The problem of classifying the finite-dimensional simple Lie algebras over fields of characteristic \(p > 0 \) is a long-standing one. Work on this question during the last 35 years has been directed by the Kostrikin–Shafarevich Conjecture of 1966, which states that over an algebraically closed field of characteristic \(p > 5 \) a finite-dimensional restricted simple Lie algebra is classical or of Cartan type. This conjecture was proved for \(p > 7 \) by Block and Wilson in 1988. The generalization of the Kostrikin–Shafarevich Conjecture for the general case of not necessarily restricted Lie algebras and \(p > 7 \) was announced in 1991 by Strade and Wilson and eventually proved by Strade in 1998. The final Block–Wilson–Strade–Premet Classification Theorem is a landmark result of modern mathematics and can be formulated as follows: Every finite-dimensional simple Lie algebra over an algebraically closed field of characteristic \(p > 3 \) is of classical, Cartan, or Melikian type.

In the two-volume book, the author is assembling the proof of the Classification Theorem with explanations and references. The goal is a state-of-the-art account on the structure and classification theory of Lie algebras over fields of positive characteristic leading to the forefront of current research in this field.

This first volume is devoted to preparing the ground for the classification work to be performed in the second volume. The concise presentation of the general theory underlying the subject matter and the presentation of classification results on a subclass of the simple Lie algebras for all odd primes will make this volume an invaluable source and reference for all research mathematicians and advanced graduate students in algebra.

Contents:

Toral subalgebras in \(p \)-envelopes · \(p \)-envelopes · The absolute toral rank · Extended roots · Absolute toral ranks of parametrized families · Toral switching

Lie algebras of special derivations · Divided power mappings · Subalgebras defined by flags · Transitive embeddings of Lie algebras · Automorphisms and derivations · Filtrations and gradations · Minimal embeddings of filtered and associated graded Lie algebras · Miscellaneous · A universal embedding · The constructions can be made basis free

Derivation simple algebras and modules · Frobenius extensions · Induced modules · Block’s theorems · Derivation semisimple associative algebras · Weisfeiler’s theorems · Conjugacy classes of tori

Simple Lie algebras · Classical Lie algebras · Lie algebras of Cartan type · Melikian algebras · Simple Lie algebras in characteristic 3

Recognition theorems · Cohomology groups · From local to global Lie algebras · Representations · Generating Melikian algebras · The Weak Recognition Theorem · The Recognition Theorem · Wilson’s Theorem

The isomorphism problem · A first attack · The compatibility property · Special algebras · Orbits of Hamiltonian forms · Hamiltonian algebras · Contact algebras · Melikian algebras

Structure of simple Lie algebras · Derivations · Restrictedness · Automorphisms · Gradings · Tori · \(W(1; n) \)

Pairings of induced modules · Cartan prolongation · Module pairings · Trigonality of

Toral rank 1 Lie algebras · Solvable maximal subalgebras · Cartan subalgebras of toral rank 1

Notation · Bibliography · Index
Order form

Please order from your local bookseller or

for USA, Canada, Mexico:

Walter de Gruyter, Inc.
200 Saw Mill River Road
Hawthorne, New York 10532, U.S.A.
Phone: ++1-914-747-0110
Fax: ++1-914-747-1326
E-mail: cs@degruyterny.com

SFG-Servicecenter-Fachverlage GmbH
Postfach 4343
72774 Reutlingen, Germany
Tel.: +49-(0)7071-9353-30
Fax: +49-(0)7071-9353-33
E-mail: deguyter@s-f-g.com

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Author/Title</th>
<th>ISBN</th>
<th>Price per copy</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strade: Simple Lie Algebras over Fields of Positive Characteristic</td>
<td>3-11-014211-2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Total

☐ Please charge my credit card:
☐ MasterCard (Eurocard) ☐ Visa ☐ American Express

Card No. Expiration Date

Card verification value

Signature Date

☐ Please send latest catalog

Name

Department

Address

Credit card orders must include signature, expiration date and card verification value, as well as the address registered with the credit card institution.

Prices do not include postage and handling. Prices are subject to change without notice.

www.deGruyter.com