Theorie und Numerik von Differentialgleichungen mit MATLAB und SIMULINK SS08

Abgabe: 27.6.2008

Aufgabe 11.1

Die Aufgabe

$$u_t = u_{xx}$$

mit u(t,0) = u(t,10) = 0 und $u(0,x) = \sin((\pi/10)x)$

soll mit dem angegebenen expliziten Differenzenverfahren näherungsweise gelöst werden. Dabei sei $\Delta x = 0.5$.

Beobachten Sie das Verhalten der Näherungslösungen mit unterschiedlichen Δt über verschiedene Intervalle [0,T].

Z.B.
$$\Delta t = 0.2$$
 (also $\Delta t/(\Delta x)^2 > 1/2$) und $T = 1,2,3,...$, 10,11 $\Delta t = 0.1$ (also $\Delta t/(\Delta x)^2 < 1/2$) und $T = 10$.

Aufgabe 11.2

Führen Sie jetzt das implizite Verfahren durchgeführt wird.

Betrachten Sie das Verhalten des Fehlers bei der numerischen Approximation für verschiedene Δt und unterschiedliche Zeitintervalle [0,T].

Aufgabe 11.3

Die Aufgabe

mit
$$u(t,0) = u(t,1) = 0$$
 und

$$u_t = u_{xx}$$

$$u(0,x) = \begin{cases} 2x & 0 \le x \le 0.5 \\ -8x+5 & 0.5 \le x \le 0.75 \\ 4x-4 & 0.75 \le x \le 1 \end{cases}$$

soll für $0 \le t \le 5$ mit dem angegebenen expliziten Differenzenverfahren gelöst werden. Dabei sei $\Delta x = 0.25$ und $\Delta t/(\Delta x)^2$ einmal gleich 1/2 und ein anderes Mal gleich 1/4.

Beobachten Sie bei $\Delta t/(\Delta x)^2 = 1/2$ die Zunahme der Vorzeichenwechsel. Im zweiten Fall tritt keine Zunahme der Vorzeichenwechsel auf!