Trees of tangles in infinite separation systems

Part I.

with Christian and Jakob

2020-06-09
Reviewing the Splinter Theorem
Reviewing the Splinter Theorem

Theorem (Splinter Theorem; JMC'19)
Let U be a universe of separations and $(A_i)_{i \leq n}$ a family of subsets of U. If $(A_i)_{i \leq n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Typically A_i is the set of separations which efficiently distinguish a given pair of profiles. $(A_i)_{i \in I}$ splinters if for all $a_i \in A_i$, $a_j \in A_j$, or a_i and a_j have a corner separation in A_i or A_j. How can we extend this to the infinite?
Theorem (Splinter Theorem; JMC’19)
Let U be a universe of separations and $(A_i)_{i \leq n}$ a family of subsets of U. If $(A_i)_{i \leq n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Typically A_i is the set of separations which efficiently distinguish a given pair of profiles.
Theorem (Splinter Theorem; JMC’19)
Let U be a universe of separations and $(A_i)_{i \leq n}$ a family of subsets of U. If $(A_i)_{i \leq n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Typically A_i is the set of separations which efficiently distinguish a given pair of profiles.

$(A_i)_{i \in I}$ splinters if for all $a_i \in A_i, a_j \in A_j$

- $a_i \in A_j$, or
- $a_j \in A_i$, or
- a_i and a_j have a corner separation in A_i or A_j.
Theorem (Splinter Theorem; JMC’19)

Let U be a universe of separations and $(A_i)_{i \leq n}$ a family of subsets of U. If $(A_i)_{i \leq n}$ splinters then we can pick an element a_i from each A_i so that $\{a_1, \ldots, a_n\}$ is nested.

Typically A_i is the set of separations which efficiently distinguish a given pair of profiles.

$(A_i)_{i \in I}$ splinters if for all $a_i \in A_i, a_j \in A_j$

- $a_i \in A_j$, or
- $a_j \in A_i$, or
- a_i and a_j have a corner separation in A_i or A_j.

How can we extend this to the infinite?
The profinite approach
Apply the splinter theorem to finite restrictions.
A **profinite universe** is an inverse limit \(\bar{U} = \lim \left(\bar{U}_p \mid p \in P \right) \) of finite \(\bar{U}_p \), it consists of those separations \(\bar{s} = (\bar{s}_p \mid p \in P) \) which are compatible wrt. bonding maps \(f_{pq} : U_p \to U_q \).
A **profinite universe** is an inverse limit $\bar{U} = \varprojlim (\bar{U}_p \mid p \in P)$ of finite \bar{U}_p, it consists of those separations $\vec{s} = (\vec{s}_p \mid p \in P)$ which are compatible wrt. bonding maps $f_{pq} : U_p \to U_q$. \leq, \lor, \land work coordinate-wise.
A **profinite universe** is an inverse limit $\hat{U} = \varprojlim (\hat{U}_p \mid p \in P)$ of finite \hat{U}_p, it consists of those separations $\mathbf{s} = (s_p \mid p \in P)$ which are compatible wrt. bonding maps $f_{pq} : U_p \rightarrow U_q$.

\leq, \lor, \land work coordinate-wise.

First Observation: If $(A_i \mid i \in I)$ in \hat{U} splinters, then so does every projection to a \hat{U}_p.

The profinite approach
A profinite universe is an inverse limit $\bar{U} = \lim \left(\bar{U}_p | p \in P \right)$ of finite \bar{U}_p, it consists of those separations $\bar{s} = (\bar{s}_p | p \in P)$ which are compatible wrt. bonding maps $f_{pq}: U_p \rightarrow U_q$.

\leq, \lor, \land work coordinate-wise.

First Observation: If $(A_i | i \in I)$ in \bar{U} splinters, then so does every projection to a \bar{U}_p. So, apply the finite Splinter Theorem!
Second Observation: If we apply the Splinter Theorem to \tilde{U}_p and map the nested set to \tilde{U}_q we get a splinter solution for \tilde{U}_q.

For every \tilde{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $A_i \uparrow p$.
Second Observation: If we apply the Splinter Theorem to \hat{U}_p and map the nested set to \hat{U}_q we get a splinter solution for \hat{U}_q.

For every \hat{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $\mathcal{A}_i \uparrow p$. Splinter Theorem says that these are non-empty.
Second Observation: If we apply the Splinter Theorem to \hat{U}_p and map the nested set to \hat{U}_q we get a splinter solution for \hat{U}_q.

For every \hat{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $A_i \upharpoonright p$. Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp} : \mathcal{N}_q \to \mathcal{N}_p$.

Second Observation: If we apply the Splinter Theorem to \hat{U}_p and map the nested set to \hat{U}_q we get a splinter solution for \hat{U}_q.

For every \hat{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $\mathcal{A}_i \upharpoonright p$. Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp}: \mathcal{N}_q \to \mathcal{N}_p$.

Consider $N \in \limleft(\mathcal{N}_p \mid p \in P \right)$.
The profinite approach

Second Observation: If we apply the Splinter Theorem to \tilde{U}_p and map the nested set to \tilde{U}_q we get a splinter solution for \tilde{U}_q.

For every \tilde{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $A_i \upharpoonright p$. Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp}: \mathcal{N}_q \to \mathcal{N}_p$.

Consider $N \in \varprojlim (\mathcal{N}_p \mid p \in P)$. We can turn N into a nested set in \tilde{U}.
Second Observation: If we apply the Splinter Theorem to \hat{U}_p and map the nested set to \hat{U}_q we get a splinter solution for \hat{U}_q.

For every \hat{U}_p let \mathcal{N}_p be the set of all nested sets which meet every $A_i \upharpoonright p$. Splinter Theorem says that these are non-empty.

Second observation says that we can lift the bonding maps f_{qp} to $\hat{f}_{qp}: \mathcal{N}_q \rightarrow \mathcal{N}_p$.

Consider $N \in \varprojlim (\mathcal{N}_p \mid p \in P)$. We can turn N into a nested set in \hat{U}.

If the A_i are closed, N meets all of them.
Theorem (Profinite Splinter Theorem)
Let $\overline{U} = \varprojlim (\overline{U}_p \mid p \in P)$ be a profinite universe and $(A_i \mid i \in I)$ a family of non-empty closed subsets of \overline{U}. If $(A_i \mid i \in I)$ splinters then there is a closed nested set $N \subseteq \overline{U}$ containing at least one element from each A_i.
Application to graphs

Let $A_{P,P'}$ be the set of all efficient $P-P'$-distinguishers.

How do we ensure that the $A_{P,P'}$ are closed?
Let $\mathcal{A}_{P,P'}$ be the set of all efficient $P-P'$-distinguishers.

How do we ensure that the $\mathcal{A}_{P,P'}$ are closed?

Intuitively it makes sense . . .
Let $\mathcal{A}_{P,P'}$ be the set of all efficient $P-P'$-distinguishers.

How do we ensure that the $\mathcal{A}_{P,P'}$ are closed?

Intuitively it makes sense . . .

if we ignore \aleph_0-tangles (ends and ultrafilters):
Let $A_{P,P'}$ be the set of all efficient $P-P'$-distinguishers.

How do we ensure that the $A_{P,P'}$ are closed?

Intuitively it makes sense . . .
if we ignore \aleph_0-tangles (ends and ultrafilters):

A k-profile P in a graph G is **bounded** if it does not extend to an \aleph_0-profile.
Let $A_{P,P'}$ be the set of all efficient P–P'-distinguishers.

How do we ensure that the $A_{P,P'}$ are closed?

Intuitively it makes sense . . . if we ignore \aleph_0-tangles (ends and ultrafilters):

A k-profile P in a graph G is **bounded** if it does not extend to an \aleph_0-profile.

Observation

\tilde{S}_k is closed in \tilde{U}.
Let $A_{P,P'}$ be the set of all efficient P–P'-distinguishers.

How do we ensure that the $A_{P,P'}$ are closed?

Intuitively it makes sense . . .

if we ignore \aleph_0-tangles (ends and ultrafilters):

A k-profile P in a graph G is **bounded** if

it does not extend to an \aleph_0-profile.

Observation

\mathcal{S}_k is closed in \mathcal{U}.

Lemma

$A_{P,P'}$ is closed for bounded P, P'.
Lemma

\((A_{P,P'} \mid P, P' \text{ bounded, robust and distinguishable profiles in } G) \text{ splinters.} \)

Luckily, the splinter condition was designed for this. We only need robust and distinguishable.
Done!

Can we build a tree-decomposition from this?
Can we do something without inverse limits?
Relations, Crossing Numbers and Canonicity
In graph separations: Crossing number is *strongly submodular*.

Encode this in our splinter-condition.
The nestedness relation

We work on a ground set \mathcal{A}. Generally, this will be $\bigcup_i \mathcal{A}_i$.
The nestedness relation

We work on a ground set \mathcal{A}. Generally, this will be $\bigcup_i \mathcal{A}_i$.

Let **nested** be a reflexive and symmetric relation.
We work on a ground set \mathcal{A}. Generally, this will be $\bigcup_i \mathcal{A}_i$.

Let **nested** be a reflexive and symmetric relation. **Crossing** means ‘not nested’.
The nestedness relation

We work on a ground set \mathcal{A}. Generally, this will be $\bigcup_i \mathcal{A}_i$.

Let **nested** be a reflexive and symmetric relation.

Crossing means ‘not nested’.

A **corner of a and b** is an element c of \mathcal{A}, such that anything that crosses c also crosses a or b.
Split \((\mathcal{A}_i \mid i \in I)\) into ‘levels’:

\[|i| : I \rightarrow \mathbb{N}_0 \]

Think of \(|i|\) as ‘the order of the elements of \(\mathcal{A}_i\).’
Split \((\mathcal{A}_i \mid i \in I)\) into ‘levels’:

\[
| \mid : I \rightarrow \mathbb{N}_0
\]

Think of \(|i|\) as ‘the order of the elements of \(\mathcal{A}_i\).’

The \textbf{k-crossing number} of \(a\) is the number of elements of \(\mathcal{A}\) that cross \(a\) and lie in some \(\mathcal{A}_i\) with \(|i| = k\).
Split \((A_i \mid i \in I)\) into ‘levels’:

\[|i| : I \to \mathbb{N}_0 \]

Think of \(|i|\) as ‘the order of the elements of \(A_i\).’

The \textbf{k-crossing number} of \(a\) is the number of elements of \(A\) that cross \(a\) and lie in some \(A_i\) with \(|i| = k\).

\textit{We take care here not to count multiplicities.}
The thin splinter theorem

\((A_i \mid i \in I)\) thinly splinters if:

1. For every \(i \in I\) all elements of \(A_i\) have finite \(k\)-crossing number for all \(k \leq |i|\).
(A_i | i ∈ I) thinly splinters if:

1. For every i ∈ I all elements of A_i have finite k-crossing number for all k ≤ |i|.
2. If a_i ∈ A_i and a_j ∈ A_j cross with |j| < |i|, then A_i contains some corner of a_i and a_j that is nested with a_j.
(\mathcal{A}_i \mid i \in I) \textbf{ thinly splinters} if:

1. For every \(i \in I \) all elements of \(\mathcal{A}_i \) have finite \(k \)-crossing number for all \(k \leq |i| \).

2. If \(a_i \in \mathcal{A}_i \) and \(a_j \in \mathcal{A}_j \) cross with \(|j| < |i| \), then \(\mathcal{A}_i \) contains some corner of \(a_i \) and \(a_j \) that is nested with \(a_j \).

3. If \(a_i \in \mathcal{A}_i \) and \(a_j \in \mathcal{A}_j \) cross with \(|i| = |j| = k \), then
 - either \(\mathcal{A}_i \) contains a corner of \(a_i \) and \(a_j \) with strictly lower \(k \)-crossing number than \(a_i \),
 - or else \(\mathcal{A}_j \) contains a corner of \(a_i \) and \(a_j \) with strictly lower \(k \)-crossing number than \(a_j \).
The thin splinter theorem

\((\mathcal{A}_i \mid i \in I)\) thinly splinters if:

1. For every \(i \in I\) all elements of \(\mathcal{A}_i\) have finite \(k\)-crossing number for all \(k \leq |i|\).
2. If \(a_i \in \mathcal{A}_i\) and \(a_j \in \mathcal{A}_j\) cross with \(|j| < |i|\), then \(\mathcal{A}_i\) contains some corner of \(a_i\) and \(a_j\) that is nested with \(a_j\).
3. If \(a_i \in \mathcal{A}_i\) and \(a_j \in \mathcal{A}_j\) cross with \(|i| = |j| = k\), then
 - either \(\mathcal{A}_i\) contains a corner of \(a_i\) and \(a_j\) with strictly lower \(k\)-crossing number than \(a_i\),
 - or else \(\mathcal{A}_j\) contains a corner of \(a_i\) and \(a_j\) with strictly lower \(k\)-crossing number than \(a_j\).

Theorem (Thin Splinter Theorem)

If \((\mathcal{A}_i \mid i \in I)\) thinly splinters, then there is a canonical set \(N \subseteq \mathcal{A}\) which meets every \(\mathcal{A}_i\) and is pairwise nested.
Proof

Construct $N_0 \subseteq N_1 \subseteq N_2 \ldots$, s.t. N_k takes care of all A_i with $|i| \leq k$.

Set $N_{-1} := \emptyset$. In step k:

Let N_k^+ consist of
from each A_i with $|i| = k$
among those elements nested with N_{k-1}
all of minimum k-crossing number.

Set $N_k := N_{k-1} \cup N_k^+$. Need to show:

- For each A_i we had elements to choose from.
- N_k is nested.
Proof

- For each A_i, $|i| = k$, we had elements to choose from.

That is, A_i has an element that is nested with N_{k-1}.

By (1) every element of A_i crosses only finitely many elements of N_{k-1}.

Let a_i be one that crosses as few as possible.

Suppose it crosses some $a_j \in N_{k-1}$, then $a_j \in A_j$ with $|j| < k$.

By (2), a_i and a_j have a corner in A_i that is nested with a_j.

This corner was a better choice for a_i.
• N_k is nested.

Every element of N_k^+ is nested with N_{k-1} by construction. Only need to show that N_k^+ is nested.

Suppose a_i and a_j in N_k^+ cross. By (3) there is a corner of a_i and a_j in A_i or A_j, with a strictly lower k-crossing number than the corresponding a_i or a_j.

\[\square\]