Model Reduction Homework Sheet 4.

The problems will be discussed in the exercise on Thursday, June 06.
Problem 1: Let $[A, B, C, D] \in \Sigma_{n, m, p}$ be asymptotically stable with controllability Gramian P and observability Gramian Q. Let $T \in \mathbb{R}^{n \times n}$ be invertible and define $[\widetilde{A}, \widetilde{B}, \widetilde{C}, \widetilde{D}]:=\left[T^{-1} A T, T^{-1} B, C T, D\right]$ with controllability Gramian \widetilde{P} and observability Gramian \widetilde{Q}. Show the following statements:
a) It holds that $\widetilde{P}=T^{-1} P T^{-\top}$ and $\widetilde{Q}=T^{\top} Q T$.
b) The Hankel singular values are invariant under state-space transformations.

Problem 2: Let $[A, B, C, D] \in \Sigma_{n, m, p}$ be asymptotically stable with the Hankel operator \mathcal{H}. Show that \mathcal{H} is a bounded linear operator. For boundedness, show that there exists a constant $c>0$ (independent of u) such that

$$
\|\mathcal{H} u\|_{\mathcal{L}_{2}\left([0, \infty), \mathbb{R}^{p}\right)} \leq c \cdot\|u\|_{\mathcal{L}_{2}\left((-\infty, 0], \mathbb{R}^{m}\right)}
$$

Problem 3: Let $A \in \mathbb{R}^{n \times n}, B \in \mathbb{R}^{m \times m}$, and $C \in \mathbb{R}^{n \times m}$ be given matrices and consider the Sylvester equation

$$
\begin{equation*}
A X+X B=C \quad \text { for } X \in \mathbb{R}^{n \times m} \tag{1}
\end{equation*}
$$

a) Consider the vectorization operator

$$
\operatorname{vec}: \mathbb{R}^{n \times m} \rightarrow \mathbb{R}^{n m}, \quad X=\left[\begin{array}{lll}
x_{1} & \ldots & x_{m}
\end{array}\right] \mapsto\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{m}
\end{array}\right]
$$

and for $X=\left[x_{i j}\right] \in \mathbb{R}^{n \times m}$ and $Y \in \mathbb{R}^{p \times q}$ define the Kronecker product

$$
\otimes: \mathbb{R}^{n \times m} \times \mathbb{R}^{p \times q} \rightarrow \mathbb{R}^{n p \times m q}, \quad X \otimes Y=\left[\begin{array}{ccc}
x_{11} Y & \ldots & x_{1 m} Y \\
\vdots & & \vdots \\
x_{n 1} Y & \ldots & x_{n m} Y
\end{array}\right] \in \mathbb{R}^{n p \times m q}
$$

Show that for $T \in \mathbb{R}^{n \times m}, O \in \mathbb{R}^{m \times p}$, and $R \in \mathbb{R}^{p \times r}$ it holds that

$$
\operatorname{vec}(T O R)=\left(R^{\top} \otimes T\right) \operatorname{vec}(O)
$$

and conclude that (1) can be equivalently written as a linear system of the form

$$
\left(\left(I_{m} \otimes A\right)+\left(B^{\top} \otimes I_{n}\right)\right) \operatorname{vec}(X)=\operatorname{vec}(C)
$$

b) Consider the Theorem of Stephanos:

Let $A \in \mathbb{R}^{n \times n}$ and $B \in \mathbb{R}^{m \times m}$ with $\Lambda(A)=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}, \Lambda(B)=\left\{\mu_{1}, \ldots, \mu_{m}\right\}$ be given. For a bivariate polynomial $p(x, y)=\sum_{i, j=0}^{k} c_{i j} x^{i} y^{j}$ we define by

$$
p(A, B):=\sum_{i, j=0}^{k} c_{i j}\left(A^{i} \otimes B^{j}\right)
$$

a polynomial of the two matrices. Then the spectrum of $p(A, B)$ is given by

$$
\Lambda(p(A, B))=\left\{p\left(\lambda_{r}, \mu_{s}\right) \mid r=1, \ldots, n, s=1, \ldots, m\right\}
$$

Use this theorem to show that the Sylvester equation (1) is uniquely solvable for all $C \in \mathbb{R}^{n \times m}$, if and only if $\Lambda(A) \cap \Lambda(-B)=\emptyset$.
Bonus: Prove the Theorem of Stephanos.

