Tangles: from weak to strong clustering
or: Our adventure in machine learning
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Tangle definition

Given a set S of bipartitions (cuts), a tangle is a set T which
contains exactly one side of each bipartition such that

IANBNC|>a VAB,Cer.

a: Agreement parameter




Stochastic Block Model

k blocks of equal size 7

Edges within blocks with probability p, between blocks with probability g < p




Stochastic Block Model

k blocks of equal size 7

Edges within blocks with probability p, between blocks with probability g < p

Consider all cuts up to order W
A, AS| = E(A AD)|




When are the blocks (distinct) tangles?
When are there no other tangles?
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2 blocks of equal size 5

Edges within blocks with weight p, between blocks with weight g

All cuts up to order W
\A-AE| = ZaeA,beAc w(a,b)
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SBM (Expectation Case)

2 blocks of equal size 5

Edges within blocks with weight p, between blocks with weight g

All cuts up to order W
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SBM (Expectation Case)

2 blocks of equal size 5

Edges within blocks with weight p, between blocks with weight g

All cuts up to order W
o A, AL = > acapeat W(a,b)
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How do we sample good cuts?




How do we sample good cuts?

How do we evaluate?
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Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, p = 0.5, g = 0.05
(Data is fuzzed for readability)

°

Cut value in terms of [E]

°

Cut balance




Karger's algorithm
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Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, p = 0.5, g = 0.05
(Data is fuzzed for readability)

057+ random (m =500, took 0.15)
kmodes (m = 44, took 8.6s)
karger (m = 500, took 27.6s)
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Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, p = 0.5, g = 0.05
(Data is fuzzed for readability)

057+ random (m =500, took 0.15)

kmodes (m =44, took 8.65)

karger (m =500, took 27.65)

kneip (m =513, took 8.4s)

kernighan_lin (m = 500, took 73.0s)
local_min (m =500, took 241.95)
0.4+ local_min_bounded (m =500, took 43.15)
fid_mat (m = 500, took 837.15)

°

Cut value in terms of [E]

°
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Cut finding strategies

Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, p = 0.2, g = 0.05
(Data is fuzzed for readability)

057+ random (m =500, took 0.15)

kmodes (m = 44, took 7.0s)

karger (m =500, took 48.55)

kneip (m = 502, took 14.55)
kernighan_lin (m =500, took 214.1s)
local_min (m =500, took 473.05)
0.4+ local_min_bounded (m =500, took 49.0s)
fid_mat (m = 500, took 1219.4s)
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Cut value in terms of [E]
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The mindset model

A ‘typical’ pattern of answering a questionaire.
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k mindsets, m questions, n people

Step 1: Sample k template vectors u, ..., ux € {0,1}™ (mindsets)

Step 2: For each u;, a set of 7 people answers as u; does, but
deviates on each question independently with probability p < %
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The mindset model
k mindsets, m questions, n people

Step 1: Sample k template vectors u, ..., ux € {0,1}™ (mindsets)

Step 2: For each u;, a set of 7 people answers as u; does, but
deviates on each question independently with probability p < %

Cuts are induced by questions.

When are the mindsets tangles?

When are there no other tangles?
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Stochastics

Everything's just Bernoulli random variables.

Binomial distributions are well understood.
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Stochastics

If 1 — 3p > ka/n then with probability at least
1 — kmexp(—2n(%2 — 1 + 3p)24.) every mindset is
a tangle.

If p < a/n then with probability at least
1 — mkexp(—22(p — £2)2) every triple with large inter-
section comes from a mindset.

But how do we turn this into
‘Every tangle is a mindset’?




The problem

Suppose we have these mindsets:

0,0,0, 0,0,0)
0,0,0,0,0,0)
1,1,1,0,0,0)
0,0,0,1,1,1)

~ A~~~
oo o

.0,
1,
.0,
.0,

coor
OOOD—‘
oo+ o
oo+ o




The problem

Suppose we have these mindsets:

0,0,0, 0,0,0)
0,0,0,0,0,0)
1,1,1,0,0,0)
0,0,0,1,1,1)

~ A~~~
oo o

.0,
1,
.0,
.0,

coor
OOOD—‘
oo+ o
oo+ o

Then we also get a tangle for

(0,0,0,0,0,0,0,0,0, 0,0,0)




The problem

Suppose we have these mindsets:

0,0,0, 0,0,0)
0,0,0,0,0,0)
1,1,1,0,0,0)
0,0,0,1,1,1)

~ A~~~
oo o

.0,
1,
.0,
.0,

coor
OOOD—‘
oo+ o
oo+ o

Then we also get a tangle for
(0,0,0,0,0,0,0,0,0, 0,0,0)

Assumption. If 7 € {0, 1} satisfies that for all x,y, z < m there
exists a mindset u such that 7(x) = w;(x) as well as 7(y) = wi(y)
and 7(z) = wi(z), then 7 is a mindset, i.e. T = p; for some J.
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How often is this satisified?

Assumption. If 7 € {0, 1} satisfies that for all x,y, z < m there
exists a mindset w such that 7(x) = w;(x) as well as 7(y) = wi(y)
and 7(z) = ui(z), then 7 is a mindset, i.e. T = u; for some .

Easily holds if every partition of the mindsets is induced by a question.
This is bound to happen as m — oo.

Caveat: This requires m to be exponential in k.

Theorem. Asympotically, m has to be exponential in k, or else
the assumption fails with high probability.




How often is it really satisified?

Realistically k < 15.




How often is it really satisified?

Realistically k < 15.
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Back to experiments

How do we evaluate the quality of our
clustering numerically?




Back to experiments

How do we evaluate the quality of our
clustering numerically?

Turn it into a hard clustering. Count the number of wrongly
separated pairs. Adjust for expectation. (~» Adjusted Rand Index)




Dimensions

k: number of mindsets
m: number of questions
n: number of people

p: noise probability

a: tangle agreement
additional noise questions

A 6-dimensional space that needs to be explored!




Noise p

024 02 036 037 051 F052 “051 035 | 047

o+ |28 KN I K S K

number of que

0.6

30 36 42 48 55

noise p

0 20 30 40 5 6 70 s 9 100
size of the smallest mindset |V5|



The same goes for the SBM
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Visualizing tangles

Suppose our data points are embedded in the plane
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Visualizing tangles

Suppose our data points are embedded in the plane
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Thank youl!
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