Model Reduction Homework Sheet 5.

The problems will be discussed in the exercise on Thursday, June 27.
Problem 1: Let $S \in \mathbb{C}^{n \times n}$ be asymptotically stable, $B \in \mathbb{C}^{n \times m}$, and $\rho<0$. Define $A:=\left(S-\rho I_{n}\right)(S+$ $\left.\rho I_{n}\right)^{-1}$ and $Q:=-2 \rho\left(S+\rho I_{n}\right)^{-1} B B^{\mathrm{H}}\left(S+\rho I_{n}\right)^{-\mathrm{H}}$. Show that the discrete-time Lyapunov equation

$$
A X A^{\mathrm{H}}-X=-Q
$$

is equivalent to a continuous-time Lyapunov equation.
Problem 2: Let $S \in \mathbb{C}^{n \times n}$ and $-p,-q \in \mathbb{C} \backslash \Lambda(S)$.
a) Show that the matrices $\left(S+p I_{n}\right)^{ \pm 1},\left(S+q I_{n}\right)^{ \pm 1}$ commute with each other.
b) Define the Cayley transform $\mathcal{C}(S, p, q):=\left(S-q I_{n}\right)\left(S+p I_{n}\right)^{-1}$. Show that

$$
\mathcal{C}(S, p, q)=I_{n}-(q+p)\left(S+p I_{n}\right)^{-1}
$$

c) Show that

$$
\Lambda(\mathcal{C}(S, p, q))=\left\{\left.\frac{\lambda-q}{\lambda+p} \right\rvert\, \lambda \in \Lambda(S)\right\}
$$

Now let S be diagonalizable and $\Lambda(S) \subset \mathbb{C}^{-}$. Show that the spectral radius of $\mathcal{C}(S, p, q)$ is smaller than one if $q=\bar{p} \in \mathbb{C}^{-}$.
d) Now consider $M_{j}:=\prod_{i=1}^{j} \mathcal{C}\left(S, p_{i}, q_{i}\right)$ with $q_{i}=\overline{p_{i}} \in \mathbb{C}^{-}, i=1, \ldots, j$. What are the eigenvalues of M_{j} ?
e) Now assume that the shifts are chosen cyclicly, that is, it holds $p_{i}=p_{i+k \cdot \ell}$ for some $\ell \in \mathbb{N}$ and $i=1, \ldots, \ell$ and $k=1,2, \ldots$. Show that spectral radius of M_{j} converges to zero for $j \rightarrow \infty$. Does this also hold for $\left\|M_{j}\right\|_{2}$?

Problem 3: Prove Theorem 4.19 from the lecture notes: Assume $P=\left\{p_{1}, \ldots, p_{k}\right\}$ to be a set of proper shifts and assume w.l.o.g. that $p_{j+1}=\bar{p}_{j} \notin \mathbb{R}$. Then for V_{j}, V_{j+1} it holds that

$$
\begin{aligned}
V_{j+1} & =\overline{V_{j}}+2 \beta_{j} \operatorname{Im}\left(V_{j}\right) \\
W_{j+1} & =W_{j-1}-4 \operatorname{Re}\left(p_{j}\right)\left(\operatorname{Re}\left(V_{j}\right)+\beta_{j} \operatorname{Im}\left(V_{j}\right)\right)
\end{aligned}
$$

with $\beta_{j}=\frac{\operatorname{Re}\left(p_{j}\right)}{\operatorname{Im}\left(p_{j}\right)}$.

