Model Reduction Homework Sheet 2.

The problems will be discussed in the exercise on Thursday, May 02.
Problem 1: (Calculating with transfer functions). Consider two transfer functions $G_{1}(s), G_{2}(s) \in$ $\mathbb{R}(s)^{p \times m}$ with realizations $\left[A_{1}, B_{1}, C_{1}, D_{1}\right] \in \Sigma_{n_{1}, m, p}$ and $\left[A_{2}, B_{2}, C_{2}, D_{2}\right] \in \Sigma_{n_{2}, m, p}$. Show the following statements:
a) A realization of $G_{1}(s)+G_{2}(s)$ is given by

$$
\left[\left[\begin{array}{cc}
A_{1} & 0 \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{l}
B_{1} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & C_{2}
\end{array}\right], D_{1}+D_{2}\right] \in \Sigma_{n_{1}+n_{2}, m, p}
$$

b) For $p=m$, two realizations of $G_{1}(s) G_{2}(s)$ are given by

$$
\begin{aligned}
& {\left[\left[\begin{array}{cc}
A_{1} & B_{1} C_{2} \\
0 & A_{2}
\end{array}\right],\left[\begin{array}{c}
B_{1} D_{2} \\
B_{2}
\end{array}\right],\left[\begin{array}{ll}
C_{1} & D_{1} C_{2}
\end{array}\right], D_{1} D_{2}\right] \in \Sigma_{n_{1}+n_{2}, m, p},} \\
& {\left[\left[\begin{array}{cc}
A_{2} & 0 \\
B_{1} C_{2} & A_{1}
\end{array}\right],\left[\begin{array}{c}
B_{2} \\
B_{1} D_{2}
\end{array}\right],\left[\begin{array}{ll}
D_{1} C_{2} & C_{1}
\end{array}\right], D_{1} D_{2}\right] \in \Sigma_{n_{1}+n_{2}, m, p} .}
\end{aligned}
$$

c) Let $G(s)$ with a realization $[A, B, C, D] \in \Sigma_{n, m, m}$ with invertible D be given. Assume there exists an inverse $G^{-1}(s)$ with $G(s) G^{-1}(s)=G^{-1}(s) G(s)=I_{m}$. Then a realization of $G^{-1}(s)$ is given by

$$
\left[A-B D^{-1} C,-B D^{-1}, D^{-1} C, D^{-1}\right] \in \Sigma_{n, m, m}
$$

Problem 2: (Mechanical systems). Consider the second-order LTI system

$$
\begin{aligned}
M \ddot{x}(t)+D \dot{x}(t)+K x(t) & =B u(t), \quad x(0)=x_{0}, \dot{x}(0)=x_{1} \\
y(t) & =C_{1} x(t)+C_{2} \dot{x}(t)
\end{aligned}
$$

where

- the mass and stiffness matrices $M \in \mathbb{R}^{n \times n}$ and $K \in \mathbb{R}^{n \times n}$ are symmetric and positive definite;
- the damping matrix $D \in \mathbb{R}^{n \times n}$ is symmetric and positive semidefinite;
- $B \in \mathbb{R}^{n \times m}$, and $C_{1}, C_{2} \in \mathbb{R}^{p \times n}$.
a) Derive the transfer function of this system (including the initial conditions).
b) Transform the system into an LTI system $[\mathcal{A}, \mathcal{B}, \mathcal{C}, \mathcal{D}] \in \Sigma_{\widetilde{n}, \widetilde{m}, \widetilde{p}}$ of first order.
c) Show that the system is asymptotically stable, if the matrix D is positive definite.

Hint: Find a first-order realization in which

$$
\mathcal{A}=\left[\begin{array}{cc}
0 & \widetilde{K}^{2} \\
-\widetilde{K}^{\top} & -\widetilde{D}
\end{array}\right]
$$

with symmetric positive definite \widetilde{D}.

Problem 3: Construct minimal realizations of the following rational functions:

- $G_{1}(s)=\left[\begin{array}{ll}\frac{1}{s-2} & \frac{2}{s-2} \\ \frac{3}{s-2} & \frac{4}{s-2}\end{array}\right]$,
- $G_{2}(s)=\left[\begin{array}{ll}\frac{1}{s-2} & \frac{2}{s-2} \\ \frac{3}{s-2} & \frac{6}{s-2}\end{array}\right]$.

What are the poles, zeros, and the rank of these matrices?

