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Functorial Quantum Field Theories

My research is about mathematical structures around low dimensional functorial field the-
ories. These are symmetric monoidal functors from a category of n-dimensional bordisms
to a symmetric monoidal category, e.g. the category of vector spaces. This formulation is
a systematic way of assigning objects (vector spaces) to (n−1)-dimensional manifolds and
morphisms (linear maps) to n-dimensional manifolds with specified boundary. Functorial
field theories are interesting from both a mathematical and a physical point of view: they
produce invariants of manifolds compatible with cutting and glueing, and they axiomatise
locality of the path integral.

r-Spin Topological Field Theories – previous results

In two dimensions there is a natural generalisation of spin structures using the r-spin group
– the r-fold cover of SO2. Topological field theories with this tangential structure have
been considered in [Nov15] and based on this we gave a state sum r-spin TFT computing
the Arf invariant and we explicitly described the action of mapping class groups on r-spin
surfaces [RS18b]. Building on this and work of [KST] I classified invertible r-spin TFTs
with arbitrary target category [Sze19] – they are generated by the TFTs computing the
Euler characteristic and the Arf invariant. Understanding this classification is important
in physics as invertible field theories are expected to correspond to topological phases of
matter. A classification of open-closed r-spin TFTs and their state sum construction is
currently work in progress [SS].

Fully extended r-spin TFTs

State sum TFTs correspond to fully extended TFTs [Dav11], the latter assign quantities
to arbitrary codimensional manifolds and hence can be phrased as functors between bicat-
egories [BD95] or (∞, 2)-categories [Lur09]. The Cobordism Hypothesis (CH) states that
fully extended framed TFTs correspond to fully dualisable objects of the target (W ∈ Cfd)
and r-spin TFTs to homotopy fixed points of the r-spin group. In the bicategorical set-
ting the CH has been proven [Pst14, HV19] and it was shown that the SO2 action is
given by Serre automorphisms SW and its homotopy fixed points are trivialisations of SW .
Therefore for r-spin TFTs we need to consider trivialisations of Sr

W .
Framed and oriented TFTs with target bicategory LGgr graded Landau-Ginzburg (LG)

models LGgr (with potentials as objects and morphism categories of matrix factorisations)
has been given in [CMM18]. There it was shown that every object W ∈ LGgr is fully
dualisable and SW is a degree shifted unit 1-morphism, and potentials W whose zero
locus is Calabi-Yau (CY) determine oriented TFTs. I intend to prove that potentials
with fractional CY zero locus determine r-spin TFTs. Another attractive target
for fully extended TFTs is the Morita bicategory of dg-algebras (dgas) [Joh08], where the
fully dualisable objects are smooth and proper dgas [Lur14]. I would like to find when
Sr

A for a smooth and proper dga A is trivialisable, for r = 1 this is when A is CY.
Both of these examples should yield non-semisimple fully extended TFTs which are
almost absent in the literature.

The above two bicategories are related: Topologically twisted SUSY sigma models
determine A∞-categories [Car09, KKS14] (which can be strictified to dg-categories). This
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suggest naturally to consider fully extended TFTs in the (∞, 2)-categorical setting. Since
the CH is not completely proven here [Lur09, AF17], I will first try to construct TFTs
with values in the Morita(∞, 2)-category of E1-algebras in a symmetric monoidal
(∞, 1)-category [Sch14, Hau17] (e.g. the nerve of an A∞-category [Fao17]). Another target
I would like consider, and first construct is an (∞, 2)-lift of LGgr [DM12]. Then I will
try to develop tools to compute homotopy fixed points of SO2 actions on
(∞, 2)-categories, which is of independent interest.

2-dimensional N = 2 SUSY QFTs and their defect bicategories

Spin surfaces correspond to N = 1 [Sac09] and spinc surfaces to N = 2 super Riemann
surfaces [Wit12]. Therefore in order to study 2d N = 2 supersymmetric (SUSY) TFTs it
is useful to understand a combinatorial model of spinc surfaces [Bud13] that then can be
used for a state sum construction and extend the results of [Laz01, MS06, SS].

The combinatorial model of spin surfaces [NR15b, Nov15] was used in [NR15a] to
construct functorial QFTs on spin surfaces from oriented functorial defect QFTs [CMS16],
in particular from rational CFTs [FRS02, FFRS09]. In this project I intend to construct
2d N = 2 SUSY CFTs from oriented defect CFTs and compute their bicategory
of topological defects [DKR11]. It will be also interesting to see the relation of these
results to the notions of [StTe11]. A motivation for doing this is to be able to compare
the defect bicategory LGgr of Landau-Ginzburg models [BHLS03, BrRo95, CM16] to the
defect bicategory of N = 2 SUSY CFTs that could not have been computed yet. A first
comparison has been done using a bosonic version of the defect category in [DCR14]. It
will be also interesting to see how this relates to the fully extended (∞, 2)-TFT described
above.

3- and 4-dimensional Spin TFTs

Three-dimensional TFTs have been gaining popularity because of their possible applica-
tion in topological quantum computing therefore it is certainly of physical as well as of
mathematical interest to develop the theory of three-dimensional spin TFTs which can
describe fermionic as well as bosonic matter.

It is desirable to find the combinatorial data (super spherical category) for a state
sum construction of three-dimensional spin TFTs [GK16] generalizing the Turaev-Viro
model [TV92] based on a combinatorial model of spin manifolds [Bud13]. Another possible
approach to 3d spin TFTs is via the surgery description of 3d spin manifolds of [KM99].
This would generalise the Reshetikhin-Turaev construction [RT91] and would take as input
data a super modular tensor category. Then it will be interesting to compare the
resulting TFTs with fully extended TFTs [SP13] or the construction of [BGK17].

Defect lines in LG models are expected to be related to surface defects in a three-
dimensional Rozansky-Witten theory [KRS09]. It will be interesting to see how this cor-
respondence can be made precise in the functorial field theory language and with the
three-dimensional spin TFTs.

Another direction is to consider four-dimensional spin TFTs which generalise the
Crane-Yetter construction [BGIM04, BB17]. The main motivation for this is to under-
stand defects in four dimensional spin TFTs and to see which of these could be new
observables in physics.
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Area-dependent Field Theories

Area-dependent quantum field theories (aQFTs) are defined on surfaces with area. These
are very similar to two-dimensional TFTs, but they allow infinite dimensional spate spaces.
We have classified them in [RS18a], where we also gave a state sum construction of aQFTs
with defects – extending aQFTs to stratified surfaces with area – from algebraic data
that we call regularised Frobenius algebras and their bimodules. We have shown that
2-dimensional Yang-Mills theory (2dYM) with gauge group G and with Wilson lines as
defects [Wit91] is such an aQFT with defects, given by the state sum on the regularised
Frobenius algebra L2(G). We have found invertible defect lines corresponding to outer
automorphisms Out(G) and in [MSS19] we computed the orbifold theory [CR16] of this
symmetry, which is 2dYM with gauge group GoOut(G). We furthermore gave a conjecture
on the volume of the moduli space of flat G-bundles twisted by an Out(G) bundle computed
by 2dYM with the symmetry defects, extending the conjecture of [Wit91].

Deformations of 2dYM

In the physics literature several 1-parameter deformations – so-called q-deformations – of
2dYM have been considered and they appear as dimensional reductions of various quantum
field theories, [BuRo95, Kli01, Tac12, SzTi13]. Most of these deformations are related to
changing the gauge group G to a quantum group Uq(g). In [BuRo95, Tac12] the area of the
surfaces is considered and in e.g. [SzTi13], in the case q is a root of unity, a truncation of
q-deformed 2dYM is related to 3-dimensional Chern-Simons theory (3dCS) on S1-bundles
over surfaces.

The first aim of this project is to construct q-deformed 2dYM theories as aQFTs
as a state sum from Uq(g) treated as a regularised Frobenius algebra. This shall
shed more light on the connection of 2dYM and 3dCS and might be used to understand re-
lations to knot invariants and knot homology [AS13]. The second aim is to study the con-
nection of different q-deformed 2dYM theories – in particular that of [Kli01] – to
the deformation quantisation of certain Lie-Poisson manifolds. Finally it would be in-
teresting to understand certain refinements of q-deformed 2dYM called (q, t)-deformations,
which are related to Macdonald polynomials [SzTi13].

Continuous Orbifolds

The orbifold of a bulk quantum field theory with a finite group symmetry G is now
a standard construction [DVVV89]. To determine the so called twisted sectors of the
theory, one needs to average over all group actions, which boils down to summations over
G. In [GS12, FR12] limits of minimal models in CFT and orbifolds with compact Lie
groups, called continuous orbifolds, have been studied. Here the averaging procedure is
more subtle as one need to sum over a compact Lie group.

The generalized orbifold theory [BCP14] is the value of a defect theory on surface with
a fine enough defect network labeled by the “group algebra of G”. The main idea of this
project is to find a way to regulate these infinite summations with an area parameter.
More precisely, as 2dYM can be thought of as the orbifold of the trivial theory with
compact Lie group, the continuous orbifold of a CFT should be the orbifold
using a regularised Frobenius algebra in the defect category of the CFT. As
the resulting theory should be a CFT, it should be given by zero area limits.

Hamburg, October 30, 2019
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