1
α

ff

.

Moreover, it holds

LTR “

„

1
2 0
0 1



“

„

0 1
1 0

 „

1 0
0 1

2

 „

0 1
1 0



.

The balancing transformation is given by

T “ RV Σ´
1
2 “

«

1?
2

0

0 α

ff

„

0 1
1 0

 „

1 0

0
?

2



“

„

0 1
α 0



.

Now the balanced system
“

rA, rB, rC, rD
‰

P Σ2,1,1 is given by

rA “

„

0 1
α

1 0

 „

´1 ´ 4
α

4α ´2

 „

0 1
α 0



“

„

´2 4
´4 ´1



,

rB “

„

0 1
α

1 0

 „

1
2α



“

„

2
1



,

rC “
“

´1 2
α

‰

„

0 1
α 0



“
“

2 ´1
‰

,

rD “ 0.
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The transformed system does not depend on α. The eigenvector e2 of rP “ rQ
(e1 in the old coordinates) is harder to to reach and harder to observe than e1.

This leads to Algorithm 4.1 for model reduction that is called balanced trunca-
tion.

Algorithm 4.1 Balanced truncation (basic version)
Input: Asymptotically stable and minimal system rA,B,C,Ds P Σn,m,p, de-

sired reduced order r.
Output: Reduced-order model rA11, B1, C1, Ds P Σr,m,p.

1: Solve the Lyapunov equations

AP ` PAT “ ´BBT, ATQ`QA “ ´CTC

for P ą 0 and Q ą 0.
2: Compute Cholesky factorization P “ RRT and Q “ LLT.
3: Compute the singular value decomposition LTR “ UΣV T.
4: Set T :“ RV Σ´

1
2 (and T´1 “ Σ´

1
2UTLT).

5: Do the balancing transformation

“

T´1AT, T´1B,CT,D
‰

“

„„

A11 A12

A21 A22



,

„

B1

B2



,
“

C1 C2

‰

, D



and set the reduced-order model as rA11, B1, C1, Ds P Σr,m,p.

4.3 Hankel Operator and Hankel Singular Values

In this section we want to discuss the foundation for the analysis of the balanced
truncation algorithm introduced above. For this, we need the Hankel operator
and the Hankel singular values [Ant05, Sec. 5.4]. Consider the state equation
9xptq “ Axptq ` Buptq with xp´8q “ 0 and an input u P L2pp´8, 0s,Rmq that
acts on the negative time-horizon leading to xp0q “ x0. By switching off the
input at t “ 0, the output equation yptq “ Cxptq`Duptq gives an output signal
y P L2pr0,8q,Rpq on the positive time-horizon. This defines an operator

H : L2pp´8, 0s,Rmq Ñ L2pr0,8q,Rpq, u ÞÑ y,

which is called the Hankel operator of the system rA,B,C,Ds P Σn,m,p. We
have

x0 “

ż 0

´8

e´AτBupτqdτ, yptq “ CeAtx0,
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and thus we obtain

pHuqptq “ yptq “

ż 0

´8

CeApt´τqBupτqdτ.

Lemma 4.6: If A is asymptotically stable, then H is a bounded linear operator.

Proof. Exercise.

Definition 4.7: Let V, W be two linear spaces with the inner products x¨, ¨yV
and x¨, ¨yW , respectively. Furthermore, let L : V Ñ W be a linear operator.
Then L˚ : W Ñ V is called the adjoint of L, if

xLv, wyW “ xv,L˚wyV for all v P V, w PW.

For H as above and u P L2pp´8, 0s,Rmq, y P L2pr0,8q,Rpq we obtain

xHu, yyL2pr0,8q,Rpq “

ż 8

0
ppHuqptqqTyptqdt

“

ż 8

0

ż 0

´8

upτqTBTeA
Tpt´τqCTyptqdτdt

“

ż 0

´8

upτqT
ż 8

0
BTeA

Tpt´τqCTyptqdtdτ

“ xu,H˚yyL2pp´8,0s,Rmq.

Therefore, we have

H˚ : L2pr0,8q,Rpq Ñ L2pp´8, 0s,Rmq, y ÞÑ

ż 8

0
BTeA

Tpt´¨qCTyptqdt.

Definition 4.8: Let V, W be two linear spaces with the inner products x¨, ¨yV
and x¨, ¨yW , respectively. Let L : V Ñ W be a linear operator with adjoint
L˚ : W Ñ V . Then σ P R` is called a singular value of L, if σ2 is an eigenvalue
of L˚L, i. e., there exists a v P Vzt0u such that L˚Lv “ σ2v.

Note that, if L˚Lv “ λv, then

λ }v}2V “ λxv, vyV “ xv,L˚LvyV “ xLv,LvyW “ }Lv}2W ,

i. e., λ is real and nonnegative.
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Definition 4.9: Let rA,B,C,Ds P Σn,m,p be asymptotically stable and let H be
its Hankel operator. Then the positive singular values of H are called Hankel
singular values.

We want to compute the Hankel singular values using the state-space matrices
A, B, C, D only. This will be the goal of the following considerations.

Theorem 4.10: Let rA,B,C,Ds P Σn,m,p be asymptotically stable. Let P and
Q its controllability and observability Gramians and H its Hankel operator. Then
the Hankel singular values are exactly the (positive) square-roots of the eigen-
values of PQ.

Proof. We have

yptq :“ pHuqptq “
ż 0

´8

CeApt´τqBupτqdτ “ CeAtz

for

z :“

ż 0

´8

e´AτBupτqdτ. (4.2)

Then we get

pH˚yqptq “
ż 8

0
BTeA

Tpτ´tqCTypτqdτ “ BTe´A
Tt

ż 8

0
eA

TτCTypτqdτ.

This leads to

pH˚Huqptq “ pH˚yqptq “ BTe´A
Tt

ż 8

0
eA

TτCTCeAτzdτ “ BTe´A
TtQz.

Assume that σ ą 0 is a singular value of H. Then there exists an eigenfunction
u P L2pp´8, 0s,Rmq of H˚H corresponding to an eigenvalue σ2 ą 0, i. e.,

pH˚Huqptq “ BTe´A
TtQz “ σ2uptq.

This gives

uptq “
1

σ2
BTe´A

TtQz. (4.3)

With (4.2) we get

z “

ż 0

´8

e´AτB
1

σ2
BTe´A

TτQzdτ “
1

σ2
PQz,

i. e., σ2 is an eigenvalue of PQ.
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Now assume that σ2 is an eigenvalue of PQ with an eigenvector z P Rnzt0u.
Define u P L2pp´8, 0s,Rmq as in (4.3). Then we have

pH˚Huqptq “ BTe´A
Tt

ż 8

0
eA

TτCT

ż 0

´8

CeApτ´sqBupsqdsdτ

“ BTe´A
Tt

ż 8

0
eA

TτCT

ż 0

´8

CeApτ´sqB
1

σ2
BTe´A

TsQzdsdτ

“ BTe´A
Tt

ż 8

0
eA

TτCTCeAτ
1

σ2

ż 0

´8

e´AsBBTe´A
TsQzdsdτ

“ BTe´A
Tt

ż 8

0
eA

TτCTCeAτ
1

σ2
PQz

looomooon

“z

dτ

“ BTe´A
TtQz “ σ2uptq,

i. e., σ is a singular value of H.

Note that for a minimal system, there exist the Cholesky factorizations P “

RRT and Q “ LLT. Thus, if σ2 is an eigenvalue of PQ, then we have

PQz “
`

RRT
˘`

LLT
˘

z “ σ2z

This is equivalent to
`

LTR
˘`

RTL
˘

LTz “ σ2LTz,

which implies that σ is a singular value of LTR. Therefore, we obtain the Hankel
singular values as a side product when computing the balancing transformation
in Algorithm 4.1.

4.4 Properties of Balanced Truncation

In this section we analyze properties of Algorithm 4.1, see also [Ant05, Sec.
7.2]. In particular, we will derive an error bound using the Hankel singular
values.

Theorem 4.11: Let rA,B,C,Ds P Σn,m,p be asymptotically stable and mini-
mal. Apply Algorithm 4.1 to obtain the reduced-order model rA11, B1, C1, Ds P
Σr,m,p. Assume σr ą σr`1 for the Hankel singular values σi, i “ 1, . . . , n.
Then the reduced-order model rA11, B1, C1, Ds is asymptotically stable, mini-
mal, and balanced with the Gramians P11 “ Q11 “ diagpσ1, . . . , σrq “: Σ1.

Proof. Since the system rA,B,C,Ds P Σn,m,p is minimal, the balancing trans-
formation with T leads to the transformed Gramians

rP “ rQ “ diagpσ1, . . . , σnq “: diagpΣ1,Σ2q ą 0.
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Then (in balanced coordinates), the Lyapunov equations

„

A11 A12

A21 A22

 „

Σ1 0
0 Σ2



`

„

Σ1 0
0 Σ2

 „

AT
11 AT

21

AT
12 AT

22



“ ´

„

B1

B2



“

BT
1 BT

2

‰

,

(4.4)
„

AT
11 AT

21

AT
12 AT

22

 „

Σ1 0
0 Σ2



`

„

Σ1 0
0 Σ2

 „

A11 A12

A21 A22



“ ´

„

CT
1

CT
2



“

C1 C2

‰

(4.5)

are satisfied. If the reduced-order model is asymptotically stable, i. e., ΛpA11q Ă

C´, then Σ1 ą 0 is the controllability and observability Gramian of the reduced-
order model, i. e., the reduced-order model is minimal and balanced. Now we
show that we indeed have ΛpA11q Ă C´. Let λ P C be an eigenvalue of AT

11

with eigenvector v P Cr. Then we obtain

´
›

›BT
1 v

›

›

2

2
loooomoooon

ď0

“ vHA11Σ1v ` v
HΣ1A

T
11v “ 2 Re pλq vHΣ1v

loomoon

ą0

.

This implies Re pλq ď 0. It remains to show that A11 has no eigenvalues on the
imaginary axis. Therefore, assume that there exist imaginary eigenvalues. Let
iω P iR be an imaginary eigenvalue and tv1, . . . , vqu Ă Cr be an orthonormal
basis of kerpA11 ´ iωIrq and define V “

“

v1 . . . vq
‰

. Then we have

pA11 ´ iωIrqV “ 0, V H
`

AT
11 ` iωIr

˘

“ 0.

Moreover, we have

pA11 ´ iωIrqΣ1 ` Σ1

`

AT
11 ` iωIr

˘

“ ´B1B
T
1 , (4.6)

`

AT
11 ` iωIr

˘

Σ1 ` Σ1pA11 ´ iωIrq “ ´C
T
1 C1. (4.7)

Multiplying (4.7) with V H from the left and with V from the right gives

V H
`

AT
11 ` iωIr

˘

Σ1V
loooooooooooomoooooooooooon

“0

`V HΣ1pA11 ´ iωIrqV
loooooooooooomoooooooooooon

“0

“ ´V HCT
1 C1V,

resulting in C1V “ 0. Multiplying (4.7) with V from the right yields

`

AT
11 ` iωIr

˘

Σ1V ` Σ1pA11 ´ iωIrqV
looooooooomooooooooon

“0

“ ´CT
1 C1V
loomoon

“0

,

and thus
`

AT
11 ` iωIr

˘

Σ1V “ 0. Now multiplying (4.6) with V HΣ1 from the left
and with Σ1V from the right results in

V HΣ1pA11 ´ iωIrqΣ
2
1V

loooooooooooooomoooooooooooooon

“0

`V HΣ2
1

`

AT
11 ` iωIr

˘

Σ1V
loooooooooooooomoooooooooooooon

“0

“ ´V HΣ1B1B
T
1 Σ1V,
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giving BT
1 Σ1V “ 0. By multiplying (4.6) with Σ1V from the right, we obtain

pA11 ´ iωIrqΣ
2
1V ` Σ1

`

AT
11 ` iωIr

˘

Σ1V
looooooooooomooooooooooon

“0

“ ´B1B
T
1 Σ1V

looomooon

“0

,

so we have pA11 ´ iωIrqΣ
2
1V “ 0. Since V spans kerpA11 ´ iωIrq, we have

Σ2
1V “ V Ξ for Ξ P Cqˆq with ΛpΞq Ď Λ

`

Σ2
1

˘

. (4.8)

Multiplying the (2,1) block of (4.4) by Σ1V from the right yields

A21Σ2
1V ` Σ2A

T
12Σ1V “ ´B2B

T
1 Σ1V “ 0.

On the other hand, multiplying the (2,1) block of (4.5) by V from the right results
in

AT
12Σ1V ` Σ2A21V “ ´C

T
2 C1V “ 0.

Using (4.8) and both of the last two equations we get

A21V Ξ “ A21Σ2
1V “ ´Σ2A

T
12Σ1V “ Σ2

2A21V,

hence
pA21V qΞ´ Σ2

2pA21V q “ 0.

This is a Sylvester matrix equation with the unknown A21V . Since by (4.8),
ΛpΞq X ΛpΣ2

2q “ H, it is uniquely solvable (see exercise!) and thus we have
A21V “ 0. Now we have

rA

„

V
0



“

„

A11 A12

A21 A22

 „

V
0



“

„

A11V
A21V



“ iω

„

V
0



.

Thus, iω is an imaginary eigenvalue of A, contradicting its asymptotic stability.

In the next theorem we will move towards an error bound for balanced trunca-
tion.

Theorem 4.12: Let rA,B,C,Ds P Σn,m,p with transfer function G P RHpˆm
8

be asymptotically stable and balanced with the controllability and observability
Gramians P “ Q “ diagpσ1, σ2, . . . , σnq. Let σr ą σr`1 “ . . . “ σn. Let
rA11, B1, C1, Ds P Σr,m,p be the reduced-order model of order r obtained by
Algorithm 4.1 with transfer function rG P RHpˆm

8 . Then it holds that
›

›G´ rG
›

›

H8 ď 2σr`1

(independently of the multiplicity of σr`1).
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Proof. Define

Σ1 :“ diagpσ1, σ2, . . . , σrq, Σ2 :“ diagpσr`1, σr`2, . . . , σnq,

and the error transfer function

Epsq “ Gpsq ´ rGpsq “ CpsIn ´Aq
´1B `D ´

`

C1psIr ´A11q
´1B1 `D

˘

,

and consider its realization
“

pA, pB, pC, pD
‰

P Σn`r,m,p with

pA “

»

–

A11 0 0
0 A11 A12

0 A21 A22

fi

fl , pB “

»

–

B1

B1

B2

fi

fl , pC “
“

´C1 C1 C2

‰

, pD “ 0.

Using the state-space transformation

T :“

»

–

Ir Ir 0
Ir ´Ir 0
0 0 In´r

fi

fl with T´1 “
1

2

»

–

Ir Ir 0
Ir ´Ir 0
0 0 2In´r

fi

fl ,

we obtain the alternative realization
“

pA1, pB1, pC1, pD1

‰

:“
“

T´1
pAT, T´1

pB, pCT, pD
‰

P Σn`r,m,p

with

pA1 “

»

–

A11 0 1
2A12

0 A11 ´1
2A12

A21 ´A21 A22

fi

fl , pB1 “

»

–

B1

0
B2

fi

fl ,

pC1 “
“

0 ´2C1 C2

‰

, pD1 “ 0.

Now define

A0 :“ pA1, B0 :“
”

pB1
pB2

ı

:“

»

–

B1 0

0 σr`1Σ´1
1 CT

1

B2 ´CT
2

fi

fl ,

C0 :“

«

pC1

pC2

ff

:“

„

0 ´2C1 C2

´2σr`1B
T
1 Σ´1

1 0 ´BT
2



,

D0 :“

„

0 2σr`1Ip
2σr`1Im 0



.

Then the transfer function of rA0, B0, C0, D0s P Σr`n,m`p,m`p is given by

E0psq :“ C0psIr`n ´A0q
´1B0 `D0

“

«

pC1

`

sIr`n ´ pA1

˘´1
pB1

pC1

`

sIr`n ´ pA1

˘´1
pB2 ` 2σr`1Ip

pC2

`

sIr`n ´ pA1

˘´1
pB1 ` 2σr`1Im pC2

`

sIr`n ´ pA1

˘´1
pB2

ff
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Since A and A11 are both asymptotically stable, then also the matrices pA, pA1,
and A0 are asymptotically stable by construction. Moreover, rA0, B0, C0, D0s

has the controllability Gramian P0 “ diag
`

Σ1, σ
2
r`1Σ´1

1 , 2Σ2

˘

, because

A0P0 ` P0A
T
0 `B0B

T
0 “

»

–

A11Σ1 0 A12Σ2

0 σ2
r`1A11Σ´1

1 ´A12Σ2

A21Σ1 ´σ2
r`1A21Σ´1

1 2A22Σ2

fi

fl

`

»

–

Σ1A
T
11 0 Σ1A

T
21

0 σ2
r`1Σ´1

1 AT
11 ´σ2

r`1Σ´1
1 AT

21

Σ2A
T
12 ´Σ2A

T
12 2Σ2A

T
22

fi

fl

`

»

–

B1B
T
1 0 B1B

T
2

0 σ2
r`1Σ´1

1 CT
1 C1Σ´1

1 ´σr`1Σ´1
1 CT

1 C2

B2B
T
1 ´σr`1C

T
2 C1Σ´1

1 B2B
T
2 ` C

T
2 C2

fi

fl “ 0, (4.9)

where the latter equality follows from combining (4.4) and (4.5). Moreover, we
have

B0D
T
0 “

»

–

0 2σr`1B1

2σ2
r`1Σ´1

1 CT
1 0

´2σr`1C
T
2 2σr`1B2

fi

fl “ ´P0C
T
0 . (4.10)

We have

}E}H8 “ sup
ωPR

}Epiωq}2 ď sup
ωPR

}E0piωq}2 “ sup
ωPR

´

λmax

`

E0piωqE0piωq
H
˘

¯1{2
.

Define the conjugated transfer function E„0 psq :“ E0p´sq
H which is realized by

“

´ AT
0 , C

T
0 ,´B

T
0 , D

T
0

‰

P Σr`n,m`p,m`p. Then a realization of E0psqE
„
0 psq is

given by
“

rA0, rB0, rC0, rD0

‰

P Σ2pr`nq,m`p,m`p (see homework!) with

rA0 “

„

A0 ´B0B
T
0

0 ´AT
0



, rB0 “

„

B0D
T
0

CT
0



, rC0 “
“

C0 ´D0B
T
0

‰

,

rD0 “ D0D
T
0 .

Using the state-space transformation

rT :“

„

Ir`n ´P0

0 Ir`n



with rT´1 :“

„

Ir`n P0

0 Ir`n



,

we obtain an equivalent realization by
“

pA0, pB0, pC0, pD0

‰

P Σ2pr`nq,m`p,m`p

pA0 :“ rT´1
rA0

rT “

„

A0 ´A0P0 ´ P0A
T
0 ´B0B

T
0

0 ´AT
0



(4.9)
“

„

A0 0
0 ´AT

0



,

pB0 :“ rT´1
rB0 “

„

B0D
T
0 ` P0C

T
0

CT
0



(4.10)
“

„

0
CT

0



,

pC0 :“ rC0
rT “

“

C0 ´C0P0 ´D0B
T
0

‰ (4.10)
“

“

C0 0
‰

,

pD0 :“ rD0.
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Finally we obtain

E0psqE
„
0 psq “

pC0

`

sI2pr`nq ´
pA0

˘´1
pB0 ` pD0

“
“

C0 0
‰

„

sIr`n ´A0 0
0 sIr`n `A

T
0

´1 „
0
CT

0



`D0D
T
0

“

„

0 2σr`1Ip
2σr`1Im 0



¨

„

0 2σr`1Im
2σr`1Ip 0



“ 4σ2
r`1Im`p.

This implies

}E}H8 ď sup
ωPR

´

λmax

`

E0piωqE0piωq
H
˘

¯1{2

“ sup
ωPR

`

λmax

`

E0piωqE
„
0 piωq

˘˘1{2
“

b

4σ2
r`1 “ 2σr`1.

Now we can conclude an H8 error bound for the general case.

Corollary 4.13: Let rA,B,C,Ds P Σn,m,p with transfer function G P RHpˆm
8

be asymptotically stable and balanced with the controllability and observability
Gramians P “ Q “ diagpσ1Is1 , σ2Is2 , . . . , σkIskq, where σ1 ą σ2 ą . . . ą
σk ě 0. Let rA11, B1, C1, Ds P Σr,m,p be the reduced-order model of order r
obtained by Algorithm 4.1 with r “ s1 ` s2 ` . . .` s` for some ` ď k and with
transfer function rG P RHpˆm

8 . Then it holds that

›

›G´ rG
›

›

H8 ď
k
ÿ

j“``1

2σj .

Proof. Denote by Gjpsq the transfer function of the reduced-order model ob-
tained by Algorithm 4.1 by truncating only the Hankel singular values σj`1, . . . , σk.
So we have Gpsq “ Gkpsq and rGpsq “ G`psq. Now it holds that

Gpsq ´G`psq “ pGkpsq ´Gk´1psqq ` pGk´1psq ´Gk´2psqq ` . . .

` pG``1psq ´G`psqq,

which implies

›

›G´ rG
›

›

H8 ď
k
ÿ

j“``1

›

›Gj ´Gj´1

›

›

H8 ď 2
k
ÿ

j“``1

σj .
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There are also other error bounds for balanced truncation. An a-posteriori error
bound is given as follows: Let rA,B,C,Ds P Σn,m,p with transfer function G P
RHpˆm

8 be asymptotically stable and balanced. Let rA11, B1, C1, Ds P Σr,m,p

be the reduced-order model of order r obtained by Algorithm 4.1 with transfer
function rG P RHpˆm

8 . Moreover, assume that Y1 P Rrˆr and Y2 P Rpn´rqˆr
solve the Sylvester equation

„

AT
11 AT

21

AT
12 AT

22

 „

Y1

Y2



`

„

Y1

Y2



A11 “ ´C
TC1.

Then we have
›

›G´ rG
›

›

2

H2
ď tr

´

`

B2B
T
2 ` 2Y2A12

˘

Σ2

¯

.

4.5 Numerical Solution of Large-Scale Lyapunov Equa-
tions

In this section, we discuss the numerical solution of large-scale Lyapunov equa-
tions. Since a Lyapunov equation is a special Sylvester equation, the same
conditions for unique solvability apply. This means, that a Lyapunov equation

AX `XAT “ ´W

has a unique solution, if and only if ΛpAq X Λp´Aq “ H. Since for balanced
truncation, A is assumed to be asymptotically stable, this condition is fulfilled a-
priori. In the following we will the derive the alternating directions implicit (ADI)
iteration, that was introduced to solve partial differential equations in [PR55].
We will see soon that this method is also suitable for large-scale Lyapunov
equations that appear in model reduction. There are many other methods, in
particular Krylov subspace methods [Sim07], that are often equally good. For
sake of brevity, we will not discuss these here in detail.

4.5.1 Derivation of the ADI Iteration

Consider the discrete-time Lyapunov equation

X “ AXAT `W, A P Rnˆn, W “WT P Rnˆn. (4.11)

The existence of a unique solution is ensured if |λ| ă 1 for all λ P ΛpAq (see
exercise). This motivates the basic iteration

Xk “ AXk´1A
T `W, k ě 1, X0 P Rnˆn. (4.12)
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Let A be diagonalizable, i.e., there exists a nonsingular matrix V P Cnˆn such
that A “ V ΛV ´1. Let ρpAq :“ maxλPΛpAq |λ| denote the spectral radius of A.
Since

}Xk ´X}2 “
›

›ApXk´1 ´XqA
T
›

›

2
“ . . . “

›

›AkpX0 ´XqpA
Tqk

›

›

2

ď }Ak}22}X0 ´X}2 ď }V }
2
2}V

´1}22ρpAq
2k}X0 ´X}2, (4.13)

this iteration converges because ρpAq ă 1 (fixed point argumentation).

Continuous-time Lyapunov equations can be treated similarly, however, we
must first transform the data as pointed out in the next lemma.

Lemma 4.14: The continuous-times Lyapunov equation

AX `XAT “ ´W, ΛpAq Ă C´

is equivalent to the discrete-time Lyapunov equation

X “CppqXCppqH `ĂW ppq, Cppq :“ pA´ pInqpA` pInq
´1,

ĂW ppq :“´ 2 Re ppqpA` pInq
´1W pA` pInq

´H
(4.14)

for p P C´.

Proof. Exercise.

Moreover, ρpCppqq ă 1 (see exercise). Applying (4.12) to (4.14) gives the Smith
iteration

Xk “ CppqXk´1Cppq
H `ĂW ppq, k ě 1, X0 P Rnˆn. (4.15)

Similarly as in (4.13), we have

}Xk ´X}2 ď }V }
2
2}V

´1}22ρpCppqq
2k}X0 ´X}2.

This means that we obtain fast convergence by choosing p such that ρpCppqq ă
1 is as small as possible. We will discuss this later in more detail.

By varying the shifts p in (4.15) in every step, we obtain the ADI iteration for
Lyapunov equations

Xk “CppkqXk´1Cppkq
H `ĂW ppkq, k ě 1, X0 P Rnˆn, pk P C´. (4.16)
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4.5.2 The ADI Shift Parameter Problem

One can show, similarly to (4.13), that

}Xk ´X}2 ď }V }
2
2

›

›V ´1
›

›

2

2
ρpMkq

2}X0 ´X}2, Mk :“
k
ź

i“1

Cppiq, (4.17)

where V is a transformation matrix diagonalizing A (assuming it is diagonaliz-
able). The eigenvalues of the product of the Cayley transformations Mk are

ΛpMkq “

#

k
ź

i“1

λ´ pi
λ` pi

ˇ

ˇ

ˇ

ˇ

ˇ

λ P ΛpAq

+

.

Good shifts p˚1 , . . . , p
˚
k should make ρpMkq ă 1 as small as possible. This

motivates the ADI shift parameter problem

rp˚1 , . . . , p
˚
ks “ argminrp1,...,pksPpC´qk max

λPΛpAq

ˇ

ˇ

ˇ

ˇ

ˇ

k
ź

i“1

λ´ pi
λ` pi

ˇ

ˇ

ˇ

ˇ

ˇ

. (4.18)

In general, this is very hard to solve. For instance, in general, ρpCppqq is not
differentiable and the problem is very expensive, ifA is a large matrix. However,
there are some procedures that work well in practice:

• Wachspress shifts [Wac13]: Embed ΛpAq in an elliptic function region
that depends on the the parameters maxλPΛpAqRe pλq, minλPΛpAqRe pλq,

and arctan maxλPΛpAq

ˇ

ˇ

ˇ

Im pλq
Re pλq

ˇ

ˇ

ˇ
(or approximations thereof). Then, (4.18)

can be solved by employing elliptic integral.

• Heuristic Penzl shifts [Pen00]: If A is a large and sparse matrix, ΛpAq
is replaced by a small number of approximate eigenvalues (e.g., Ritz val-
ues). Then (4.18) is solved heuristically.

• Self-generating shifts [BKS15]: If A is large and sparse, these shifts
are based on projections of A with the data obtained by previous itera-
tions. These shifts also make use of the right-hand side W .

4.5.3 The Low-Rank Phenomenon

Now we consider

AX `XAT “ ´BBT, (4.19)

where A P Rnˆn and n is ’large’, but A is sparse, i. e., only a few entries in A
are non-zero. Therefore, multiplication with A can be performed in Opnq rather
than Opn2q FLOPS. Also solves with A or A` pI can be performed efficiently.
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However, X P Rnˆn is usually dense and thus X cannot be stored for large
n since we would need Opn2q memory. Thus the question arises whether it
is possible to store the solution X more efficiently. In practice we often have
B P Rnˆm, where m ! n, i. e., the right-hand side BBT has a low rank. Recall
that if pA,Bq is controllable then X “ XT ě 0 and rankpXq “ n.

It is a very common observation in practice that the eigenvalues of X solving
(4.19) decay very rapidly towards zero, and fall early below the machine preci-
sion. The following theorem explains this eigenvalue decay [SZ02].

Theorem 4.15: Let A be diagonalizable, i. e., there exists an invertible matrix
V P Cnˆn such that A “ V ΛV ´1. Then the eigenvalues of X solving (4.19)
satisfy

λkm`1pXq

λ1pXq
ď }V }22

›

›V ´1
›

›

2

2
ρpMkq

2

for any choice of shift parameters p used to construct Mk (in particular, the
optimal ones).

Remark 4.16: • If the eigenvalues of A cluster in the complex plane, only a
few pk in the clusters suffice to get a small ρpMkq and thus λipXq decay
fast.

• If A is normal, then }V }2
›

›V ´1
›

›

2
“ 1 and the bound gives a good expla-

nation for the decay. The nonnormal case is much harder to understand.

• This bound (and most others) does not precisely incorporate the eigen-
vectors of A as well as the precise influence of B.

Consequence: If there is a fast decay of λipXq, then X can be well approxi-
mated as X “ XT « ZZH, where Z P Cnˆr with r ! n is a low-rank solution
factor. Hence, only nr memory is required. Thus, in the next subsection we
consider algorithms for computing the factor Z without explicitly forming X.

4.5.4 The Low-Rank Cholesky Factor ADI Iteration

The idea [Pen00] consists of considering one step of the dense ADI iteration
(4.16) and inserting Xj “ ZjZ

H
j . This leads to

Xj “ CppjqXj´1Cppjq
H `ĂW ppjq

“ pA´ pjInqpA` pjInq
´1Zj´1Z

H
j´1pA` pjInq

´HpA´ pjInq
H

´ 2 Re ppjqpA` pjInq
´1BBTpA` pjInq

´H.
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Note that if pj P R´, then Xj P Rnˆn. Furthermore, if pj P C´ and pj`1 “ pj ,
then Xj`1 P Rnˆn. Obviously, we have Xj “ ZjZ

H
j with

Zj “
“a

´2 Re ppjqpA` pjInq
´1B pA´ pjInqpA` pjInq

´1Zj´1

‰

.

With Z0 “ 0 we find a low rank variant the ADI iteration (4.16) forming Zj
successively (grows by m columns in each step).

The drawback is that all columns are processed in every step which leads to
quickly growing costs (in total jm linear systems have to be solved to get Zj).

However, there is a remedy to this problem. We have observed that

Si “ pA` piInq
´1 and Tj “ pA´ pjInq

commute for all i, j with each other and themselves.

Now consider Zj being the iterate after iteration step j

Zj “
“

αjSjB pTjSjqαj´1Sj´1B . . . pTjSjq ¨ ¨ ¨ pT2S2qα1S1B
‰

with αi “
a

´2 Re ppiq. Due to the commutativity, the order of application of the
shifts is not important, and we reverse their application to obtain the following
alternative iterate

rZj “
“

α1S1B α2pT1S1qS2B . . . αjpT1S1q ¨ ¨ ¨ pTj´1Sj´1qSjB
‰

“
“

α1S1B α2pT1S2qS1B . . . αjpTj´1SjqpTj´2Sj´1q ¨ ¨ ¨ pT1S2qS1B
‰

“
“

α1V1 α2V2 . . . αjVj
‰

,

V1 “ S1B, Vi “ Ti´1SiVi´1, i “ 1, . . . , j.

We have Xj “ rZj rZ
H
j , but in this formulation only the new columns are pro-

cessed. Even more structure is revealed by the Lyapunov residual.

Theorem 4.17: The residual at step j of (4.16), started with X0 “ 0, is of rank
at most m and given by

Rj :“A rZj rZ
H
j `

rZj rZ
H
j A

T `BBT “WjW
H
j ,

Wj “MjB “ CppjqWj´1 “Wj´1 ´ 2 Re ppjqVj , W0 :“ B,

where Mj :“
śj
i“1Cppiq. Moreover, it holds Vj “ pA` pjInq´1Wj´1.

Proof. We have

Rj “ AXj `XjA
T `BBT “ ApXj ´Xq ` pXj ´XqA

T pby (4.19)q

“ AMjpX0 ´XqM
H
j `MjpX0 ´XqM

H
j A

T

“ ´MjAXM
H
j ´MjXA

TMH
j

“ ´MjpAX `XA
TqMH

j “MjBB
TMH

j .
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Algorithm 4.2 Low-rank ADI (LRCF-ADI) iteration for Lyapunov equations
Input: A, B from (4.19), shifts P “ tp1, . . . , pmaxiteru Ă C´, residual toler-

ance tol.
Output: Zk such that X “ ZkZ

H
k (approx.) solves (4.19).

1: Initialize j “ 1, W0 :“ B, Z0 :“ r s.
2: while }Wj´1}2 ě tol do
3: Set Vj :“ pA` pjInq

´1Wj´1.
4: Set Wj :“Wj´1 ´ 2 Re ppjqVj .
5: Set Zj :“

“

Zj´1

a

´Re ppjqVj
‰

.
6: Set j :“ j ` 1.
7: end while

Moreover, it holds

Vj “ Tj´1SjVj´1 “ Tj´1SjTj´2Sj´1Vj´2 “ . . . “

“ Sj

˜

j´1
ź

k“1

TkSk

¸

B “ SjMj´1B “ pA` pjInq
´1Wj´1, (4.20)

and

Wj “MjB “ SjTjWj´1 “Wj´1 ´ 2 Re ppjqSjWj´1 “Wj´1 ´ 2 Re ppjqVj .

Thanks to the above theorem, the norm of the Lyapunov residual can be cheaply
computed via }Rj}2 “ }WjW

H
j }2 “ }Wj}

2
2. All this leads to Algorithm 4.2

which is also often referred to as low-rank Cholesky-factor ADI (LRCF-ADI) it-
eration. Algorithm 4.2 produces complex low-rank factors, if some of the shifts
are complex, which might be required for problems with nonsymmetric A.

However, it is still possible to ensure that Zj P Rnˆnj , see [BKS13].

Definition 4.18: A set of shift parameters P is called proper if for all p P P , also
p P P .

Theorem 4.19: Assume P “ tp1, . . . , pku to be a set of proper shifts and
assume w. l. o. g. that pj`1 “ pj R R. Then for Vj , Vj`1 it holds

Vj`1 “ Vj ` 2βj Im pVjq,

Wj`1 “Wj´1 ´ 4 Re ppjq pRe pVjq ` βj Im pVjqq ,

with βj “
Re ppjq
Im ppjq

.
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Question: Why does that help? Vj , Vj`1 are still complex. Consider

Zj`1 “
“

Zj´1 αjVj αjVj`1

‰

.

This gives
Xj`1 “ Zj`1Z

H
j`1 “ Zj´1Z

H
j´1 ` α

2
j
pZ pZH,

with

pZ “
“

Vj Vj`1

‰

“
“

Re pVjq ` i Im pVjq Re pVjq ` 2βj Im pVjq ´ i Im pVjq
‰

“
“

Re pVjq Im pVjq
‰

„

Im Im
iIm p2βj ´ iqIm



looooooooooomooooooooooon

“:N

.

This yields

pZ pZH “
“

Re pVjq Im pVjq
‰

NNH
“

Re pVjq Im pVjq
‰H

and

0 ă NNH “

„

2Im 2βjIm
2βjIm p4β2

j ` 1qIm



“

„

Im 0
βjIm Im



loooooomoooooon

“:L

„

2Im 0
0 2pβ2

j ` 1qIm



loooooooooooomoooooooooooon

“:Γą0

„

Im βjIm
0 Im



.

Therefore, we can alternatively choose the following Z̆ instead of pZ to obtain
the same Zj`1, namely

Z̆ :“
“

Re pVjq Im pVjq
‰

LΓ
1
2

“
?

2
”

Re pVjq ` βj Im pVjq
b

pβ2
j ` 1q Im pVjq

ı

P Rnˆ2m,

in other words, Zj`1 is constructed to be real. This leads to the real version of
the LRCF-ADI iteration.

4.5.5 Balanced Truncation Using the LRCF-ADI Method

Algorithm 4.1 can now be modified by including low-rank methods for solving
the Lyapunov equations. The result is Algorithm 4.3.

Remark 4.20: The H8 error bound for balanced truncation does not necessar-
ily hold anymore. First of all, we do not compute all Hankel singular values.
Hence, the ones which have not been computed, can only be estimated using
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Algorithm 4.3 Balanced truncation (pro version)
Input: Asymptotically stable system rA,B,C,Ds P Σn,m,p, desired maximum

reduced order rmax, ADI residual tolerance tol.
Output: Reduced-order model

“

rA, rB, rC, rD
‰

P Σr,m,p with r ď rmax.
1: Solve the Lyapunov equations

AP ` PAT “ ´BBT, ATQ`QA “ ´CTC

using (the real version of) Algorithm 4.2 to determine two low-rank factors
R P RnˆrP and L P RnˆrQ such that P « RRT and Q « LLT and with
residuals less than tol.

2: Set r :“ mintrmax, rP , rQu.
3: Compute the SVD of Lp:, 1 : rqTRp:, 1 : rq “ UΣV T.
4: Set T :“ RV Σ´

1
2 and W :“ LUΣ´

1
2 .

5: Balance and truncate to obtain the reduced-order model
“

rA, rB, rC, rD
‰

:“
“

WTAT,WTB,CT,D
‰

.

the smallest singular value of Σ in Step 3 of Algorithm 4.3. Moreover, the sin-
gular values contained in Σ may be corrupted by the approximation errors done
when computing R and L. Therefore, the reduction error can only be estimated
in practice.
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CHAPTER 5

Passivity-Preserving Balancing-Based Model Reduction

In this chapter we will focus on some aspects of structure-preservation. In this
chapter we consider passive systems which often appear in the modeling of
electrical circuits, power network, mechanical systems, and many more. See
Chapter 1 for some examples. Thus, when doing model reduction, one would
like to obtain a passive reduced-order model in order to preserve the physical
properties in the model. In this chapter, we will first define passivity and show
that each passive system admits a positive real transfer function. Thereafter
we will discuss a passivity-preserving model reduction scheme using alterna-
tive energy functionals. This will lead to the method of positive real balanced
truncation which we will analyze afterwards. Since positive real balanced trun-
cation relies on algebraic Riccati equations rather than Lyapunov equations,
we will also treat the numerical solution of large-scale algebraic Riccati equa-
tions. Many of the results presented here can be found in the famous works by
Jan C. Willems [Wil71, Wil72a, Wil72b].

5.1 Passivity and Positive Real Transfer Functions

First we define passivity for a LTI systems.

Definition 5.1: Let rA,B,C,Ds P Σn,m,m be given. Then the system is called

55
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passive, if
ż T

0
ypτqTupτqdτ ě 0 (5.1)

holds for all T ě 0 and all solution trajectories px, u, yq P L2pr0, T s,Rn`2mq of
the system with xp0q “ 0.

The expression on the left-hand side of (5.1) can be understood as the energy
that is supplied to the system in the time interval r0, T s. Therefore, passivity
of a dynamical system is the property that for each solution, more energy has
to be supplied than energy that can be extracted from the system. So the
system cannot internally produce energy. Passivity is connected to two energy
functionals:

a) the (virtual) available storage V ´ : Rn Ñ R with

V ´px0q :“ sup

"

´

ż 8

0
2ypτqTupτqdτ

ˇ

ˇ

ˇ

ˇ

px, u, yq P L2pr0,8q,Rn`2mq

is a solution of rA,B,C,Ds with xp0q “ x0

*

;

b) the required supply V ` : Rn Ñ R with

V `px0q :“ inf

"
ż 0

´8

2ypτqTupτqdτ

ˇ

ˇ

ˇ

ˇ

px, u, yq P L2pp´8, 0s,Rn`2mq

is a solution of rA,B,C,Ds with xp0q “ x0

*

.

The value of V `px0q is the least amount of energy that has to be supplied
to the system to reach the state x0. On the other hand, the value of V ´px0q

is the maximum amount of energy that can be extracted from the system by
stabilizing solution trajectories.

We will later see that under some conditions, the functionals V `, V ´ are so-
called storage functions. A storage function is a function V : Rn Ñ R` with
V p0q “ 0 that fulfills the dissipation inequality

V px1q ´ V px0q ď

ż t1

t0

2ypτqTupτqdτ, (5.2)

where px, u, yq P L2prt0, t1s,Rn`2mq is a solution trajectory of the system with
xpt0q “ x0 and xpt1q “ x1. If V is differentiable, then the dissipation inequality
can be formulated in its differential form

V 1pxptqq ¨ 9xptq ď 2yptqTuptq, (5.3)
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where V 1 : Rn Ñ R1ˆn is the Jacobian of V .

Now we consider the special case of quadratic storage functions, i. e., V pxq “
xTPx for some symmetric positive semi-definite matrix P P Rnˆn. For such,
V 1pxq “ 2xTP and (5.3) gives

V 1pxptqq ¨ 9xptq “ 2xptqTP 9xptq

“ xptqTP pAxptq `Buptqq ` pAxptq `BuptqqTPxptq

“

„

xptq
uptq

T „
ATP ` PA PB

BTP 0

 „

xptq
uptq



ď 2yptqTuptq

“ pCxptq `DuptqqTuptq ` uptqTpCxptq `Duptqq

“

„

xptq
uptq

T „
0 CT

C D `DT

 „

xptq
uptq



.

Therefore, each quadratic storage function can be expressed by a solution P ě
0 of the linear matrix inequality (LMI)

„

ATP ` PA PB ´ CT

BTP ´ C ´D ´DT



ď 0, P “ PT. (5.4)

It can be shown that that if the system is controllable, then the LMI (5.4) has
two extremal solutions P` P Rnˆn and P´ P Rnˆn such that P´ ď P ď P`

for each solution P P Rnˆn of the LMI and with the properties

V ´px0q “ xT0P
´x0, V `px0q “ xT0P

`x0.

We have the following theorem connecting all these concepts.

Theorem 5.2: Let rA,B,C,Ds P Σn,m,m be controllable. Then the following
statements are equivalent:

a) The system rA,B,C,Ds is passive.

b) It holds that V `px0q ě 0 for all x0 P Rn.

c) There exists a function V : Rn Ñ R` that satisfies the dissipation inequality
(5.2).

Moreover, whenever one of the above conditions is fulfilled, then we have

´8 ă V ´px0q ď V `px0q ă 8.

Proof. We show “a) ñ b)”: Assume that b) is not satisfied, i. e., there exist an
ε ą 0 and a solution trajectory px, u, yq P L2pp´8, 0s,Rn`2mq with xp0q “ x0
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(and limtÑ´8 xptq “ 0) such that

ż 0

´8

2ypτqTupτqdτ ă ´ε.

It can be shown that for each ε ą 0 there exist a T ą 0 and a solution trajectory
prx, ru, ryq P L2pp´8, 0s,Rn`2mq with compact support in the interval r´T, 0s
and with rxp0q “ x0 such that

ˇ

ˇ

ˇ

ˇ

ż 0

´8

2ypτqTupτqdτ ´

ż 0

´8

2rypτqTrupτqdτ

ˇ

ˇ

ˇ

ˇ

ă
ε

2
.

This gives

ż 0

´8

2rypτqTrupτqdτ “

ż 0

´T
2rypτqTrupτqdτ

“

ż T

0
2rypτ ´ T qTrupτ ´ T qdτ ă ´

ε

2
.

Therefore, condition a) is violated for the solution trajectory prxp¨ ´ T q, rup¨ ´
T q, ryp¨ ´ T qq P L2pr0, T s,Rn`2mq.

The statement “b) ñ c)” follows from the fact that V ` is a storage function.

Now we show “c) ñ a)”: From the dissipation inequality with t0 “ 0, xpt0q “ 0,
t1 “ T , and the condition V p0q “ 0 we obtain

0 ď V px1q ď

ż T

0
2ypτqTupτqdτ,

which gives the result.

The last inequality follows from b) since for all T ą 0 and all solution trajectories
px, u, yq P L2pp´8, T s,Rn`2mq with xp0q “ x0 we obtain

´

ż T

0
2ypτqTupτqdτ ď

ż 0

´8

2ypτqTupτqdτ.

With T Ñ 8, taking the supremum on the left-hand side 9+ and the infimum
on the right-hand side gives V ´px0q ď V `px0q for all x0 P Rn. The finiteness
of both functionals then follows from controllability, since every point x0 can be
reached by a solution trajectory.

The passivity property is equivalent to a structural property of its transfer func-
tion, namely, they are positive real.
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Definition 5.3: Let rA,B,C,Ds P Σn,m,m be given with the transfer function
Gpsq P Rpsqmˆm. Then Gpsq is called positive real, if Gpsq has no poles in C`
and

Ψpλq :“ Gpλq `GpλqH ě 0 @λ P C`. (5.5)

The following famous theorem (called the positive real lemma, sometimes also
the Kalman-Yakubovich-Popov(-Anderson) lemma) makes a connection between
solvability of the LMI (5.4) and positive realness.

Theorem 5.4: Let rA,B,C,Ds P Σn,m,m be given with the transfer function
Gpsq P Rpsqmˆm and let Ψ be as in (5.5). Then the following statements are
satisfied:

a) If the LMI (5.4) has a solution P ą 0, then Gpsq is positive real.

b) If the system rA,B,C,Ds is minimal and Gpsq is positive real, then there
exists a solution P ą 0 of the LMI (5.4).

Proof. We prove statement a): Let P ą 0 be a solution of the LMI (5.4). Let
v P Cn be an eigenvector corresponding to an eigenvalue λ P C of A. Then we
have

vHATPv ` vHPAv “ λvHPv ` λvHPv “ 2 Re pλq vHPv
loomoon

ą0

ď 0.

Therefore, we have Re pλq ď 0 and thus, Gpsq has no poles in C`.

Moreover, we have that

“

A B
‰

„

pλIn ´Aq
´1B

Im



“ ApλIn ´Aq
´1B `B

“ pA` λIn ´AqpλIn ´Aq
´1B

“ λpλIn ´Aq
´1B.

With λ P C` and using the above identity we obtain

„

pλIn ´Aq
´1B

Im

H „

ATP ` PA PB
BTP 0

 „

pλIn ´Aq
´1B

Im



“

„

pλIn ´Aq
´1B

Im

Hˆ„

PA PB
0 0



`

„

ATP 0
BTP 0

˙„

pλIn ´Aq
´1B

Im



“pλ` λqBTpλIn ´Aq
´HP pλIn ´Aq

´1B ě 0.
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Now we get

Ψpλq “

„

pλIn ´Aq
´1B

Im

H „

0 CT

C D `DT

 „

pλIn ´Aq
´1B

Im



ě

„

pλIn ´Aq
´1B

Im

H „

´ATP ´ PA ´PB ` CT

´BTP ` C D `DT

 „

pλIn ´Aq
´1B

Im



ě 0,

where the latter inequality follows from the fact, that P solves (5.4).

The proof of statement b) is quite complicated and technical and therefore, we
omit it here. The proof can be found in [Ran96].

Remark 5.5: There are many relaxations of the assumptions of the positive real
lemma. For instance, it can be shown that Gpsq is already positive real, if there
exists a solution P ě 0 of the LMI (5.4). However, the techniques for the proof
get more involved, see, e. g., [AV73].

From the above theorem, the following corollary is immediate.

Corollary 5.6: The system rA,B,C,Ds P Σn,m,p is passive if and only if its
transfer function Gpsq is positive real.

Proof. Let r rA, rB, rC, rDs P Σ
rn,m,p be a minimal realization of Gpsq. Then,

rA,B,C,Ds is passive if and only if r rA, rB, rC, rDs is passive, since both gen-
erate the same input/output pairs. From Theorem 5.2 and controllability, this is
equivalent to the existence of a matrix rP ě 0 such that the LMI

«

rAT
rP ` rP rA rP rB ´ rCT

rBT
rP ´ rC ´ rD ´ rDT

ff

ď 0, rP “ rPT

is satisfied. From Theorem 5.4 and Remark 5.5, this is equivalent to positive
realness of Gpsq.

5.2 Positive Real Balanced Truncation

Now we want to derive a balancing-type algorithm for passivity-preserving model
reduction. Assume that P ě 0 is a solution of the LMI (5.4). Then there exist
matrices K P Rqˆn and L P Rqˆm such that

„

ATP ` PA PB ´ CT

BTP ´ C ´D ´DT



“ ´

„

KT

LT



“

K L
‰

.
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Under the assumption that D`DT is invertible (then q ě m), we can apply the
Schur complement on both sides and obtain

ATP ` PA`
`

PB ´ CT
˘`

D `DT
˘´1`

BTP ´ C
˘

“ ´KTK `KTL
`

LTL
˘´1

LTK.

Let L “ U
“

Σ
0

‰

V T with orthogonal matrices U P Rqˆq, V P Rmˆm and an
invertible diagonal matrix Σ “ diagpσ1, . . . , σmq with σ1 ě . . . ě σm ą 0 be
given. Then we have

´KTK `KTL
`

LTL
˘´1

LTK

“ ´KTK `KTU

„

Σ
0



V T

ˆ

V
“

Σ 0
‰

UTU

„

Σ
0



V T

˙´1

V
“

Σ 0
‰

UTK

´KTK `KTU

„

Im 0
0 0



UTK ď 0.

Therefore, each solution P of the LMI (5.4) satisfies the algebraic Riccati in-
equality

ATP ` PA`
`

PB ´ CT
˘`

D `DT
˘´1`

BTP ´ C
˘

ď 0, P “ PT.

It can be seen that the extremal elements of its solution set, P` and P´, even
satisfy the algebraic Riccati equation (ARE)

ATP ` PA`
`

PB ´ CT
˘`

D `DT
˘´1`

BTP ´ C
˘

“ 0, P “ PT. (5.6)

Recall that if the system rA,B,C,Ds is controllable and passive, then the ex-
tremal solutions P` and P´ exist and P` ě 0. It can be shown (see [Obe91,
Sect. 6]) that if the system is also observable, then we even have

0 ă P´ ď P`. (5.7)

Furthermore, it can be shown (exercise!) that if P ą 0 is a solution of the ARE,
then Q “ P´1 is a solution of the dual ARE

AQ`QAT `
`

QCT ´B
˘`

D `DT
˘´1`

CQ´BT
˘

“ 0, Q “ QT. (5.8)

Therefore, if we have (5.7), then there exist a minimal solution Q´ P Rnˆn and
a maximal solution Q` P Rnˆn with

0 ă Q´ ď Q ď Q` for all solutions Q of (5.8),

and with Q´ “ pP`q´1 and Q` “ pP´q´1. The minimal solutions P´ and Q´

are called the positive real (observability and controllability) Gramians and they
are now subject to our balancing procedure. These will attain the role of the
controllability and observability Gramian from the previous chapter.
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Definition 5.7: Let rA,B,C,Ds P Σn,m,m be minimal and passive with positive
real Gramians P´ ą 0 and Q´ ą 0 . Then the system is called positive real
balanced, if P´ “ Q´ “ Σ. In this case, the eigenvalues of the matrix Σ are
called the positive real characteristic values.

Now we discuss the associated balancing transformations.

Theorem 5.8: Let rA,B,C,Ds P Σn,m,m be minimal and passive with positive
real Gramians P´ ą 0 and Q´ ą 0. Then there exists an invertible matrix
T P Rnˆn such that

“

rA, rB, rC, rD
‰

:“ rT´1AT, T´1B,CT,Ds with the positive
real Gramians rP´ ą 0 and rQ´ ą 0 is positive real balanced.

Proof. Since P´ ą 0 and Q´ ą 0, there exist Cholesky decompositions
P´ “ RRT and Q´ “ LLT, where R and L are lower triangular and invertible.
Now consider the singular value decomposition LTR “ UΣV T with orthogonal
U, V P Rnˆn and Σ “ diagpσ1, σ2, . . . , σnq, σ1 ě σ2 ě . . . ě σn ě 0. Since
L and R are invertible, so is LTR and therefore, we have σn ą 0.

It is easy to check that as for the case of standard balancing, we have that

rP´ “ TTP´T, rQ´ “ T´1Q´T´T.

Now the rest of the proof is similar to the proof of Theorem 4.5. With T :“

LUΣ´
1
2 we find T´1 “ Σ´

1
2V TRT which make the system positive real bal-

anced (exercise!).

This leads to Algorithm 5.1 for model reduction that is called positive real bal-
anced truncation and which has first been considered in [Obe91, Sect. 6].

Remark 5.9: a) If the passive system rA,B,C,Ds P Σn,m,m is not minimal,
then the algebraic Riccati equations (5.6) and (5.8) may not have (minimal)
solutions. However, for many problems the existence of minimal solutions
can be derived from the structure of the models, such as for electrical circuit
models.

b) If the matrix D ` DT is not invertible, then the algebraic Riccati equations
cannot be formed. In this case, one has to resort to Lur’e equations such as

ATP ` PA “ ´KTK, P “ PT,

PB ´ CT “ ´KTL,

D `DT “ LTL,

(5.9)
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Algorithm 5.1 Positive real balanced truncation (basic version)
Input: Minimal and passive system rA,B,C,Ds P Σn,m,m with invertible D `

DT, desired reduced order r.
Output: Passive reduced-order model rA11, B1, C1, Ds P Σr,m,m.

1: Compute the minimal (and positive definite) solutions P´ and Q´ of the
algebraic Riccati equations

ATP ` PA`
`

PB ´ CT
˘`

D `DT
˘´1`

BTP ´ C
˘

“ 0, P “ PT,

AQ`QAT `
`

QCT ´B
˘`

D `DT
˘´1`

CQ´BT
˘

“ 0, Q “ QT.

2: Compute Cholesky factorization P´ “ RRT and Q´ “ LLT.
3: Compute the singular value decomposition LTR “ UΣV T.
4: Set T :“ LUΣ´

1
2 (and T´1 “ Σ´

1
2V TRT).

5: Do the balancing transformation

“

T´1AT, T´1B,CT,D
‰

“

„„

A11 A12

A21 A22



,

„

B1

B2



,
“

C1 C2

‰

, D



and set the reduced-order model as rA11, B1, C1, Ds P Σr,m,m.

which has to be solved for the triple pP,K,Lq P RnˆnˆRqˆnˆRqˆm, where
q is as small as possible among all such triples solving (5.9). This minimal
rank property is motivated by the fact, that the algebraic Riccati inequality
turns to an equation, if and only if L P Rqˆm is invertible, i. e., q “ m. This
is the smallest possible rank, since D ` DT was assumed to be invertible
in this case. In the general case, the solutions of the LMI which have this
minimal rank property are called rank-minimizing solutions. It can be shown
that this minimal rank is

q “ rankRpsqpGpsq `G
„psqq.

Extremal solutions of (5.9) are always rank-minimizing.

5.3 Analysis of the Method

In this section, we give a brief analysis of the properties of positive real bal-
anced truncation (mainly without the proofs). First of all, we see that the
reduced-order model is again passive.
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Theorem 5.10: Let rA,B,C,Ds P Σn,m,m with invertible D`DT be asymptot-
ically stable, minimal, and passive. Apply Algorithm 5.1 to obtain the reduced-
order model rA11, B1, C1, Ds P Σr,m,m. Assume further, that for the posi-
tive real characteristic values σ1, σ2, . . . , σn ą 0 sorted in decreasing order,
it holds that σr ą σr`1. Then the reduced-order model rA11, B1, C1, Ds is
asymptotically stable, minimal, passive, and positive real balanced with the
positive real Gramians P11 “ Q11 “ Σ1 :“ diagpσ1, . . . , σrq.

Proof. The preservation of passivity is easy to see, since it holds that Σ1 ą 0
solves the reduced ARE

AT
11
rP ` rPA11 `

`

rPB1 ´ C
T
1

˘`

D `DT
˘´1`

BT
1
rP ´ C1

˘

“ 0, rP “ rPT.

Therefore, the corresponding LMI (5.4) has a positive definite solution and thus
by Theorem 5.4, the reduced transfer function Gpsq “ C1psIr ´A11q

´1B1`D
is positive real. By Corollary 5.6, the reduced-order model is passive. The
proof of asymptotic stability and minimality is quite involved and therefore, it is
omitted here.

Next we want to address error bounds. In contrast to standard balancing,
there are no a priori error bounds in the H8-norm, even if the original and
the reduced-order model both have transfer functions in RHmˆm

8 . Instead, one
has to resort to the so-called gap metric. The following has been taken from
[GO13].

Definition 5.11: Let V1 and V2 be two closed subspaces (“closed” means that
any sequence of elements of the subspace has its limit in this subspace) of a
Hilbert space H with induced norm }¨}H. Then the gap between V1 and V2 is
defined by

gpV1,V2q :“ }ΠV1 ´ΠV2}LpH,Hq ,

where ΠV1 , ΠV2 : H Ñ H denote the orthogonal projections onto the spaces
V1, V2 (which exist by the closedness assumption).

It can be shown that g makes the set of all closed subspaces of H to a (com-
plete) metric space. Moreover, it can be shown that

gpV1,V2q “ max t #»g pV1,V2q,
#»g pV2,V1qu ,

where

#»g pV1,V2q “ }pI ´ΠV2qΠV1}LpH,Hq “ sup
vPV1, }v}H“1

distpv,V2q.

is the directed gap. Now we apply these concepts to spaces related to linear
systems.
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Definition 5.12: Let Σ :“ rA,B,C,Ds P Σn,m,p be a given asymptotically
stable system with transfer function G P RHpˆm

8 . Let u P L2pr0,8q,Rmq
be given and define U P Hm

2 by Upsq :“ Ltuupsq. Furthermore, define the
multiplication operator

MG : Hm
2 Ñ Hp

2, pMGUqpsq “ GpsqUpsq @ s P C`.

The graph of the dynamical system Σ is then defined by

GpΣq :“

"„

Im
MG



U

ˇ

ˇ

ˇ

ˇ

U P Hm
2

*

“ im

„

Im
MG



,

which is a closed subspace of the Hilbert space Hp`m
2 .

The gap metric between two asymptotically stable systems Σ1, Σ2 is defined
by

δpΣ1,Σ2q :“ gpGpΣ1q,GpΣ2qq.

The gap metric can be interpreted as the distance of the subspaces of in-
put/output trajectories generated by two dynamical systems in frequency do-
main. With the gap metric, we can now obtain the following error bounds.

Theorem 5.13: Let Σ :“ rA,B,C,Ds P Σn,m,m be an asymptotically sta-
ble, minimal, and passive system with transfer function G P RHmˆm

8 and let
rΣ :“ rA11, B1, C1, Ds P Σr,m,m be the reduced-order model obtained by pos-
itive real balanced truncation with transfer function rG P RHmˆm

8 . Assume
further, that for the positive real characteristic values σ1, σ2, . . . , σn ą 0 sorted
in decreasing order, it holds that σr ą σr`1. Then we have the (a priori) gap
metric error bound

δ
`

Σ, rΣ
˘

ď

n
ÿ

j“r`1

σj .

Moreover, there is the (a posteriori) H8 error bound

›

›G´ rG
›

›

H8 ď 2 min
!´

1` }G}2H8

¯´

1`
›

› rG
›

›

H8

¯

,

`

1` }G}H8
˘

´

1`
›

› rG
›

›

2

H8

¯)

n
ÿ

j“r`1

σj .

Proof. Omitted.
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Remark 5.14: a) The H8 error bound is only an a posteriori error bound, since
it requires the knowledge of the reduced-order model. Therefore, its use in
practice is limited.

b) The gap metric can be expressed by the normalized coprime factorizations
of Gpsq and rGpsq, see [Geo88]. A (right) normalized coprime factorization is
given by Gpsq “ NpsqMpsq´1, where

“

M
N

‰

P RHpp`mqˆm8 and there exist
Y P RHmˆm

8 , Z P RHmˆp
8 such that the Bézout identity

Y psqMpsq ` ZpsqNpsq “ Im

with the normalization condition

M„psqMpsq `N„psqNpsq “ Im

is satisfied. If Gpsq “ NpsqMpsq´1 and rGpsq “ rNpsqĂMpsq´1 are nor-
malized coprime factorizations of Gpsq and rGpsq, respectively, then for the
directed gap we have

#»g
´

GpΣq,G
`

rΣ
˘

¯

“ inf
HPHmˆm

8

›

›

›

›

›

„

M
N



´

«

ĂM
rN

ff

H

›

›

›

›

›

H8

.

From this, some bounds for the gap metric can be derived. Efficient meth-
ods for its computation however, seem to be widely unexplored, except for
[Geo88].

c) The gap metric error bound can also be expressed by the gap of subspaces
of L2pr0,8q,Rp`mq in the time domain. This analysis makes use of the be-
havior approach of systems theory which was developed by Jan C. Willems
in the early 90s.

5.4 Numerical Solution of Large-Scale Algebraic Ric-
cati Equations

5.4.1 Newton’s Method for Solving Algebraic Riccati Equations

In this section we discuss the numerical solution of algebraic Riccati equations
of the form

ATP ` PA`
`

PB ´ CT
˘`

D `DT
˘´1`

BTP ´ C
˘

“ 0, P “ PT.
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This ARE can be rewritten as

RpP q :“ F ` pATP ` P pA` PGP “ 0, P “ PT, where

pA :“ A´B
`

D `DT
˘´1

C,

F :“ CT
`

D `DT
˘´1

C ě 0,

G :“ B
`

D `DT
˘´1

BT ě 0.

(5.10)

Remember that we want to compute the minimal solution P´ of (5.10). Under
the assumption that the pair pA, Bq is stabilizable (equivalently, the pair

`

pA, B
˘

is stabilizable), it can even be shown that P´ is the unique stabilizing solution
of (5.10), that is

Λ
`

pA`GP´
˘

“ Λ
´

A´B
`

D `DT
˘´1`

C ´BTP´
˘

¯

Ă C´.

We consider (5.10) as a nonlinear system of equations and apply Newton’s
method which has first been considered in [Kle68]. For this, we need to evalu-
ate the (Fréchet) derivative of RpP q with respect to P .

Definition 5.15 (Fréchet differentiability, Fréchet derivative): Let pX , }¨}X q and
pY, }¨}Yq be two normed linear spaces and let U Ă X be an open subset. An
operator F : U Ñ Y is called Fréchet differentiable at X P U if there exists a
bounded linear operator F 1pXq : X Ñ Y such that

lim
}N}XÑ0

1

}N}X

›

›FpX `Nq ´ FpXq ´ pF 1pXqqpNq
›

›

Y “ 0.

The operator F 1pXq is called Fréchet derivative of F at X. The map F 1 : U Ñ
LpX ,Yq with X ÞÑ F 1pXq is called Fréchet derivative of F on U .

Let us see whether Rp¨q is Fréchet differentiable and (if yes) determine its
Fréchet derivative. If the Fréchet derivative exists it is given by

pR1pP qqpNq “ lim
hÑ0

1

h
pRpP ` hNq ´RpP qq

“ lim
hÑ0

1

h

´

F ` pATpP ` hNq ` pP ` hNq pA

`pP ` hNqGpP ` hNq ´
`

F ` pATP ` P pA` PGP
˘

¯

“ lim
hÑ0

1

h

`

h pATN ` hN pA` hPGN ` hNGP ` h2NGN
˘

“ lim
hÑ0

`

pATN `N pA` PGN `NGP ` hNGN
˘

“ pATN `N pA` PGN `NGP

“
`

pA`GP
˘T
N `N

`

pA`GP
˘

.
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Algorithm 5.2 Newton’s method for the algebraic Riccati equation

Input: pA, F, G as in (5.10) and initial value P0 such that Λ
`

pA`GP0

˘

Ă C´.
Output: Stabilizing (and minimal) solution P´ solving (5.10).

1: for j “ 1, 2, . . . do
2: Set pAj :“ pA`GPj´1.
3: Solve pAT

j Nj´1 `Nj´1
pAj “ ´RpPj´1q for Nj´1.

4: Set Pj :“ Pj´1 `Nj´1.
5: end for
6: Set P´ :“ Pj .

In other words, the Fréchet derivative of a Riccati operator is a Lyapunov oper-
ator. Now the Newton iteration is given by

pR1pPj´1qqpNj´1q “ ´RpPj´1q, Pj “ Pj´1 `Nj´1, j “ 1, 2, . . .

and the iteration is summarized in Algorithm 5.2. This formulation of the algo-
rithm has the disadvantage that RpPj´1q is evaluated in every iteration. There-
fore, let us revisit the computation of the update Nj´1. We know that

`

pA`GPj´1

˘T
Nj´1 `Nj´1

`

pA`GPj´1

˘

“ ´F ´ pATPj´1 ´ Pj´1
pA´ Pj´1GPj´1. (5.11)

Plugging in Nj´1 “ Pj ´ Pj´1 then gives

`

pA`GPj´1

˘T
pPj ´ Pj´1q ` pPj ´ Pj´1q

`

pA`GPj´1

˘

“ ´F ´ pATPj´1 ´ Pj´1
pA´ Pj´1GPj´1.

Some manipulations and rearrangements of the terms finally lead to

`

pA`GPj´1

˘T
Pj ` Pj

`

pA`GPj´1

˘

“ ´F ` Pj´1GPj´1. (5.12)

This leads to Kleinman’s formulation of the Newton iteration which is given in
Algorithm 5.3. The question arises whether Algorithm 5.3 converges to the right
solution. The following theorem makes this clear, see also [LR95] for a proof.

Theorem 5.16: Consider the ARE (5.10) with stabilizable pA, Bq. Let P´ be
its unique stabilizing solution. Let further P0 P Rnˆn be stabilizing, i. e., it holds
that Λ

`

pA ` GP0

˘

Ă C´. Then the iterates Pj , j “ 1, 2, . . . fulfill the following
statements:

a) The matrix Pj is stabilizing.

b) It holds that P1 ď ¨ ¨ ¨ ď Pj ď Pj`1 ď ¨ ¨ ¨ ď P´.
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Algorithm 5.3 Newton-Kleinman iteration for the algebraic Riccati equation

Input: pA, F, G as in (5.10) and initial value P0 such that Λ
`

pA`GP0

˘

Ă C´.
Output: Stabilizing (and minimal) solution P´ solving (5.10).

1: for j “ 1, 2, . . . do
2: Set pAj :“ pA`GPj´1 and Fj :“ ´F ` Pj´1GPj´1.
3: Solve pAT

j Pj ` Pj
pAj “ Fj .

4: end for
5: Set P´ :“ Pj .

c) It holds that limjÑ8 Pj “ P´.

d) The convergence is globally quadratic, i. e., there exists a constant γ ą 0
such that

›

›P´ ´ Pj
›

› ď γ
›

›P´ ´ Pj´1

›

›

2
, j “ 1, 2, . . . .

Proof. The proof of this theorem needs a few technical results from the solution
theory of Lyapunov and Riccati equations. Therefore, we omit it here.

Remark 5.17: a) If pA is not asymptotically stable (otherwise P0 “ 0 is stabi-
lizing), then the computation of a stabilizing P0 usually costs as much as
another iteration step since this requires the solution of one additional Lya-
punov equation (e. g., in Bass’ algorithm).

b) It can be proven that if Λ
`

pA ` GPj´1

˘

Ă C´, then it holds that Λ
`

pA `
GpPj´1 ` tNj´1q

˘

Ă C´ for all t P r0, 2s. This motivates line search al-
gorithms to optimize the step length after computing the direction Nj´1 in
Algorithm 5.2. This means that we set Pj :“ Pj´1`tNj´1 where t is chosen
as

t “ argminτPr0,2s }RpPj´1 ` τNj´1q}F .

The computation of t is usually much cheaper than the actual Newton step
which can drastically accelerate the iteration [BB98].
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5.4.2 The Low-Rank Newton-Kleinman Method

We now aim at applying the Newton-Kleinman iteration for large-scale AREs
and derive a low-rank formulation. Recall that the ARE attains the form

RpP q :“ CT
`

D `DT
˘´1

C `
´

A´B
`

D `DT
˘´1

C
¯T

P

` P
´

A´B
`

D `DT
˘´1

C
¯

` PB
`

D `DT
˘´1

BTP “ 0,

where A P Rnˆn is large and sparse, B, CT P Rnˆm, D ` DT ą 0, and
m ! n. Thus, the constant and the quadratic term admit low-rank factorizations
CT

`

D ` DT
˘´1

C “ rCT
rC and B

`

D ` DT
˘´1

BT “ rB rBT. Inserting this into
(5.12) gives the iteration scheme

´

A´B
`

D `DT
˘´1`

C ´BTPj´1

˘

¯T
Pj`

Pj

´

A´B
`

D `DT
˘´1`

C ´BTPj´1

˘

¯

looooooooooooooooooooooomooooooooooooooooooooooon

“: pAj

“ ´ rCT
rC ` Pj´1

rB rBTPj´1 (5.13)

Unfortunately, we cannot solve the Lyapunov equation (5.13) directly with the
low-rank ADI method, since its right-hand side may be indefinite. However, we
can split it into two Lyapunov equations

pAT
j P1,j ` P1,j

pAj “ ´ rCT
rC,

pAT
j P2,j ` P2,j

pAj “ ´Pj´1
rB rBTPj´1,

where we start with the initial values P1,0 “ P0 and P2,0 “ 0 [RS10]. Then we
obtain the iterate Pj “ P1,j´P2,j by linearity of the Lyapunov operator. This re-
sults in the low-rank Newton-Kleinman method for algebraic Riccati equations,
see also [BS13].

One problem remains: even if A is sparse and B, CT are thin, the feedback

pAj :“ A´B
`

D `DT
˘´1 `

C ´BTPj´1

˘

loooooooomoooooooon

“:Kj

(5.14)

is usually dense. This means that we should never explicitly form (5.14).

There are several ways to solve linear systems with the system matrix pAj´pjIn
efficiently in the low-rank ADI method:

a) Application of an iterative solver: This option only requires multiplications
with pAj . Since B and Kj have only a few columns and rows, respectively,
these can be carried out efficiently. On the other hand, the convergence of
iterative solvers is often slow, as long as no good preconditioner is available.
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b) Application of the Sherman-Morrison-Woodbury identity: It holds that

´

A´B
`

D `DT
˘´1

Kj

¯´1
“ A´1`A´1B

`

D`DT´KjA
´1B

˘´1
KjA

´1.

Then a linear system solve with pAj only requires two sparse (block) solves
with A and one small dense solve with the matrix D `DT ´KjA

´1B.
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CHAPTER 6

Interpolatory Model Reduction

In this section we will discuss interpolatory methods for model reduction. Here
we take a more transfer function point of view and try to find reduced repre-
sentations of it. This reduction is then normally done by evaluating the original
transfer function (and its derivatives) in a number of points in the complex plane
and then to construct a rational interpolant that match this information. Mostly,
this rational interpolant has a realization of low order which will be our reduced-
order model.

6.1 Moment Matching

6.1.1 Moments

Consider the LTI system rA,B,C,Ds P Σn,m,p with transfer function Gpsq P
Rpsqpˆm. Since G is rational and proper, its poles are contained in ΛpAq.
Therefore, G is analytic in a neighborhood of all s0 P CzΛpAq. Hence it can
be locally expanded into a Taylor series at the expansion point s0. Thus, for
finite s0 we obtain

Gpsq “
8
ÿ

k“0

ps´ s0q
kMkps0q

73
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for some neighborhood of s0 and some matrices M0ps0q, M1ps0q, M2ps0q, . . ..
On the other hand, for s0 “ 8 we obtain the Laurent series

Gpsq “
8
ÿ

k“0

s´kMkp8q.

The matrices Mkps0q are called the (k-th) moments of G at s0. For the case
s0 “ 8 they are also called the Markov parameters of the transfer function.
Now we want to determine the moments. For this we need the following lemma.

Lemma 6.1 (Neumann series): Let A P Cnˆn with spectral radius ρpAq ă 1 be
given. Then In ´A is invertible and it holds that

pIn ´Aq
´1 “

8
ÿ

k“0

Ak.

For finite s0 we have

Gpsq “ Cpps´ s0qIn ´A` s0Inq
´1B `D

“ C
`

ps´ s0qps0In ´Aq
´1 ` In

˘´1
ps0In ´Aq

´1B `D

“ C
`

In ´ ps0 ´ sqps0In ´Aq
´1
˘´1

ps0In ´Aq
´1B `D

“

8
ÿ

k“0

Cps0In ´Aq
´k´1Bps0 ´ sq

k `D,

where we have used, that by Lemma 6.1 and s sufficiently close to s0 it holds
that

`

In ´ ps0 ´ sqps0In ´Aq
´1
˘´1

“

8
ÿ

k“0

ps0 ´ sq
kps0In ´Aq

´k.

Therefore, we have

Mkps0q “

#

Cps0In ´Aq
´1B `D, if k “ 0,

p´1qkCps0In ´Aq
´k´1B, if k ě 1.

Moreover, for s0 “ 8 and sufficiently large s, we have

Gpsq “ CpsIn ´Aq
´1B `D

“ 1
sC

`

In ´
1
sA

˘´1

loooooomoooooon

“
ř8

k“0
1

sk
Ak

B `D

“

8
ÿ

k“1

CAk´1B 1
sk
`D.
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Therefore, we have

Mkp8q “

#

D, if k “ 0,

CAk´1B, if k ě 1.

Model reduction by moment matching consists of finding a reduced-order model
r rA, rB, rC, rDs P Σr,m,p with r ! n such that for a given s0 P pCY t8uq zΛpAq
the corresponding moments ĂMkps0q, k “ 1, 2, . . . fulfill

ĂMkps0q “Mkps0q, k “ 0, 1, . . . , `

for ` as large as possible. The moment matching problem for s0 “ 0 is also
called Padé approximation problem, for s0 “ 8 it is also called the partial
realization problem. Since for finite s0 we have

Gpsq “
8
ÿ

k“0

ps´ s0q
kMkps0q “

ÿ̀

k“0

ps´ s0q
kMkps0q `O

`

ps´ s0q
``1

˘

,

rGpsq “
8
ÿ

k“0

ps´ s0q
k
ĂMkps0q “

ÿ̀

k“0

ps´ s0q
kMkps0q `O

`

ps´ s0q
``1

˘

,

we obtain
Gpsq ´ rGpsq “ O

`

ps´ s0q
``1

˘

.

Similarly, for s0 “ 8 we get

Gpsq ´ rGpsq “ O
`

s´p``1q
˘

.

6.1.2 One-Sided Moment Matching

For ease of notation we will now have a look at moment matching for SISO
systems. In particular we discuss efficient ways to generate the reduced-order
model without explicitly forming the moments.

Definition 6.2: Let rA,B,C,Ds P Σn,m,p be given. The generalized controlla-
bility matrices of rA,B,C,Ds for s0 P pCY t8uq zΛpAq are given by

Ckps0q “
“

ps0In ´Aq
´1B ps0In ´Aq

´2B . . . ps0In ´Aq
´kB

‰

,

k “ 1, . . . , n,

if s0 P CzΛpAq, and by

Ckp8q “
“

B AB . . . Ak´1B
‰

, k “ 1, . . . , n,

if s0 “ 8.
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Note that Cnp8q is the Kalman controllability matrix that can be used for check-
ing controllability of a linear system. We have the following lemma.

Lemma 6.3: Let s0 P pCY t8uq zΛpAq be given. Then the pair pA,Bq P
Rnˆn ˆ Rnˆ1 is controllable if and only if it holds that rank Ckps0q “ k for
all k “ 1, 2, . . . , n.

Proof. Consider the case that s0 “ 8. Then controllability of pA,Bq is equiva-
lent to

rank Cnp8q “ rank
“

B AB . . . An´1B
‰

“ n.

This is furthermore equivalent to

rank Ckp8q “ k, k “ 1, . . . , n.

On the other hand, for s0 P CzΛpAq, the result follows as above by noticing that
pA,Bq is controllable, if and only if

Cn “ span
 

B, AB, . . . , An´1B
(

“ span
 

B, ps0In ´AqB, . . . , ps0In ´Aq
n´1B

(

“ ps0In ´Aq
´n span

 

B, ps0In ´AqB, . . . , ps0In ´Aq
n´1B

(

“ span
 

ps0In ´Aq
´1B, ps0In ´Aq

´2B, . . . , ps0In ´Aq
´nB

(

.

These matrices determine projection matrices that result in reduced-order mod-
els with matched moments. In particular, we have the following theorem.

Theorem 6.4: Let rA,B,C,Ds P Σn,1,1 be controllable with the moments
Mkps0q, k “ 0, 1, . . . for some given s0 P pCY t8uq zΛpAq. Assume that
` P t1, 2, . . . , nu and that rT P C`ˆ` is invertible. Set T :“ C`ps0q rT P Cnˆ`
and choose W P Cnˆ` such that WHT “ I`. Define

“

rA, rB, rC, rD
‰

:“
“

WHAT,WHB,CT,D
‰

P Σ`,1,1 with the moments ĂMkps0q, k “ 0, 1, . . .. Then
the first ` moments are matched, i. e., it holds that

Mkps0q “ ĂMkps0q, k “ 0, 1, . . . , `´ 1.

Proof. We can assume w. l. o. g. that rT “ I`, because the moments ĂMkps0q,
k “ 1, 2, . . . are invariant under state-space transformations. Since the system
is controllable, we have that rankT “ ` and there exists a matrix W P Cnˆ`
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such that WHT “ I`. Here we will only do the proof for finite s0. The proof for
s0 “ 8 is similar, and therefore, we omit it here. We have that

s0I` ´ rA “WHps0In ´AqT

“WHps0In ´Aq
“

ps0In ´Aq
´1B . . . ps0In ´Aq

´`B
‰

“
“

WHB WHps0In ´Aq
´1B . . . WHps0In ´Aq

´``1B
‰

“:
”

rB e1 . . . e`´1

ı

.

Therefore, for k P t0, 1, . . . , `´ 1u we have
`

s0I` ´ rA
˘k`1

“

”

˚ . . . ˚ rB e1 . . . e`´1´k

ı

,

which gives
`

s0I` ´ rA
˘´pk`1q

rB “ ek`1.

So, for the moments we have,

ĂM0ps0q “ rC
`

s0I` ´ rA
˘´1

rB `D

“ CTe1 `D

“ CC`ps0qe1 `D

“ Cps0In ´Aq
´1B `D “M0ps0q,

and for k “ 1, . . . , `´ 1 we obtain

ĂMkps0q “ p´1qk rC
`

s0I` ´ rA
˘´pk`1q

rB

“ p´1qkCTek`1

“ p´1qkCC`ps0qek`1

“ p´1qkCps0In ´Aq
´pk`1qB “Mkps0q.

Remark 6.5: a) The assumption that rA,B,C,Ds is controllable can be weak-
ened in the sense that it is only required that ` is small enough such that
rank C`ps0q “ `.

b) On the other hand, if ` “ rank Cnps0q, then the reduced system matches all
moments.

We are free to choose the matrix rT in Theorem 6.4. The simplest choice rT “ I`
unfortunately usually leads to very ill-conditioned projection matrices T , imply-
ing that the numerical computation of T is very sensitive to round-off errors. It
is better to choose T such that it has orthonormal columns. Since im Cps0q is
a Krylov subspace, i. e., a space of the general form

K`pF, vq :“ span
!

v, Fv, . . . , F `´1v
)

,
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T can be efficiently computed by the (shift-and-invert) Arnoldi method (see the
course on numerical linear algebra).

Since T has orthonormal columns, we can chooseW “ T . In the case s0 “ 8,
there are further simplifications. The Arnoldi iteration computes T P Cnˆ` with
orthonormal columns and a matrix H P C`ˆ` in Hessenberg form such that

AT “ TH ` f``1e
T
`

for some vector f``1 P Cn with THf``1 “ 0. Thus we obtain

rA “WHAT “ TH
`

TH ` f``1e
T
`

˘

“ H.

Moreover, since B is the initial vector of the Krylov space K`pA,Bq, we have

rB “WHB “ THB “ }B}2 e1.

Thus, rA and rB are obtained at no extra cost, only the matrix rC has to be
computed.

Note that stability and observability may be lost by moment matching as the
following example shows.

Example: Consider the system rA,B,C,Ds P Σ2,1,1 with

A “

„

´1 5
0 ´2



, B “

„

1
1



, C “
“

1 ´1
‰

. (6.1)

It is easily checked that this system is stable and observable. For s0 “ 8 and
` “ 1, we obtain T “ 1?

2
B “ 1?

2
r 1

1 s “W . This gives

rA “
1

2

“

1 1
‰

„

´1 5
0 ´2

 „

1
1



“ 1,

rC “
1
?

2

“

1 ´1
‰

„

1
1



“ 0.

Therefore, the reduced model is neither stable nor observable.

Note that stability and observability can be shown for symmetric systems with
A “ AT and B “ CT.

By using the generalized observability matrices

Okps0q “

»

—

—

—

–

Cps0In ´Aq
´1

Cps0In ´Aq
´2

...
Cps0In ´Aq

´k

fi

ffi

ffi

ffi

fl

, k “ 1, . . . , n,
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if s0 P CzΛpAq, and

Okp8q “

»

—

—

—

–

C
CA

...
CAk´1

fi

ffi

ffi

ffi

fl

, k “ 1, . . . , n,

if s0 “ 8, we obtain the following result which is completely analogous to
Theorem 6.4.

Theorem 6.6: Let rA,B,C,Ds P Σn,1,1 be observable with the moments
Mkps0q, k “ 0, 1, . . . for some given s0 P pCY t8uq zΛpAq. Assume that
` P t1, 2, . . . , nu and that ĂW P C`ˆ` is invertible. Set W :“ O`ps0q

H
ĂW P Cnˆ`

and choose T P Cnˆ` such that WHT “ I`. Define
“

rA, rB, rC, rD
‰

:“
“

WHAT,WHB,CT,D
‰

P Σ`,1,1 with the moments ĂMkps0q, k “ 0, 1, . . .. Then
the first ` moments are matched, i. e., it holds that

Mkps0q “ ĂMkps0q, k “ 0, 1, . . . , `´ 1.

The matrix W can be computed by the Arnoldi algorithm applied to the matrix
pair

`

AT, CT
˘

. There are also variants of moment matching for MIMO systems
which make use of the block Arnoldi method and for matching moments at
several interpolation points s0, s1, . . ..

6.1.3 Two-Sided Moment Matching

We have just seen that choosing the projection matrices T and W such that
WHT “ I` and

i) imT “ im C`ps0q or

ii) imW “ imO`ps0q
H

guarantees that ` moment at s0 are matched. So what happens if we do both?
We will show soon that in this case we can match 2` moments. However, this
is not always possible since a certain regularity condition is needed which we
will prove now.

Lemma 6.7: Let rA,B,C,Ds P Σn,1,1 be given with the generalized controlla-
bility and observability matrices C`ps0q and O`ps0q for some ` P t1, 2, . . . , nu.
Then there exist matrices T, W P Cnˆ` with WHT “ I`, imT “ im C`ps0q,
and imW “ imO`ps0q

H, if and only if the matrix H`ps0q :“ O`ps0qC`ps0q is
invertible.
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Proof. First we show “ð”: So assume that H`ps0q is invertible. By choosing
T :“ C`ps0q and W :“ O`ps0q

HH`ps0q
´H, the conditions imT “ im C`ps0q and

imW “ imO`ps0q
H are obviously satisfied. Moreover, we have

WHT “ H`ps0q
´1 O`ps0qC`ps0q

loooooomoooooon

“H`ps0q

“ I`.

Now we show “ñ”: So let T, W P Cnˆ` such that WHT “ I`, imT “

im C`ps0q, and imW “ imO`ps0q
H. Then there exist two invertible matrices

KC , KO P C`ˆ` such that T “ C`ps0qKC and W “ O`ps0q
HKH

O. Therefore, we
get

I` “WHT “ KOO`ps0qC`ps0qKC “ KOH`ps0qKC .

So H`ps0q “ K´1
O K´1

C is invertible.

Theorem 6.8: Let rA,B,C,Ds P Σn,1,1 be given with the moments Mkps0q,
k “ 0, 1, . . . for some given s0 P pCY t8uq zΛpAq. Let T, W P Cnˆ`
with WHT “ I` and define the reduced-order model by

“

rA, rB, rC, rD
‰

:“
“

WHAT,WHB,CT,D
‰

P Σ`,1,1 with the moments ĂMkps0q, k “ 0, 1, . . .. If
im C`1ps0q Ď imT and imO`2ps0q

H Ď imW for some `1, `2 P N0, then it holds
that

Mkps0q “ ĂMkps0q, k “ 0, 1, . . . ,

#

`1 ` `2 ´ 1, if s0 P CzΛpAq,
`1 ` `2, if s0 “ 8.

Proof. Here we prove the theorem only for the case s0 P CzΛpAq, the case
s0 “ 8 is analogous. We show the statement in several steps:

Step 1: We show that for any F P C`ˆn with FT “ I` we have TFv “ v for
all v P imT . Indeed, if v P imT , there exists a z P C` such that v “ Tz. This
gives TFv “ TFTz “ Tz “ v.

Step 2: We show that ps0In ´ Aq´kB “ T
`

s0I` ´ rA
˘´k

rB for k “ 1, . . . , `1.

First note that with F :“
`

s0I` ´ rA
˘´1

WHps0In ´ Aq we have FT “
`

s0I` ´
rA
˘´1

WHps0In ´AqT “ I`, so we can use Step 1 here.

Now we prove the statement via induction. First we show the case k “ 1: It
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holds that

T
`

s0I` ´ rA
˘´1

rB “ T
`

s0I` ´ rA
˘´1

WHB

“ T
`

s0I` ´ rA
˘´1

WHps0In ´Aqps0In ´Aq
´1B

“ TF ps0In ´Aq
´1B

loooooooomoooooooon

Pim C`1 ps0qĎimT

“ ps0In ´Aq
´1B.

Now assume that ps0In ´Aq
´kB “ T

`

s0I` ´ rA
˘´k

rB. Then we have

T
`

s0I` ´ rA
˘´pk`1q

rB “ T
`

s0I` ´ rA
˘´1

WH T
`

s0I` ´ rA
˘´k

rB
looooooooomooooooooon

“ps0In´Aq´kB

“ T
`

s0I` ´ rA
˘´1

WHps0In ´Aqps0In ´Aq
´pk`1qB

“ TF ps0In ´Aq
´pk`1qB

looooooooooomooooooooooon

Pim C`1 ps0qĎimT, if k`1ď`1

“ ps0In ´Aq
´pk`1qB.

Step 3: We show thatCps0In´Aq
´k “ rC

`

s0I`´ rA
˘´k

WH for k “ 1, 2, . . . , `2.
This statement can be analogously proven as in Step 2 by replacing A by AT,
rA by rAH, B by CT, rB by rCH, T by W , and W by T .

Step 4: We show that Mkps0q “ ĂMkps0q for k “ 0, 1, . . . , `1 ` `2 ´ 1. For
k “ 0 we obtain

ĂM0ps0q “ rC
`

s0I` ´ rA
˘´1

rB `D “ C T
`

s0I` ´ rA
˘´1

rB
looooooooomooooooooon

“ps0In´Aq´1B

`D

“ Cps0In ´Aq
´1B `D “M0ps0q,

where we have used Step 2. Now for k P t1, 2, . . . , `1 ` `2 ´ 1u let k1 P

t1, 2, . . . , `1u and k2 P t1, 2, . . . , `2u be such that k1 ` k2 “ k ` 1. Then we
have

ĂMkps0q “ p´1qk rC
`

s0I` ´ rA
˘´pk`1q

rB

“ p´1qk rC
`

s0I` ´ rA
˘´k2WHT

`

s0I` ´ rA
˘´k1

rB

“ p´1qkCps0In ´Aq
´k2ps0In ´Aq

´k1B “Mkps0q.

This completes the proof.

Remark 6.9: a) Most often, the reduced-order model is computed for `1 “
`2 “ `. In case the matrix H`ps0q is invertible, then the corresponding pro-
jection matrices T and W can be computed by the nonsymmetric Lanczos
process.
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b) If the system rA,B,C,Ds P Σn,m,p is a MIMO system, then the nonsym-
metric block-Lanczos method can be used. Then we also have that

span
!

ps0In ´Aq
´1B, . . . , ps0In ´Aq

´`B
)

Ď imT,

span

"

ps0In ´Aq
´HCH, . . . ,

´

ps0In ´Aq
`
¯´H

CH

*

Ď imW

implies
Mkps0q “ ĂMkps0q, k “ 0, 1, . . . , 2`´ 1,

but the projection spaces must have a larger dimension to match the same
order of moments. Alternatively, tangential interpolation techniques can be
employed which yield moment matching properties in certain tangential di-
rections, but normally also give smaller projection matrices. This will be
discussed in more detail later.

Algorithm 6.1 employs the nonsymmetric Lanczos algorithm [Saa82] for mo-
ment matching. In the literature it is known as the Padé-via-Lanczos (PVL)
algorithm.

The quantities computed in Algorithm 6.1 have the following properties (exer-
cise!):

a) The matrices W and T are biorthogonal, i. e., WHT “ I`.

b) It holds that

ps0In ´Aq
´1T “ TH `

“

0 . . . 0 t``1

‰

β``1,

ps0In ´Aq
´HW “WHH `

“

0 . . . 0 w``1

‰

γ``1,

where

H “

»

—

—

—

—

–

α1 γ2

β2 α2
. . .

. . . . . . γ`
β` α`

fi

ffi

ffi

ffi

ffi

fl

.

c) We have that

imT “ im C`ps0q, imW “ imO`ps0q
H.

Remark 6.10: In Algorithm 6.1 breakdowns may occur. It can be shown that
this is the case if and only if the matrix Hkps0q is singular for some k ď `. With
regard to Lemma 6.7 this means that we cannot construct matrices W, T P

Cnˆk with WHT “ Ik such that imT “ im C`ps0q and imW “ imO`ps0q
H.
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Algorithm 6.1 Padé-via-Lanczos for moment matching
Input: rA,B,C,Ds P Σn,1,1, s0 P CzΛpAq, reduced order `.
Output: Reduced-order model r rA, rB, rC, rDs “

“

WHAT,WHB,CT,D
‰

P

Σ`,1,1 with Mkps0q “ ĂMkps0q for k “ 0, 1, . . . , 2`´ 1.
1: if Cps0In ´Aq

´2B “ 0 then
2: Breakdown.
3: else
4: Set t1 :“ 1

}ps0In´Aq´1B}2
ps0In ´ Aq´1B, w1 :“

}ps0In´Aq´1B}
2

Cps0In´Aq´2B
ps0In ´

Aq´HCH.
5: Set α1 :“ wH

1 ps0In ´Aq
´1t1, t0 :“ 0, w0 :“ 0, β1 :“ 0, γ1 :“ 0.

6: end if
7: for k “ 1, 2, . . . , ` do
8: Set rk :“ ps0In ´Aq

´1tk ´ αktk ´ γktk´1.
9: Set sk :“ ps0In ´Aq

´Hwk ´ αkwk ´ βkwk´1.
10: if sHk rk “ 0 then
11: Breakdown.
12: else
13: Set βk`1 :“ }rk}2.
14: Set γk`1 :“ 1

βk`1
sHk rk.

15: Set tk`1 “
1

βk`1
rk.

16: Set wk`1 “
1

γk`1
sk.

17: Set αk`1 :“ wH
k`1ps0In ´Aq

´1tk`1.
18: end if
19: end for
20: Construct the reduced-order model as

rA :“WHAT, rB :“WHB, rC :“ CT, rD :“ D,

where
W :“

“

w1 . . . w`
‰

, T :“
“

t1 . . . t`
‰

.

We conclude this subsection with some general remarks on the difficulties of
moment matching model reduction.

Remark 6.11: a) Moment matching is a comparably cheap method for model
reduction, since for each s0, only one (sparse) LU factorization or one pre-
conditioner has to be computed and stored.

b) Computable error estimates or bounds are often very pessimistic or expen-
sive to evaluate. Moreover, there is only a good approximation quality close
to the expansion point s0.
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c) The expansion point s0 can often only be chosen heuristically by using a
priori knowledge from the system under consideration.

d) Preservation of physical properties such as stability or passivity can only be
guaranteed in special cases. Usually, a post-processing to restore these
properties would be required, but this may destroy the moment matching
properties.

In the following section we will discuss optimal choices for interpolation points
which will cure many of the above mentioned problems.

6.2 H2-Optimal Interpolation: The Iterative Rational Krylov
Algorithm

This section is based on [GAB08]. Consider an LTI system rA,B,C,Ds P
Σn,1,1. From the results of the previous section it is known that choosingW, T P
Cnˆ` such that WHT “ I` with

imT “ im
“

ps1In ´Aq
´1B . . . ps`In ´Aq

´1B
‰

,

imW “ im
“

ps1In ´Aq
´HCT . . . ps`In ´Aq

´HCT
‰

will lead to a reduced-order model r rA, rB, rC, rDs :“
“

WHAT,WHB,CT,D
‰

P

Σ`,1,1 with

Gpskq “ rGpskq, G1pskq “ rG1pskq, k “ 1, 2, . . . , `.

The question arises whether for fixed ` we can choose the interpolation points
s1, . . . , s` such that

›

›G ´ rG
›

› can be minimized in a suitable system norm.
It turns out that we can determine reduced-order models which fulfill such an
optimality criterion locally in the H2-norm. Recall from Chapter 2 that for SISO
systems we have that

›

›G´ rG
›

›

H2
“ sup

uPL2pr0,8q,Rq
u‰0

}y ´ ry}L8
}u}L2

,

where y, ry P L8pr0,8q,Rq are the outputs of the full and reduced-order mod-
els obtained by feeding in the input u P L2pr0,8q,Rq. Further recall that

›

›G´ rG
›

›

H2
“

ˆ

1

2π

ż 8

´8

ˇ

ˇGpiωq ´ rGpiωq
ˇ

ˇ

2
dω

˙1{2

forG´ rG P RH2 which is usually the case, since we haveD “ rD in projection-
based model reduction.
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Finding a global optimum is hard, but we are satisfied with a local optimum
which can be obtained by checking first-order (necessary) optimality conditions.
For this we will need the H2 inner product, which for SISO systems G, H P

RH2 reduces to

xG,HyH2 “
1

2π

ż 8

´8

Gp´iωqHpiωqdω.

Now we look for a different way of evaluating this inner product. For this we
need the residues of a function Gpsq P Rpsq with possibly multiple poles. The
residue of G at pole λ P C of order m is given by

respG,λq :“
1

pm´ 1q!
lim
sÑλ

dm´1

dsm´1
pps´ λqmGpsqq .

Note that if G is proper and the pole λ is simple, then the residues can be
computed as in Lemma 3.4. Residues are important tools in complex analysis,
for instance for the evaluation of integrals. One of the key results in complex
analysis is the residue theorem which we state next (in a simplified version).

Theorem 6.12 (Residue theorem): Let f : D Ñ C be a meromorphic function
(i. e., a function holomorphic in almost all points in D), Γ Ă D be a simple
closed contour in counterclockwise orientation that does not contain a pole of
f , and let µ1, . . . , µk be the poles of f inside the contour Γ. Then we have

ż

Γ
fpsqds “ 2πi

k
ÿ

j“1

respf, µjq.

Lemma 6.13: Let G, H P RH2 and let λ1, . . . , λp be the poles of G and
µ1, . . . , µq be the poles of H . Then it holds that

xG,HyH2
“

q
ÿ

j“1

respGp´¨qHp¨q, µjq “

p
ÿ

j“1

respHp´¨qGp¨q, λjq.

If µj is a simple pole of H , then it holds that

respGp´¨qHp¨q, µjq “ Gp´µjq respH,µjq.

Moreover, if µj is a double pole of H , then we have

respGp´¨qHp¨q, µjq “ Gp´µjq respH,µjq ´G
1p´µjqh0pµjq,

where h0pµjq “ limsÑµj

`

ps´ µjq
2Hpsq

˘

.
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Proof. First note that the functionGp´sqHpsqmay have poles only in µ1, . . . , µq
and ´λ1, . . . , ´λp. For any R ą 0 define the semicircular contour

ΓR :“ tz | z “ iω with ω P r´R,Rsu
loooooooooooooooooomoooooooooooooooooon

“:Γ1,R

Y

!

z
ˇ

ˇ

ˇ
z “ Reiθ with θ P

“

π
2 ,

3π
2

‰

)

looooooooooooooooooomooooooooooooooooooon

“:Γ2,R

.

For sufficiently large R, all poles of H are inside ΓR. Since G, H P RH2, it
holds that lim|s|Ñ8Gpsq “ lim|s|Ñ8Hpsq “ 0, and thus we haveGp´sqHpsq “
O
`

|s|´2
˘

for |s| Ñ 8. Therefore, Gp´sqHpsq decays faster then the length of
the contour Γ2,R grows for RÑ8 and thus we have

lim
RÑ8

ż

Γ2,R

Gp´sqHpsqds “ 0.

By using the residue theorem, we obtain

xG,HyH2
“

1

2π

ż 8

´8

Gp´iωqHpiωqdω

“
1

2πi
lim
RÑ8

ż

ΓR

Gp´sqHpsqds

“

q
ÿ

j“1

respGp´¨qHp¨q, µjq.

(Note that if a pole µj of H is canceled by a zero of Gp´¨q, then the above
formula is still correct, since then respGp´¨qHp¨q, µjq “ 0.) If µj is a simple
pole of H , then if Gp´µjq ‰ 0, it is also a simple pole of Gp´¨qHp¨q and we get

respGp´¨qHp¨q, µjq “ lim
sÑµj

ps´ µjqGp´sqHpsq

“ Gp´µjq lim
sÑµj

ps´ µjqHpsq “ Gp´µjq respH,µjq.

On the other hand, if Gp´µjq “ 0, then Gp´¨qHp¨q has no pole at µj and

0 “ respGp´¨qHp¨q, µjq “ Gp´µjq respH,µjq.

If µj is a double pole of H , then Gp´¨qHp¨q has no pole, a simple pole, or a
double pole at µj . With

Hpsq “
H´2

ps´ µjq2
`

H´1

s´ µj
` . . . ,

Gp´sq “ G0 `G1ps´ µjq ` . . . ,
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where G0 “ Gp´µjq and G1 “ ´G
1p´µjq, it holds that

respGp´¨qHp¨q, µjq

“ G0 ¨H´1 `G1 ¨H´2

“ Gp´µjq lim
sÑµj

d

ds

`

ps´ µjq
2Hpsq

˘

´G1p´µjq lim
sÑµj

ps´ µjq
2Hpsq

“ Gp´µjq respH,µjq ´G
1p´µjqh0pµjq.

Now we get back to the optimization problem. Assume for simplicity that G P

RH2 (The case of non-strictly properG can be handled similarly.) The question
arises how we can check whether rG P RH2 with McMillan degree ` locally
minimizes

›

›G´ rG
›

›

H2
. First we attempt to answer an easier question: Is there

a pG P RH2 of McMillan degree ` with the same poles as rG that yields a smaller
H2-error norm?

Theorem 6.14: Let µ :“ tµ1, . . . , µ`u Ă C´ be closed under complex con-
jugation. We define Mpµq to be the set of all functions in RH2 of McMillan
degree at most ` whose poles are simple and contained in the set µ. Then
there are the following facts:

a) If H P Mpµq, then H is the transfer function of a stable and minimal LTI
system with state-space dimension at most `.

b) The set Mpµq is an `-dimensional closed subspace of H2.

c) The function pG solves the minimization problem
›

›G´ pG
›

›

H2
“ min

HPMpµq

›

›G´H
›

›

H2
, (6.2)

if and only if
@

G´ pG,H
D

H2
“ 0 for all H PMpµq.

Furthermore, the solution pG of the minimization problem (6.2) exists and is
unique.

Proof. Statements a) and b) are easy to show (exercise!).

We only discuss statement c). Let pG PMpµq be such that
@

G´ pG,H
D

H2
“ 0
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for all H PMpµq. Then for H PMpµq we get

}G´H}2H2
“

›

›pG´ pGq ` p pG´Hq
›

›

2

H2

“
›

›G´ pG
›

›

2

H2
`
›

› pG´H
›

›

2

H2
` 2

@

G´ pG, pG´H
D

H2

“
›

›G´ pG
›

›

2

H2
`
›

› pG´H
›

›

2

H2
,

where the latter equality follows from pG´H PMpµq. This proves that pG is the
unique minimizer.

Let pG be a minimizer of (6.2), which is in Mpµq by the closedness property.
Then we get
›

›

`

pG` εH
˘

´G
›

›

2

H2
´
›

›G´ pG
›

›

2

H2
“ 2ε

@

pG´G,H
D

H2
` ε2 }H}2H2

ě 0 (6.3)

If
@

pG ´ G,H
D

H2
‰ 0 for some H P Mpµq, then for sufficiently small ε ą 0

we have
ˇ

ˇ

ˇ
2ε
@

pG ´ G,H
D

H2

ˇ

ˇ

ˇ
ą ε2 }H}2H2

. However, this is a contradiction to

the nonnegativity of (6.3). Therefore, we have x pG ´ G,H
D

H2
“ 0 for all H P

Mpµq.

By Lemma 6.13 we obtain

0 “
@

G´ pG,H
D

H2
“

ÿ̀

j“1

`

Gp´µjq ´ pGp´µjq
˘

respH,µjq

for all H PMpµq, which is equivalent to

Gp´µjq “ pGp´µjq, j “ 1, 2, . . . , `.

So in other words, pG has to interpolate G at the mirror images of its own poles.
The next question is whether the poles µ1, µ2, . . . , µ` are optimal.

Definition 6.15: LetG P RH2 be given and let δp¨q denote the McMillan degree
of a rational function. Then the function rG P RH2 is a local minimizer of the
minimization problem

min
HPRH2, δpHq“`

›

›G´H
›

›

H2
, (6.4)

if
›

›G´ rG
›

›

H2
ď

›

›G´H
›

›

H2

is satisfied for all H P RH2 with δpHq “ ` and
›

› rG´H
›

›

H2
ď ε for some ε ą 0.

We will now derive necessary optimality conditions for rG being a local minimizer
of the minimization problem (6.4).
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Theorem 6.16: If rG P RH2 is a local minimizer of (6.4) and rG has only simple
poles µ :“ tµ1, . . . , µ`u (closed under complex conjugation), then it holds that

@

G´ rG, rG ¨H1 `H2

D

H2
“ 0

for all H1, H2 PMpµq.

Proof. Suppose that rGε P RH2 with δ
`

rGε
˘

“ ` and
›

› rG ´ rGε
›

›

H2
ď c ¨ ε for a

sufficiently small ε ą 0 and some constant c ą 0. Then it holds that
›

›G´ rG
›

›

2

H2
ď

›

›G´ rGε
›

›

2

H2

“
›

›

`

G´ rG
˘

`
`

rG´ rGε
˘›

›

2

H2

“
›

›G´ rG
›

›

2

H2
` 2

@

G´ rG, rG´ rGε
D

H2
`
›

› rG´ rGε
›

›

2

H2
.

This implies that for all sufficiently small ε ą 0 we have that

0 ď 2
@

G´ rG, rG´ rGε
D

H2
`
›

› rG´ rGε
›

›

2

H2
. (6.5)

Let µ1, . . . , µ` be ordered such that µ1, µ2, . . . , µ`R are the real poles and
µj “ αj ˘ iβj with βj ą 0 for j “ `R ` 1, . . . , `R ` `C are the nonreal poles.
Then any H1 PMpµq can be written as a partial fraction expansion as

H1psq “
`R
ÿ

j“1

γj
s´ µj

`

`R``C
ÿ

j“`R`1

ρjps´ αjq ` τj
ps´ αjq2 ` β2

j

for some γj , ρj , τj P R. Thus we get

@

G´ rG, rG ¨H1 `H2

D

H2
“

`R
ÿ

j“1

γj

C

G´ rG,
rG

¨ ´ µj

G

H2

`

`R``C
ÿ

j“`R`1

ρj

C

G´ rG,
p¨ ´ αjq rG

p¨ ´ αjq2 ` β2
j

G

H2

`

`R``C
ÿ

j“`R`1

τj

C

G´ rG,
rG

p¨ ´ αjq2 ` β2
j

G

H2

`
@

G´ rG,H2

D

H2
.

By Theorem 6.14, we have
@

G ´ rG,H2

D

H2
“ 0. Now we show that also the

other summands vanish. Assume that for some j P t1, 2, . . . , `Ru we have
that

C

G´ rG,
rG

¨ ´ µj

G

H2

‰ 0.
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We write rGpsq “ ppsq
ps´µjqqpsq

for some polynomials ppsq, qpsq P Rrss and define

rGεpsq :“
ppsq

ps´ µj ´ p˘εqqqpsq
,

where the sign of ˘ε is chosen to match the one of
A

G´ rG,
rG

¨´µj

E

H2

. Then

we have
rGεpsq “ rGpsq ˘ ε

ppsq

ps´ µjq2qpsq
`O

`

ε2
˘

,

which leads to

rGpsq ´ rGεpsq “ ¯ε
rGpsq

s´ µj
`O

`

ε2
˘

and
@

G´ rG, rG´ rGε
D

H2
“ ´ε

ˇ

ˇ

ˇ

ˇ

ˇ

C

G´ rG,
rG

¨ ´ µj

G

H2

ˇ

ˇ

ˇ

ˇ

ˇ

looooooooooooomooooooooooooon

“:rcą0

`O
`

ε2
˘

.

Together with (6.5) we get

0 ď ´2rcε` c2ε2 `Opε2q “ ´2rcε`O
`

ε2
˘

.

But this is a contradiction for sufficiently small ε ą 0.

Now write rGpsq “ ppsq
pps´αjq

2`β2
j qqpsq

for some j P t`R ` 1, `R ` 2, . . . , `R ` `Cu

and ppsq, qpsq P Rrss. In an analogous fashion, it can be shown that
C

G´ rG,
p¨ ´ αjq rG

p¨ ´ αjq2 ` β2
j

G

H2

“ 0,

C

G´ rG,
rG

p¨ ´ αjq2 ` β2
j

G

H2

“ 0,

by using

rGεpsq “
ppsq

pps´ αj ´ p˘εqq2 ` β2
j qqpsq

and

rGεpsq “
ppsq

pps´ αjq2 ` β2
j ´ p˘εqqqpsq

,

respectively. From this we can conclude the claim of the theorem.

The question arises whether we can interpret the above theorem as interpola-
tion conditions. With Lemma 6.13 we obtain

0 “
@

G´ rG, rG ¨H1

D

H2
“

ÿ̀

j“1

res
´

`

Gp´¨q ´ rGp´¨q
˘

rGp¨qH1p¨q, µj

¯

.
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If H1 has exactly the same poles as rG, then µj is a double pole of rG ¨H1 (recall
that rG, H1 PMpµq) and Gp´µjq “ rGp´µjq for all j “ 1, 2, . . . , `. This gives

0 “ ´
ÿ̀

j“1

`

G1p´µjq ´ rG1p´µjq
˘

ˆ

lim
sÑµj

ps´ µjq
2
rGpsqH1psq

˙

“ ´
ÿ̀

j“1

`

G1p´µjq ´ rG1p´µjq
˘

res
`

rG,µj
˘

respH1, µjq.

Since this is true for all H1 PMpµq, we obtain that

G1p´µjq “ rG1p´µjq, j “ 1, 2, . . . , `.

The analysis carried out above can also be generalized to deal with transfer
functions Gpsq P Rpsqpˆm of MIMO systems. This will lead to tangential inter-
polation conditions, meaning that the original and the reduced transfer function
moments only match in certain tangential directions. We will not discuss this in
detail here, but summarize the result in the following theorem.

Theorem 6.17: Let an asymptotically stable system rA,B,C,Ds P Σn,m,p with
transfer function G P RHpˆm

8 be given. Let

rGpsq “
ÿ̀

j“1

1

s´ µj
pcjpb

H
j `

rD

with pbj P Cm and pcj P Cp, j “ 1, 2, . . . , ` be a local minimizer of the minimiza-
tion problem

min
HPRHpˆm

8 , δpHq“`

›

›G´H
›

›

H2
.

Then the following statements are satisfied:

a) It holds that D “ rD.

b) It holds that

Gp´µjqpbj “ rGp´µjqpbj , pcHj Gp´µjq “ pcHj
rGp´µjq, j “ 1, . . . , `.

c) It holds that

pcHj G
1p´µjqpbj “ pcHj

rG1p´µjqpbj , j “ 1, . . . , `.

Now we want to put this into an algorithm. We want to compute a state-space
realization of the reduced transfer function rG without explicitly computing it.
Given the interpolation points psj and the tangential directions pbj and pcj for j “
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1, 2, . . . , `, we can construct a reduced-order model such that the tangential
interpolation conditions

Gppsjqpbj “ rGppsjqpbj , pcHj Gppsjq “ pcHj
rGppsjq, j “ 1, . . . , `

and
pcHj G

1ppsjqpbj “ pcHj
rG1ppsjqpbj , j “ 1, . . . , `.

are satisfied. We do this by two-sided interpolation with projection matrices
W, T P Cnˆ` with WHT “ I` and

imT “ im
”

pps1In ´Aq
´1Bpb1 . . . pps`In ´Aq

´1Bpb`

ı

,

imW “ im
“

pps1In ´Aq
´HCH

pc1 . . . pps`In ´Aq
´HCH

pc`
‰

.

On the other hand, if a reduced-order system
“

rA, rB, rC, rD
‰

P Σ`,m,p is given,
we compute new interpolation data as follows: Assume that rA is diagonalizable,
i. e., there exists an invertible matrix X P C`ˆ` such that

X´1
rAX “M “ diagpµ1, . . . , µ`q.

Then we have

rGpsq “ rC
`

sI` ´ rA
˘´1

rB ` rD “ rCXpsI` ´Mq
´1X´1

rB ` rD.

With
»

—

–

pbH1
...
pbH`

fi

ffi

fl

:“ X´1
rB,

“

pc1 . . . pc`
‰

:“ rCX

we then obtain

rGpsq “
ÿ̀

j“1

1

s´ µj
pcjpb

H
j `

rD.

From this we can construct a new model as above that fulfills the tangential in-
terpolation conditions at the data

`

´µj , pbj , pcj
˘

. This leads to an algorithm that
alternates between the construction of a reduced-order model from interpola-
tion data and the generation of new interpolation data from a given reduced-
order model. If this iteration converges, then the tangential interpolation condi-
tions are satisfied. This can be interpreted as a fixed-point iteration and results
in Algorithm 6.2. The algorithm is usually terminated if the change in the pole
locations between two consecutive iterations is below a given tolerance, or if
the distance (e. g., measured in the H2-norm) of the reduced transfer functions
between two consecutive iterations is sufficiently small.
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Algorithm 6.2 Iterative rational Krylov algorithm (IRKA)
Input: Asymptotically stable rA,B,C,Ds P Σn,m,p, desired reduced order `.
Output: Reduced-order model

“

rA, rB, rC, rD
‰

P Σ`,m,p.
1: Choose initial interpolation data

`

µj , pbj , pcj
˘

, j “ 1, . . . , `.
2: while not converged do
3: Construct the model

“

rA, rB, rC, rD
‰

:“ rWHAT,WHB,CT,Ds P Σ`,m,p

where W, T P Cnˆ` with WHT “ I` and

imT “ im
”

p´µ1In ´Aq
´1Bpb1 . . . p´µ`In ´Aq

´1Bpb`

ı

,

imW “ im
“

p´µ1In ´Aq
´HCH

pc1 . . . p´µ`In ´Aq
´HCH

pc`
‰

.

4: Compute new interpolation data
`

µj , pbj , pcj
˘

, j “ 1, . . . , `: Compute an
invertible matrix X P C`ˆ` such that X´1

rAX “ diagpµ1, . . . , µ`q and
set

»

—

–

pbH1
...
pbH`

fi

ffi

fl

:“ X´1
rB,

“

pc1 . . . pc`
‰

:“ rCX, rD :“ D.

5: end while

Remark 6.18: a) The initial interpolation data is either chosen randomly or by
a cheaply computable reduced-order model such as a partial realization.

b) Stability of intermediate reduced-order models is not guaranteed. Unstable
intermediate systems may occur, in particular, if the initial interpolation data
is far away of the optimal one.

c) If the full-order model contains only real matrices, then also a real reduced-
order model can be obtained by choosing the interpolation data such that it
is closed under complex conjugation and by a realification of the projection
matrices W and T by noting that

im
”

p´µIn ´Aq
´1Bpb p´µIn ´Aq

´1Bpb

ı

“ im
”

Re
´

p´µIn ´Aq
´1Bpb

¯

Im
´

p´µIn ´Aq
´1Bpb

¯ı

.

d) Convergence of IRKA cannot be guaranteed, counter-examples are known.

e) In case of convergence, the resulting system may only be locally optimal,
but in many cases, it even converges to a very good local or even global
optimizer in only a few iterations. Unfortunately, a complete convergence
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analysis of the method it still an open problem. Partial results are only known
for symmetric systems.

f) The reduced-order models obtained by IRKA are usually competitive to
those obtained by balanced truncation.

6.3 Interpolation from Data: The Loewner Framework

In this section we discuss another framework for interpolation that is solely
based on data obtained from the system under consideration, see [MA07]. In
many situations it may be the case that a model is not available, but only some
input/output data may given. Then we seek for a model of low order that best
reproduces this data. Note that this process is rather called reduced-order
modeling instead of model reduction, since no model is given. The methods
discussed here are related to the field of system identification, where it is the
goal to determine a model or its parameters from measurements, to validate
it and to assess its robustness with respect to uncertainties in the data via
statistical considerations.

Assume that we have given right or column data pλi, ri, wiq P CˆCmˆCp, i “
1, 2, . . . , k, and left or row data pµj , `j , vjq P C ˆ Cp ˆ Cm, j “ 1, 2, . . . , q.
We seek a function rGpsq P Cpsqpˆm such that

rGpλiqri “ wi, i “ 1, 2, . . . , k,

`Hj
rGpµjq “ vHj , j “ 1, 2, . . . , q.

For simplicity we assume that tλ1, . . . , λku X tµ1, . . . , µqu “ H. We reorga-
nize the right data as

Λ :“ diagpλ1, . . . , λkq P Ckˆk,
R :“

“

r1 r2 . . . rk
‰

P Cmˆk,
W :“

“

w1 w2 . . . wk
‰

P Cpˆk,

(6.6)

and the left data as

M :“ diagpµ1, . . . , µqq P Cqˆq,
LH :“

“

`1 `2 . . . `q
‰

P Cpˆq,
V H :“

“

v1 v2 . . . vq
‰

P Cmˆq.
(6.7)
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From the data we construct the Loewner matrix

L :“

»

—

—

–

vH1 r1´`
H
1w1

µ1´λ1
. . .

vH1 rk´`
H
1wk

µ1´λk
...

. . .
...

vHq r1´`
H
qw1

µq´λ1
. . .

vHq rk´`
H
qwk

µq´λk

fi

ffi

ffi

fl

P Cqˆk, (6.8)

and the shifted Loewner matrix

Lσ :“

»

—

—

–

µ1vH1 r1´`
H
1w1λ1

µ1´λ1
. . .

µ1vH1 rk´`
H
1wkλk

µ1´λk
...

. . .
...

µqvHq r1´`
H
qw1λ1

µq´λ1
. . .

µqvHq rk´`
H
qwkλk

µq´λk

fi

ffi

ffi

fl

P Cqˆk. (6.9)

The matrix pencil sL´ Lσ P Crssqˆk is also called the Loewner pencil.

Lemma 6.19: With the notation introduced in (6.6), (6.7), (6.8), and (6.9), the
two Sylvester equations

LΛ´ML “ LW ´ V R (6.10)

and
LσΛ´MLσ “ LWΛ´MVR (6.11)

are satisfied.

Proof. By denoting with r¨sij , the pi, jq-th entry of the matrix in the brackets, we
obtain that

rLΛ´MLsij “
vHi rj ´ `

H
i wj

µi ´ λj
λj ´ µi

vHi rj ´ `
H
i wj

µi ´ λj

“
vHi rjλj ´ `

H
i wjλj ´ µiv

H
i rj ` µi`

H
i wj

µi ´ λj

“ `Hi wj ´ v
H
i rj “ rLW ´ V Rsij .

Moreover, we have

rLσΛ´MLσsij “
µiv

H
i rj ´ `

H
i wjλj

µi ´ λj
λj ´ µi

µiv
H
i rj ´ `

H
i wjλj

µi ´ λj

“
µiv

H
i rjλj ´ `

H
i wjλ

2
j ´ µ

2
i v

H
i rj ` µi`

H
i wjλj

µi ´ λj

“ `Hi wjλj ´ µiv
H
i rj “ rLWΛ´MVRsij .
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Remark 6.20: Let the data be sampled from a (regular) linear descriptor system

d
dtExptq “ Axptq `Buptq,

yptq “ Cxptq

with transfer function Gpsq “ CpsE ´Aq´1B and define the matrices

Ck :“
“

pλ1E ´Aq
´1Br1 . . . pλkE ´Aq

´1Brk
‰

P Cnˆk,

Oq :“

»

—

–

`H1Cpµ1E ´Aq
´1

...
`Hq CpµqE ´Aq

´1

fi

ffi

fl

P Cqˆn,

which are called generalized tangential controllability matrices and generalized
tangential observability matrices, respectively. With these, it follows that

rLsij “
vHi rj ´ `

H
i wj

µi ´ λj

“
`Hi Gpµiqrj ´ `

H
i Gpλjqrj

µi ´ λj

“
`Hi C

`

pµiE ´Aq
´1 ´ pλjE ´Aq

´1
˘

Brj

µi ´ λj

“
`Hi CpµiE ´Aq

´1ppλjE ´Aq ´ pµiE ´AqqpλjE ´Aq
´1Brj

µi ´ λj

“ ´`Hi CpµiE ´Aq
´1EpλjE ´Aq

´1Brj ,

and similarly

rLσsij “
µiv

H
i rj ´ λj`

H
i wj

µi ´ λj

“
µi`

H
i Gpµiqrj ´ λj`

H
i Gpλjqrj

µi ´ λj

“ ´`Hi CpµiE ´Aq
´1ApλjE ´Aq

´1Brj .

This gives
L “ ´OqECk, Lσ “ ´OqACk.

Now we state and proof a result that gives us the structure of the dynamical
system that interpolates the data.
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Theorem 6.21: Assume that there is given data as in (6.6), (6.7) with k “ q.
Let the associated Loewner pencil sL ´ Lσ be regular (i. e., detpsL ´ Lσq is
not the zero polynomial) and assume that no λi, i “ 1, 2, . . . , k and µj , j “
1, 2, . . . , q is an eigenvalue of the pencil sL´ Lσ. Then

rE “ ´L, rA “ ´Lσ, rB “ V, rC “W

is an interpolating descriptor system realization, i. e., the function rGpsq :“
rC
`

s rE ´ rA
˘´1

rB interpolates the given data.

Proof. For the proof we make use of the Sylvester equations (6.10) and (6.11).
By multiplying the first equation by s and subtracting it from the second one, we
obtain

pLσ ´ sLqΛ´MpLσ ´ sLq “ LW pΛ´ sIkq ´ pM ´ sIqqV R. (6.12)

Multiplying this equation by ei from the right and setting s “ λi, we obtain

pλiIq ´MqpLσ ´ λiLqei “ pλiIq ´MqV ri,

which is equivalent to
pLσ ´ λiLqei “ V ri

and yields
wi “Wei “W pLσ ´ λiLq´1V ri.

Therefore, we obtain wi “ rGpλiqri, i “ 1, . . . , k, i. e., the right data is inter-
polated. To prove that also the left data is interpolated we multiply (6.12) by eTj
from the left and take s “ µj . This gives

eTj pLσ ´ µjLqpΛ´ µjIkq “ eTj LW pΛ´ µjIkq,

which is equivalent to
eTj pLσ ´ µjLq “ `HjW.

Therefore, we obtain

vHj “ eTj V “ `HjW pLσ ´ µjLq´1V,

which yields vHj “ `Hj
rGpµjq, j “ 1, . . . , q. This completes the proof.

A common situation that arises in practice is redundant data, i. e., the case
where we have to much data. In this case, the Loewner pencil sL ´ Lσ is
singular and thus the transfer function rG does not exist. The question that
arises is how we can treat this situation in the Loewner framework.
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Theorem 6.22: Let data as in (6.6), (6.7) and the associated Loewner matrices
(6.8) and (6.9) be given. Assume that

rankpξL´ Lσq “ rank
“

L Lσ
‰

“ rank

„

L
Lσ



“ r

@ ξ P tλ1, . . . , λku Y tµ1, . . . , µqu .

Consider the economic SVDs

“

L Lσ
‰

“ Y Σl
rXH,

„

L
Lσ



“ rY ΣrX
H (6.13)

with Σl, Σr P Rrˆr, and X P Ckˆr and Y P Cqˆr. If R and LH both have full
column rank, then

rE “ ´Y HLX, rA “ ´Y HLσX, rB “ Y HV, rC “WX

is an interpolating descriptor system realization, i. e., the function rGpsq :“
rC
`

s rE ´ rA
˘´1

rB interpolates the given data.

Proof. Here we show only show that the right interpolation conditions are sat-
isfied, the proof for the left interpolation conditions is analogous. From (6.13)
and since X, Y have orthonormal columns, we have that L “ ´rY1ΣrX

H and
Lσ “ ´rY2ΣrX

H. Therefore, we obtain

LXXH “ ´rY1ΣrX
HXXH “ ´rY1ΣrX

H “ L,

LσXXH “ ´rY2ΣrX
HXXH “ ´rY2ΣrX

H “ Lσ.

Moreover, we have
Lσ ´ LΛ “ V R,

which follows from

rLσ ´ LΛsij “
µiv

H
i rj ´ λj`

H
i wj

µi ´ λj
´
vHi rj ´ `

H
i wj

µi ´ λj
λj “ vHi rj “ rV Rsij ,

i “ 1, 2, . . . , k, j “ 1, 2, . . . , q.

Similarly we have
Lσ ´ML “ LW.

This gives

LWXXH “ pLσ ´MLqXXH “ Lσ ´ML “ LW.
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Sine LH has full column rank, this implies WXXH “ W . With the above
identities we get

´ rAXH ` rEXHΛ “ Y HLσXXH ´ Y HLXXHΛ

“ Y HpLσ ´ LΛq

“ Y HV R.

Then for i “ 1, 2, . . . , k we get

rGpλiqri “ rC
`

λi rE ´ rA
˘´1

rBri

“ rC
`

λi rE ´ rA
˘´1

Y HV ri

“ rC
`

λi rE ´ rA
˘´1`

´ rAXH ` rEXHΛ
˘

ei

“ rC
`

λi rE ´ rA
˘´1`

λi rE ´ rA
˘

XHei

“ rCXHei “WXXHei “Wei “ wi.

Remark 6.23: In general there are many projections leading to the same trans-
fer function. To make this precise, assume that Φ P Ckˆr, Ψ P Cqˆr are given
such that XHΦ and ΨHY are both nonsingular. Then the model given by

pE “ ´ΦHLΨ, pA “ ´ΦHLσΨ, pB “ ΦHV, pC “WΨ

has the transfer function rGpsq :“ rC
`

s rE ´ rA
˘´1

rB with the notation as in Theo-
rem 6.22.

To illustrate the method we give a simple example.

Example: Consider the function Gpsq “ 1
s2`1

. We sample this function at the
points

λ1 “ 1, λ2 “ 2, λ3 “ 3,

µ1 “ ´1, µ2 “ ´2, µ3 “ ´3,

and obtain the data

Λ “ diagp1, 2, 3q, R “
“

1 1 1
‰

, W “
“

1
2

1
5

1
10

‰

,

M “ diagp´1, ´2, ´3q, LH “
“

1 1 1
‰

, V H “
“

1
2

1
5

1
10

‰

.

Then the Loewner pencil sL´ Lσ is given by

L “

»

–

0 ´ 1
10 ´ 1

10
1
10 0 ´ 1

50
1
10

1
50 0

fi

fl , Lσ “

»

–

1
2

3
10

1
5

3
10

1
5

7
50

1
5

7
50

1
10

fi

fl .
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It is easily checked by some SVDs that

rankpξL´ Lσq “ rank
“

L Lσ
‰

“ rank

„

L
Lσ



“ 2

@ ξ P t´3, ´2, ´1, 1, 2, 3u .

Therefore, we choose Φ, Ψ P C3ˆ2. We take

Φ “ Ψ “

»

–

5 ´5
1 0
0 1

fi

fl .

This gives a reduced-order

pE “ ´ΦHLΨ “

„

0 51
50

´51
50 0



, pA “ ´ΦHLσΨ “

„

´157
10

643
50

643
50 ´53

5



,

pB “ ΦHV “

„

27
10
´12

5



, pC “WΨ “
“

27
10 ´12

5

‰

.

Now a simple calculation gives

pC
`

s pE ´ pA
˘´1

pB “
1

s2 ` 1
“ Gpsq,

so we have reconstructed our original model (which can be realized by a system
of state-space dimension two) from the data.



CHAPTER 7

Outlook

In this course on model reduction we have mainly considered system-theoretic
methods, i. e., methods that mainly try to approximate the input/output behavior
of a dynamical system. In this chapter we will have a brief look onto some
further aspects of model reduction that could not be covered in this course in
full detail.

7.1 Parametric Model Reduction

In industrial applications one often considers dynamical systems that depend
on parameters. Then one is often interested in optimizing these parameters
which often requires a lot of simulations of the dynamical system for many
parameters. In this context one is particularly interested in reduced represen-
tations of the model to make these simulations feasible. The great challenge
consists of finding a reduced-order model that is a good approximation of the
original one for all parameters. A good survey on such methods is [BGW15].
To make this precise, consider a parametric LTI system

9xpt; pq “ Appqxpt; pq `Bppquptq,

ypt; pq “ Cppqxpt; pq `Dppquptq,

where Appq P Rnˆn, Bppq P Rnˆm, Cppq P Rqˆn, and Dppq P Rqˆm for all p P
Ω Ă Rd. In this setting it is desirable to have a parameter-affine representation

101
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of the model as

Appq “ A0 ` a1ppqA1 ` . . .` aκAppqAκA ,

Bppq “ B0 ` b1ppqB1 ` . . .` bκB ppqBκB ,

Cppq “ C0 ` c1ppqC1 ` . . .` cκC ppqCκC

(7.1)

for fixed matrices A0, . . . , AκA P Rnˆn, B0, . . . , BκB P Rnˆm, C0, . . . , CκC P
Rqˆn and functions a1, . . . , aκA , b1, . . . , bκB , c1, . . . , cκC : Ω Ñ C. Note
that any system can be written in this form, but for computational efficiency it
is desirable to have κA, κB, κC ! n. This representation easily allows the
construction of reduced-order models via projection, i. e., projection matrices
W, T P Rnˆr are constructed such that WTT “ Ir and such that the reduced-
order model is given by

9
rxpt; pq “ rAppqrxpt; pq ` rBppquptq,

rypt; pq “ rCppqrxpt; pq ` rDppquptq,

where

rAppq “WTAppqT “WTA0T ` a1ppqW
TA1T ` . . .` aκAppqW

TAκAT,

rBppq “WTBppq “WTB0 ` b1ppqW
TB1 ` . . .` bκB ppqW

TBκB ,

rCppq “ CppqT “ C0T ` c1ppqC1T ` . . .` cκC ppqCκCT,

rDppq “ Dppq.

The main questions that have to be faced here, are the following:

a) Do we want to determine global projection matrices W and T that are good
for all p P Ω or do we rather determine local projection matrices W1, . . . , Wk,
T1, . . . , Tk from models for particular parameters p1, . . . , pk?

b) If we determine local projection matrices, how do we choose good parame-
ters p1, . . . , pk and how can we use the information to get a reduced-order
model for p R tp1, . . . , pku?

There are several ways to attack these questions. If the local projection matri-
ces W1, . . . , Wk, T1, . . . , Tk from models for particular parameters p1, . . . , pk
are known, then one can obtain a reduced-order model for some p R tp1, . . . , pku
by

a) transfer function interpolation: If rGjpsq “ rCppjq
`

sIn ´ rAppjq
˘´1

rBppjq `
rDppjq, then one can construct

rGps, pq “
k
ÿ

j“1

gjppq rGjpsq
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for an arbitrary p P Ω, where gjp¨q are some interpolation functions (such
as Lagrange polynomials). Further, rational interpolation techniques have
been developed to find good global projection matrices. These lead to (tan-
gential) interpolation conditions that do not only lead to moment matching
at interpolation points s1, . . . , s`, but also at the parameters p1, p2, . . . , pk.

b) matrix interpolation: Instead of interpolating the transfer functions, the re-
duced functions rAp¨q, rBp¨q, rCp¨q, rDp¨q can be obtained via interpolation at
the parameters p1, . . . , pk.

Note that the above techniques do not need the affine representation (7.1).
On the other hand, the affine representation is explicitly used in determin-
ing good global projection matrices by parametric balanced truncation. This
method computes global low-rank factorizations of parametric Lyapunov equa-
tions, but it still has limitations since it can only be applied to special classes
of systems such as systems with pointwise positive definite Appq that allow the
development of error estimators. These error estimators are important to find
good sampling parameters p in the algorithm.

7.2 Sampling-Based Methods

A further class of methods that has not been discussed in this course are
sampling-based methods. These methods mainly consist of sampling the solu-
tion of the system under consideration for several initial conditions or parameter
values and approximating the space in which the solutions live. If a basis for
this space for some initial conditions or parameters is known, then the hope
is that also the solutions for the other values can be well represented in this
basis. Sampling-based methods play a great role in model reduction of PDEs,
see, e. g., [Vol13]. Consider for example 1D Burgers’ equation

B

Bt
ypx, tq ´ ν

B2

Bx2
ypx, tq `

1

2

B

Bx
ypx, tq2 “ 0, x P r0, 1s, t ě 0

with the boundary and initial conditions

yp0, tq “ yp1, tq “ 0, t ě 0,

ypx, 0q “ y0pxq, x P r0, 1s.

A finite element discretization with the finite element basis tϕ1, . . . , ϕNu leads
to the spatially discretized model

xM
d

dt
pyptq ´ ν pKpyptq ` pL

`

pyptq
˘

“ 0.
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Then an approximate solution of the original problem is of the form

pyhpx, tq “
N
ÿ

i“1

ϕipxqpyiptq,

where pyiptq is the i-th component of pyptq. The goal is to replace this model by
a reduced-order model

ĂM
d

dt
ryptq ´ ν rKryptq ` rL

`

ryptq
˘

“ 0

that can be described by an orthonormal basis tψ1, . . . , ψku with k ! N . Then
an approximate solution of the original problem is of the form

ryhpx, tq “
k
ÿ

i“1

ψipxqryiptq,

where ryiptq is the i-th component of ryptq. The question is how to determine the
basis tψ1, . . . , ψku. Assume that we have given “snapshots” of the full-order
solution pyhpx, tq, i. e., we know tpy1p¨q, . . . , pynp¨qu :“ tpyhp¨, t1q, . . . , pyhp¨, tnqu Ă
X, where X is assumed to be a Hilbert space with inner product x¨, ¨yX and in-
duced norm }¨}X :“ x¨, ¨y

1{2
X . For given k ď n, the method of proper orthogonal

decomposition (POD) computes an optimal solution of the optimization problem

min
tψ1, ..., ψku

n
ÿ

i“1

}ryi ´ pyi}
2
X , xψj , ψ`yX “ δj` @ j, ` P t1, . . . , ku ,

where ryipxq “
řk
j“1 xpyi, ψjyX ψjpxq is an approximation of pyi using the ba-

sis tψ1, . . . , ψku. Assume w. l. o. g. that X “ RN . (Note that if X is any
finite dimensional Hilbert space, then there exists an isometric isomorphism
Φ : pX, x¨, ¨yXq Ñ

`

RN , x¨, ¨yRN

˘

, where x¨, ¨yRN is the standard inner product
in RN – so we can exploit the notation and simply denote Φpyq by y.) So we
get an equivalent optimization problem

min
tψ1, ..., ψku

n
ÿ

i“1

}ryi ´ pyi}
2
2 , xψj , ψ`yRN “ δj` @ j, ` P t1, . . . , ku ,

where ryi “
řk
j“1 xpyi, ψjyRN ψj . Let Y “

“

py1 . . . pyn
‰

P RNˆn and

Y Y T
rψj “ λj rψj for j “ 1, 2, . . . , n with λ1 ě λ2 ě . . . ě λn.

Then the POD basis is given by tψ1, . . . , ψku “
 

rψ1, . . . , rψk
(

. In other words,
the POD basis consists of the k dominant left singular vectors of the snapshot
matrix Y . Furthermore, the error is given by

n
ÿ

i“1

›

›

›

›

›

k
ÿ

j“1

xpyi, ψjyRN ψj ´ pyi

›

›

›

›

›

2

2

“

n
ÿ

j“k`1

λj .
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In the literature several further aspects are discussed such as optimal choices
of snapshots for parameter-dependent problems (by developing error estima-
tors) and the application to optimal control problems.
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