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Given a set S of bipartitions (cuts), a tangle is a set τ which

contains exactly one side of each bipartition such that

|A ∩ B ∩ C| ≥ a ∀A,B, C ∈ τ .

a: Agreement parameter



Stochastic Block Model

3

k blocks of equal size n
k

Edges within blocks with probability p, between blocks with probability q < p



Stochastic Block Model

3
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k

Edges within blocks with probability p, between blocks with probability q < p

Consider all cuts up to order Ψ

|A,A{| := |E(A,A{)|
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When are the blocks (distinct) tangles?

When are there no other tangles?
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Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, p = 0.5, q = 0.05 
 (Data is fuzzed for readability)
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Image by Thore Husfeldt for Wikimedia Commons, Creative Commons BY-SA
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Comparison of sampling strategies, SBM with 5 blocks of 50 nodes, p = 0.2, q = 0.05 
 (Data is fuzzed for readability)

random (m = 500, took  0.1s)
kmodes (m = 44, took  7.0s)
karger (m = 500, took  48.5s)
kneip (m = 502, took  14.5s)
kernighan_lin (m = 500, took  214.1s)
local_min (m = 500, took  473.0s)
local_min_bounded (m = 500, took  49.0s)
fid_mat (m = 500, took  1219.4s)
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A ‘typical’ pattern of answering a questionaire.
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deviates on each question independently with probability p < 1
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k mindsets, m questions, n people

Step 1: Sample k template vectors µ1, . . . , µk ∈ {0, 1}m (mindsets)

Step 2: For each µi , a set of n
k people answers as µi does, but

deviates on each question independently with probability p < 1
2

Cuts are induced by questions.

When are the mindsets tangles?

When are there no other tangles?
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Everything’s just Bernoulli random variables.

Binomial distributions are well understood.
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If 1 − 3p > ka/n then with probability at least

1 − km exp(−2n( kan − 1 + 3p)2 1
9k ) every mindset is

a tangle.

If p ≤ a/n then with probability at least

1 − mk exp(− 2n
k (p − ka

n )2) every triple with large inter-

section comes from a mindset.

But how do we turn this into
‘Every tangle is a mindset’ ?
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Suppose we have these mindsets:

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)
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Suppose we have these mindsets:

(1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0)

(0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1)

Then we also get a tangle for

(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

Assumption. If τ ∈ {0, 1}m satisfies that for all x, y , z ≤ m there

exists a mindset µ such that τ(x) = µi(x) as well as τ(y) = µi(y)

and τ(z) = µi(z), then τ is a mindset, i.e. τ = µj for some j .
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Assumption. If τ ∈ {0, 1}m satisfies that for all x, y , z ≤ m there

exists a mindset µ such that τ(x) = µi(x) as well as τ(y) = µi(y)

and τ(z) = µi(z), then τ is a mindset, i.e. τ = µj for some j .

Easily holds if every partition of the mindsets is induced by a question.

This is bound to happen as m →∞.

Caveat: This requires m to be exponential in k .

Theorem. Asympotically, m has to be exponential in k, or else

the assumption fails with high probability.
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Realistically k ≤ 15.
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How do we evaluate the quality of our
clustering numerically?

Turn it into a hard clustering. Count the number of wrongly

separated pairs. Adjust for expectation. ( Adjusted Rand Index)



Dimensions
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k : number of mindsets

m: number of questions

n: number of people

p: noise probability

a: tangle agreement

additional noise questions

A 6-dimensional space that needs to be explored!



10 20 30 40 50 60 70 80 90 100

size of the smallest mindset |V2|

0.25
0.24
0.23
0.22
0.21
0.2

0.19
0.18
0.17
0.16
0.15
0.14
0.12
0.11
0.1

0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02
0.01
0.0

n
oi

se
p

0.07 0.15 0.2 0.32 0.34 0.41 0.29 0.51 0.63 0.49

0.15 0.24 0.27 0.33 0.36 0.42 0.54 0.55 0.68 0.74

0.05 0.22 0.24 0.24 0.59 0.66 0.75 0.75 0.6 0.77

0.11 0.27 0.24 0.21 0.55 0.63 0.77 0.77 0.65 0.76

0.09 0.25 0.27 0.33 0.53 0.66 0.79 0.94 0.92 0.98

0.08 0.44 0.36 0.47 0.55 0.68 0.79 0.89 0.93 0.94

0.13 0.28 0.34 0.43 0.83 0.82 0.86 1 0.99 0.94

0.15 0.33 0.4 0.63 0.83 0.91 0.96 1 1 1

0.16 0.33 0.43 0.57 0.81 0.96 0.94 0.95 1 1

0.27 0.39 0.48 0.64 0.91 0.96 0.95 0.96 0.95 1

0.09 0.5 0.39 0.8 0.89 0.97 1 1 1 1

0.28 0.44 0.51 0.83 0.93 1 1 1 1 1

0.53 0.49 0.65 0.9 0.97 1 1 1 1 1

0.41 0.74 0.72 0.96 1 1 1 1 1 1

0.3 0.65 0.77 1 1 1 1 1 1 1

0.5 0.58 0.88 1 1 1 1 1 1 1

0.57 0.63 1 1 1 1 1 1 1 1

0.7 0.6 1 1 1 1 1 1 1 1

0.46 0.9 1 1 1 1 1 1 1 1

0.65 0.97 1 1 1 1 1 1 1 1

0.77 0.92 1 1 1 1 1 1 1 1

0.87 0.96 1 1 1 1 1 1 1 1

0.93 0.98 1 1 1 1 1 1 1 1

0.87 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

0.2

0.4

0.6

0.8

1.0
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Block size |Vi|
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0 0 0 0 0 0 0 0 0 0.9

0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 0.9 1 1 1

0 0 0 0 0 0.7 1 1 1 1

0 0 0 0 0.57 0.99 1 1 1 0.95

0 0 0 0.25 0.97 0.99 1 1 0.8 0.7

0 0 0 0.95 0.97 0.99 0.85 0.65 0.8 0.7

0 0 0.86 0.87 0.53 0.59 0.8 0.65 0.76 0.65

0 0.74 0.52 0.45 0.35 0.51 0.67 0.61 0.76 0.64

0.0

0.2

0.4

0.6

0.8

1.0
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Thank you!
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