This article was downloaded by: [Friedrich Althoff Konsortium]

On: 4 November 2010

Access details: *Access Details:* [subscription number 907681677]

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization Methods and Software

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713645924

A memory-reduced implementation of the Newton-CG method in optimal control of nonlinear time-dependent PDEs

Julia Sternberg^a; Michael Hinze^a

^a Department Mathematik, University of Hamburg, Hamburg, Germany

First published on: 06 August 2009

To cite this Article Sternberg, Julia and Hinze, Michael (2010) 'A memory-reduced implementation of the Newton-CG method in optimal control of nonlinear time-dependent PDEs', Optimization Methods and Software, 25: 4, 553 - 571, First published on: 06 August 2009 (iFirst)

To link to this Article: DOI: 10.1080/10556780903027187 URL: http://dx.doi.org/10.1080/10556780903027187

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

A memory-reduced implementation of the Newton-CG method in optimal control of nonlinear time-dependent PDEs

Julia Sternberg* and Michael Hinze

Department Mathematik, University of Hamburg, D-20146 Hamburg, Germany

(Received 6 June 2007; final version received 22 April 2009)

Derivative-based solution algorithms for optimal control problems of time-dependent nonlinear PDE systems require multiple solutions of backward-in-time adjoint systems. Since these adjoint systems, in general, depend on the primal state, and thus on forward information, the storage requirement for such solution algorithms is very large.

This paper proposes stable and memory-efficient checkpointing techniques for evaluating gradients and Hessian times increment for such solution algorithms, and presents numerical tests with the instationary Navier–Stokes system which demonstrate that huge memory savings are achieved by the proposed approach while the increase in runtime is moderate. More precisely, a memory reduction of two orders of magnitude causes only a slow down factor of two in run-time.

Keywords: optimal control; Newton-CG approach; checkpointing; Navier-Stokes system

1. Introduction

To develop ideas, let us consider the equation

$$G(y, u) = G_1(y) - Bu = 0$$
 in Z^* , (1)

as abstract realization of a time-dependent, nonlinear partial differential equation (PDE), say here, $G: Y \times U \to Z^*$ denotes a sufficiently smooth mapping, and Y, U, and Z denote Hilbert spaces, and $B: U \to Z^*$ a linear, bounded control operator. In this paper, we develop checkpointing techniques for derivative-based solution algorithms for the following optimal control problem: find an optimal control $u^* \in U$ which minimizes the functional

$$\hat{J}(u) := J(y(u), u) = J_1(y) + J_2(u), \tag{2}$$

where $y \in Y$ and u are related through the equality constraints (1).

To simplify the exposition, we assume that $J = J_1(y) + J_2(u) : Y \times U \to \mathbb{R}$ and that J is sufficiently smooth. From now onwards we further assume that Equation (1) for every $u \in U$ admits a unique solution y(u) and that $G_y(y, u)$ admits for every $(y, u) \in Y \times U$ a bounded inverse.

ISSN 1055-6788 print/ISSN 1029-4937 online © 2010 Taylor & Francis DOI: 10.1080/10556780903027187

http://www.informaworld.com

^{*}Corresponding author. Email: julia.sternberg@math.uni-hamburg.de

As model algorithm for the numerical solution of problem (1)–(2), we consider the Newton conjugate gradient (Newton-CG) method. It iteratively determines the Newton direction by applying the conjugate gradient method to the Newton equation

$$\hat{J}''(u)\delta u = -\hat{J}'(u). \tag{3}$$

Here, we assume that $\hat{J}''(u)$ is positive definite which certainly is satisfied in a small neighbourhood of a non-singular local minimum of $\hat{J}'(u)$. The whole optimization algorithm is then defined in terms of the following procedure:

```
ALGORITHM 1 (Newton-CG). 

Given initial point u^0 

For k=0,1,2,\ldots 

Compute the increment \delta u^k by applying the CG method to \hat{J}''(u^k)\delta u^k = -\hat{J}'(u^k), starting from \delta u^k = 0. 

CG method 

Set i=0,\delta u^k_0 = 0, r_0 = \hat{J}''(u^k)\delta u^k_0 + \hat{J}'(u^k), p_0 = -r_0. 

While ||r_i|| > \text{TOL} 

1. \alpha_i = \frac{r_i^\top r_i}{p_i^\top \hat{J}''(u^k)p_i}, 

2. \delta u^k_{i+1} = \delta u^k_i + \alpha_i p_i, 

3. r_{i+1} = r_i + \alpha_i \hat{J}''(u^k)p_i, 

4. \beta_{i+1} = \frac{r_{i+1}^\top r_{i+1}}{r_i^\top r_i}, 

5. p_{i+1} = -r_{i+1} + \beta_{i+1}p_k, 

6. i = i+1. 

End CG method 

Set u^{k+1} = u^k + \delta u^k_i. 

End For
```

To perform Algorithm 1, we first need expressions for the gradient $\hat{J}'(u)$ and the reduced Hessian $\hat{J}''(u)$ of the objective function $\hat{J}(u)$. Moreover, steps 1 and 3 of the CG method require the evaluation of $\hat{J}''(u^k)p_i$ using the reduced Hessian $\hat{J}''(u^k)$ evaluated at the current Newton iterate u^k . Here, p_i denotes the conjugate direction. Algorithms for computing the gradient $\hat{J}'(u)$ and the product of the reduced Hessian times vector are specified in the following.

Introducing the adjoint variable $\lambda \in Z$ as a solution of the adjoint equation

$$G_{y}(y,u)^{*}\lambda = -J_{y}(y,u), \tag{4}$$

it is well known that the gradient of \hat{J} can be expressed as

$$\hat{J}'(u) = J_u(y(u), u) + G_u(y(u), u)^* \lambda = J_{2u}(u) + G_u(y(u), u)^* \lambda.$$
 (5)

Calculation of the gradient $\hat{J}'(u)$ thus can then be summarized to the following procedure:

ALGORITHM 2 (Gradient).

- 1. Solve G(y(u), u) = 0 for $y \in Y$,
- 2. solve $G_{\nu}(y(u), u)^*\lambda = -J_{\nu}(y, u)$ for $\lambda \in Z$,
- 3. set $\hat{J}'(u) = J_u(y(u), u) + G_u(y(u), u)^* \lambda$.

In the present situation, the reduced Hessian is given by

$$\hat{J}''(u) = G_u(y(u), u)^* G_y(y(u), u)^{-*} \{ J_{yy}(y(u), u) + \langle G_{yy}(y(u), u)(\cdot, \cdot), \lambda \rangle_{Z^*, Z} \} G_y(y(u), u)^{-1} G_u(y(u), u) + J_{uu}(y(u), u),$$
(6)

where we have used $G_{yu} = G_{uy} = G_{uu} = 0$. From its structure we conclude that the application of $\hat{J}''(u)$ to an element $\delta u \in U$ amounts to

ALGORITHM 3 (Reduced Hessian times vector).

- 1. Solve $G_v(y(u), u)v = G_u(y(u), u)\delta u$ for $v \in Y$,
- 2. form $rhs := J_{yy}(y(u), u)v + \langle G_{yy}(y(u), u)(v, \cdot), \lambda \rangle_{Z^*, Z}$
- 3. solve $G_{\nu}(y(u), u)^*\mu = rhs$ for $\mu \in \mathbb{Z}$,
- 4. evaluate $\tilde{\mu} := G_u(y(u), u)^* \mu$, and finally
- 5. set $\hat{J}''(u)\delta u = \tilde{\mu} + J_{uu}(y(u), u)\delta u = \tilde{\mu} + J_{2uu}(u)\delta u$.

One observes that the adjoint operator $G_y(y(u), u)^*$ comes into play to provide λ in step 2 of Algorithm 2 and μ in step 3 of Algorithm 3. Now, we think of (1) as the abstract realization of a time-dependent nonlinear PDE system on the time horizon [0, T] with y denoting the state variable and u serving as control variable. Then, for given control u the computation of λ requires knowledge of the state y(u) on the whole time horizon. Similarly, the computation of μ in Algorithm 3 requires knowledge of the state variables y and v on the whole time horizon. In particular, for large time horizons with y and v representing a two- or three-dimensional quantities field storage may form a serious bottleneck. In the present paper, we propose efficient checkpointing strategies to circumvent this storage problem.

Let us briefly comment on contributions to memory-reduced computation of adjoints. Static and adaptive checkpointing techniques for the realization of Algorithm 2 are developed in [1, 2,5,6,8,14,16,18]. An optimal checkpointing strategy is applied to the Burgers equation in [17]. The optimal static approach is applied to the Navier–Stokes system in [13], and in [12] the same problem is extended to an adaptive memory and run-time-reduced checkpointing strategy.

In the present paper, we introduce checkpointing strategies for the memory-efficient implementation of Algorithm 1. These strategies combine adaptive checkpointing of [12,14] with static checkpointing as follows: an adaptive schedule is used to compute $\hat{J}'(u)$, which in turn induces a time discretization, which is kept fixed for performing subsequent static checkpointing in the CG iteration. To evaluate Hessian-vector products in the CG method, i.e. to implement Algorithm 3, efficient checkpointing strategies are developed in the present paper. The computer implementation is based on the routine a-revolve, combining static and adaptive checkpointing for uniform and non-uniform step cost. This algorithmical tool is an extension of the package revolve which Griewank and Walther developed in [6].

The evaluation of the Hessian-vector product, particularly the realization of Algorithm 3, can be interpreted as the evaluation of tangents of adjoints and can be implemented by algorithmic differentiation (AD). The forward simulation, i.e. the time integration of the equality constraints (1), is divided into a sequence of elementary steps or operations through the time horizon, which are evaluated successfully. Parallel to this, we perform step 1 of Algorithm 3, provided values of the direction δu are available. This procedure can be interpreted as a forward propagation of tangents, i.e. the forward mode of AD. Then, we evaluate adjoint variables during the reverse propagation of gradients, i.e. the reverse mode of AD. Parallel to this procedure, also in the reverse mode, we perform step 3 of Algorithm 3 as a forward propagation of tangents applied to the evaluation of adjoints. During this procedure the so-called tangents of adjoints are evaluated. For more details concerning forward and reverse mode of AD, see [5, Chapters 3 and 4].

The remaining part of this paper is organized as follows. Section 2 introduces checkpointing techniques, particularly efficient reversal schedules. In Section 3, the instationary Navier–Stokes equations are adapted to the setting introduced in Section 1. Section 4 describes the implementation of efficient checkpointing strategies applied to the optimal control problem governed by the Navier–Stokes equations. In Section 4, we also illustrate the capabilities of efficient reversal schedules with respect to memory reduction and run-time effort in the calculation of the tangents of adjoints. Finally, in Section 5 we present some conclusions.

2. Reversal schedules

In this section, we describe reversal schedules based on checkpointing techniques and develop new static checkpointing strategies for step sequences with non-uniform step cost. They can be applied to numerical calculation of adjoints and tangents of adjoints. In this context we refer to (1) and (4) as the realization of a forward-in-time primal PDE and a backward-in-time adjoint PDE, respectively.

2.1 Tangents of adjoints, basic, and binomial approaches

The numerical calculation of tangents of adjoints is based on appropriate discretizations of forward and adjoint PDEs. For calculating an approximation of y(u) and v, one has to evaluate subfunctions Y_{j+1} and V_{j+1} , $0 \le j < \ell$, resulting from the time discretization of the forward PDE. These subfunctions act on the states y^j and v^j to calculate the subsequent intermediate states y^{j+1} and v^{j+1} for $0 \le j < \ell$ depending on a control action \bar{u}^j , i.e.

$$y^{j+1} = Y_{j+1}(y^j, \bar{u}^j)$$
 and $v^{j+1} = V_{j+1}(y^j, v^j, \bar{u}^j)$. (7)

We combine two subfunctions Y_{j+1} and V_{j+1} to the forward time step $F_{j+1} = (Y_{j+1}, V_{j+1})^{\top}$, $0 \le j < \ell$. In order to compute adjoints and tangents of adjoints the discretization of the adjoint PDE yields subfunctions \bar{Y}_{j+1} and \bar{V}_{j+1} for $\ell > j \ge 0$ with

$$\lambda^{j} = \bar{Y}_{i+1}(y^{j}, \bar{u}^{j}, \lambda^{j+1}) \quad \text{and} \quad \mu^{j} = \bar{V}_{i+1}(y^{j}, v^{j}, \bar{u}^{j}, \lambda^{j+1}, \mu^{j+1}), \tag{8}$$

which are combined to the adjoint time step

$$\bar{F}_{j+1}(y^j, v^j, \bar{u}^j, \lambda^{j+1}, \mu^{j+1}) = (\bar{Y}_{j+1}(y^j, \bar{u}^j, \lambda^{j+1}), \bar{V}_{j+1}(y^j, v^j, \bar{u}^j, \lambda^{j+1}, \mu^{j+1}))^\top. \tag{9}$$

The evaluation of \bar{F}_{j+1} may require some intermediate results calculated during the computation of y^{j+1} and v^{j+1} from the previous states y^j and v^j , respectively. Hence, it is supposed that for each $0 \le j < \ell$, there exists a computing and recording step

$$\hat{F}_{j+1}(y^j, v^j, \bar{u}^j) = (\hat{Y}_{j+1}(y^j, \bar{u}^j), \hat{V}_{j+1}(y^j, v^j, \bar{u}^j))^\top, \tag{10}$$

which causes the recording of intermediate values required during the evaluation of the time step F_{j+1} onto a data structure called *tape*. Using the computing and recording step \hat{F}_{j+1} and adjoint time step \bar{F}_{j+1} , the basic way to compute adjoints and tangents of adjoints reads as follows.

ALGORITHM 1 (Basic approach).

Computing & Recording: Set y and v to the initial values y_0 and v_0 .

do
$$j = 0, \ell - 1$$

Perform $(y^{j+1}, v^{j+1})^{\top} = \hat{F}_{j+1}(y^j, v^j, \bar{u}^j)$
end do

Returning: Set
$$\lambda$$
 and μ to the end values λ^{ℓ} and μ^{ℓ} do $j = \ell - 1, 0$
Perform $(\lambda^{j}, \mu^{j})^{\top} = \bar{F}_{j+1}(y^{j}, v^{j}, \bar{u}^{j}, \lambda^{j+1}, \mu^{j+1})$ end do

The storage requirement of the basic approach is proportional to the number ℓ of time steps because intermediate data of ℓ time steps are stored during the computing and recording steps. Thus, the memory requirement of the basic approach may become a problem if we consider real-world problems, for example computing adjoints of 3D flows. Therefore, due to their size, only a very limited number of intermediate states, called checkpoints, can be kept in memory. Applying a checkpointing technique, the required intermediate values are generated piecewise by restarting the evaluation repeatedly from the suitably placed checkpoints. Therefore, the calculation of tangents of adjoints can be performed based on a checkpointing strategy, even in such cases where the basic method fails due to excessive memory requirement [6,7]. These checkpointing strategies, the so-called reversal schedules, can be formalized as follows.

DEFINITION 2.1 (Reversal schedule S) For an evolution of ℓ time steps and c available checkpoints a reversal schedule S initializes j=0 and subsequently performs a sequence of basic actions

$$A_m \equiv Increment \ j \ by \ m \in \{1, \dots, \ell - j - 1\}, \ A_m = F_{j+1} \circ \dots \circ F_{j+m}$$

$$D \equiv Decrement \ \ell \ by \ 1 \ if \ j = \ell - 1, \ D = \hat{F}_{\ell} \circ \bar{F}_{\ell}$$

$$W_i \equiv Copy \ state \ j \ to \ checkpoint \ i \in \{1, 2, \dots, c\}$$

$$R_i \equiv Reset \ state \ j \ to \ checkpoint \ i$$

until j has been reduced to 0, i.e. the reversal is finished.

To derive optimal reversal schedules, i.e. schedules that minimize the overall evaluation time, one has to take into account following parameters:

- (1) the number ℓ of time steps to be reversed;
- (2) the number c of checkpoints that can be accommodated;
- (3) the step cost: $t_i = \text{TIME}(F_i)$, $\hat{t}_i = \text{TIME}(\hat{F}_i)$, $\bar{t}_i = \text{TIME}(\bar{F}_i)$.

To classify available reversal schedules, we introduce some notations, needed in the following. Step cost is called *uniform* if $t = t_j$ for all $1 \le j \le \ell$, and *non-uniform* if $t_i \ne t_j$ for some $i \ne j$. Reversal schedules for a given and adaptively determined number of time steps are called *static* and *adaptive* reversal schedules, respectively. According to [14] we denote by $\mathbf{S}_{bin}(\ell, c)$ and $\mathbf{S}_{opt}(\mathbf{t}_{\ell}, c)$ the *optimal* static reversal schedules for uniform and non-uniform step cost, respectively, where $\mathbf{t}_{\ell} = \langle t_1, \ldots, t_{\ell} \rangle$ denotes a step cost distribution in the non-uniform case. Analogously, we denote by $\mathbf{S}_{adapt}(\ell, c)$ and $\mathbf{S}_{adapt}(\mathbf{t}_{\ell}, c)$ the adaptive reversal schedules for the uniform and non-uniform case, respectively [12,14]. Optimal static reversal schedules $\mathbf{S}_{bin}(\ell, c)$ for uniform step cost are called *binomial* reversal schedules. One such binomial reversal schedule is shown in Figure 1. Here, time steps are plotted along the vertical axis and computing time is represented by the horizontal axis. Hence, the horizontal axis can be thought of as the computational axis. Each solid horizontal line including the computational axis itself represents a checkpoint. The writing W_i and reading R_i of a checkpoint is marked with a dot. The solid slanted lines represent the actions A_m , i.e. the execution of time steps F_j without recording. The returning actions D are visualized by dotted slanted lines.

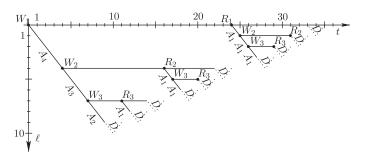


Figure 1. Binomial reversal schedules $S_{bin}(10, 3)$.

The explicit representations for the minimal evaluation cost $\mathbf{T}_{bin}(\ell, c)$ of binomial reversal schedules is

$$\mathbf{T}_{\text{bin}}(\ell, c) = r(\ell, c)\ell - \beta(c+1, r-1), \tag{11}$$

with r(l, c) = r being the unique integer satisfying

$$\frac{(c+r-1)!}{c!(r-1)!} = \beta(c,r-1) < \ell \le \beta(c,r) = \frac{(c+r)!}{c!r!}.$$
 (12)

For the derivation of this expression, we refer to [5,6]. The concept of binomial reversal schedules and its evaluation cost are crucial for the construction of efficient reversal schedules, which will be described in the following.

2.2 Efficient reversal schedules

According to [16], in the case of non-uniform step cost the complexity for determining an optimal reversal schedule $\mathbf{S}_{\text{opt}}(\mathbf{t}_{\ell},c)$ is $\mathcal{O}(\ell^2c)$. Thus, its computation is extremely expensive, especially for large time horizons. For this situation we propose a heuristic reversal schedule, which is proved to be a very efficient, and performs very well in many numerical tests. In what follows let us denote static reversal schedules constructed by this heuristic as $\mathbf{S}_{\text{ef}}(\mathbf{t}_{\ell},c)$, where ef stands for *efficient*. $\mathbf{T}_{\text{ef}}(\mathbf{t}_{\ell},c)$ denotes the related evaluation cost, i.e. the temporal complexity of the reversal schedule $\mathbf{S}_{\text{ef}}(\mathbf{t}_{\ell},c)$.

2.2.1 Upper bound for $T_{bin}(t_{\ell}, c)$

To start with, consider the binomial reversal schedule $\mathbf{S}_{bin}(\ell,c)$, applied for reversing a sequence of ℓ time steps with up to c checkpoints available and non-uniform step cost distribution \mathbf{t}_{ℓ} . We denote the resulting evaluation cost $\mathbf{T}_{bin}(\mathbf{t}_{\ell},c)$. (Note: in this notation the parameter \mathbf{t}_{ℓ} replaces the usually utilized parameter ℓ . This clarifies the dependence of the temporal complexity on the step cost distribution in this special case.) Firstly, we construct an upper bound $\mathbf{G}_{bin}^{\hat{\ell}}(\mathbf{t}_{\ell},c)$ for the evaluation cost $\mathbf{T}_{bin}(\mathbf{t}_{\ell},c)$. Binomial reversal schedules are constructed without regarding temporal complexities of single time steps. For more or less homogeneous step cost distributions, the application of such schedules may lead to acceptable results. But for step cost distributions with an essential difference in temporal complexities of single steps it can happen that the most expensive steps are evaluated most frequently, since a particular step cost distribution has no influence on the construction of a binomial reversal schedule. Examples for such situations are discussed in [14]. To avoid the high costs of reversing such step sequences, the application of schedules constructed without regarding temporal complexities of single steps is not advisable.

Nevertheless, although binomial reversal schedule $S_{bin}(\ell, c)$ cannot be accepted as an efficient reversal schedule $S_{ef}(\mathbf{t}_{\ell}, c)$ for variable step cost distributions, we can use an upper bound for its evaluation cost as an upper bound for the evaluation cost $T_{ef}(\mathbf{t}_{\ell}, c)$. Equivalently to (11), the evaluation cost $T_{bin}(\mathbf{t}_{\ell}, c)$ can also be calculated in the following way:

$$\mathbf{T}_{\text{bin}}(\mathbf{t}_{\ell}, c) = \sum_{i=1}^{\ell} r_i \cdot t_i, \tag{13}$$

where r_i denotes how many times a time step F_i is evaluated during the execution of the binomial reversal schedule $\mathbf{S}_{bin}(\ell, c)$. We refer to r_i as a *repetition number* of F_i .

There is no explicit formula for calculating a repetition number r_i for each time step F_i , $1 \le i \le \ell$. If one is interested in this task, the best way to proceed would be to follow the application of the binomial reversal schedule $\mathbf{S}_{\text{bin}}(\ell,c)$ step by step. This obviously would result in additional costs. However, we are more interested in the upper bound $\mathbf{G}_{\text{bin}}^{\hat{\ell}}(\mathbf{t}_{\ell},c)$, than in the exact value for $\mathbf{T}_{\text{bin}}(\mathbf{t}_{\ell},c)$. $\hat{\ell}$ is here the number of the intermediate state stored into the second checkpoint. The number $\hat{\ell}$ only depends on parameters l and c. Thus, $\hat{\ell}$ is fixed for the binomial reversal schedule $\mathbf{S}_{\text{bin}}(l,c)$ [6,16]. To compute the upper bound $\mathbf{G}_{\text{bin}}^{\hat{\ell}}(\mathbf{t}_{\ell},c)$, we evaluate values of maximal repetition numbers $r(c,\hat{\ell})$ and $r(c-1,\ell-\hat{\ell})$ for sequences $(F_1,\ldots,F_{\hat{\ell}})$ and $(F_{\hat{\ell}+1},\ldots,F_{\ell})$, respectively. The maximal repetition numbers $r(c,\hat{\ell})$ and $r(c-1,\ell-\hat{\ell})$ can be evaluated explicitly using the formula (12) with various parameters. Furthermore, on most numerical examples the repetition numbers r_i in many steps take one of the values of $r(c,\hat{\ell})$ or $r(c-1,\ell-\hat{\ell})$, or their difference to these values is small. The value of $\mathbf{G}_{\text{bin}}^{\hat{\ell}}(\mathbf{t}_{\ell},c)$ then is evaluated as

$$\mathbf{G}_{\text{bin}}^{\hat{\ell}}(\mathbf{t}_{\ell}, c) = \sum_{i=1}^{\ell} \widehat{r}_i \cdot t_i, \tag{14}$$

where the quantities \hat{r}_i , $1 \le i \le \ell$, represent the upper bound for repetition numbers r_i , $1 \le i \le \ell$, and are specified in Table 1. Let us explain the construction of $\mathbf{G}_{\text{bin}}^{\hat{\ell}}$ in terms of an example.

Example 2.1 Consider a sequence of 30 time steps with a non-uniform step cost distribution $\mathbf{t}_{\ell} = \langle t_1, \dots, t_{30} \rangle = \langle 1, 2, \dots, 29, 30 \rangle$. Let the number of available checkpoints be 3. In Figure 2, we sketch which values \hat{r}_i , $1 \le i \le 30$, are taken for evaluating the upper bound $\mathbf{G}_{\text{bin}}^{16}(\mathbf{t}_{30}, 3)$.

Data of the 16th intermediate state is stored in the second checkpoint in this example. The values $r(c, \hat{\ell})$ and $r(c-1, \ell-\hat{\ell})$ for maximal repetition numbers are evaluated as follows:

$$r(c, \hat{\ell}) = r(3, 16) = 3$$
 from $\beta(3, r(3, 16) - 1) < 16 \le \beta(3, r(3, 16)),$ (15)

$$r(c-1, \ell-\hat{\ell}) = r(2, 14) = 4$$
 from $\beta(2, r(2, 14) - 1) < 14 \le \beta(2, r(2, 14))$. (16)

Table 1. Evaluation of upper bound profile $\widehat{\mathbf{r}}(\mathbf{G}_{\mathrm{bin}}^{\widehat{\ell}}(\mathbf{t}_{\ell},c)) = \langle \widehat{r}_1,\ldots,\widehat{r}_{\ell} \rangle$.

$\widehat{r}_i = r(c, \hat{\ell}) + 1,$ $\widehat{r}_i = \hat{\ell} - i + 1,$	$i = 1, \dots, \hat{\ell} - r(c, \hat{\ell})$ $i = \hat{\ell} - r(c, \hat{\ell}) + 1, \dots, \hat{\ell}$
$ \hat{r}_i = r(c-1, \ell - \hat{\ell}), \hat{r}_i = \ell - i, $	$i = \hat{\ell} + 1, \dots, \ell - r(c - 1, \ell - \hat{\ell})$ $i = \ell - r(c - 1, \ell - \hat{\ell}) + 1, \dots, \ell$

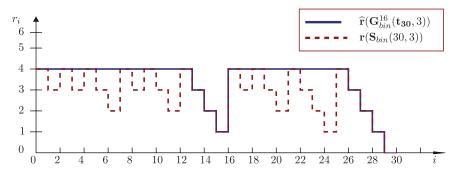


Figure 2. Repetition number profiles $\mathbf{r}(\mathbf{S}_{bin}(30,3))$ and $\mathbf{\hat{r}}(\mathbf{G}_{bin}^{16}(\mathbf{t}_{30},3))$.

The following values are then assigned to the quantities \hat{r}_i :

$$\widehat{r_i} = r(3, 16) + 1, \quad i = 1, \dots, 16 - r(3, 16), \\
\widehat{r_i} = 17 - i, \quad i = 17 - r(3, 16), \dots, 16, \\
\widehat{r_i} = r(2, 14), \quad i = 17, \dots, 30 - r(2, 14), \\
\widehat{r_i} = 30 - i, \quad i = 31 - r(2, 14), \dots, 30.$$

The computation of $r(c, \hat{\ell})$, $r(c-1, \ell-\hat{\ell})$, $\widehat{r_i}$ and of the upper bound $\mathbf{G}_{bin}^{\hat{\ell}}(\mathbf{t}_{\ell}, c)$ can be generalized for any arbitrary values of ℓ and c. First, $r(c, \hat{\ell})$ and $r(c-1, \ell-\hat{\ell})$ are computed by the relations:

$$r(c, \hat{\ell}) \quad \text{from } \beta(c, r(c, \hat{\ell}) - 1) < \hat{\ell} \leqslant \beta(c, r(c, \hat{\ell})), \tag{17}$$

$$r(c - 1, \ell - \hat{\ell}) \quad \text{from } \beta(c - 1, r(c - 1, \ell - \hat{\ell}) - 1) < \ell - \hat{\ell} \leqslant \beta(c - 1, r(c - 1, \ell - \hat{\ell})), \tag{18}$$

where $\beta(c,r) = (c+r)!/c!r!$. The computation of values $r(c,\hat{\ell})$ and $r(c-1,\ell-\hat{\ell})$ can be very effectively arranged by iteration. Once $r(c,\hat{\ell})$ and $r(c-1,\ell-\hat{\ell})$ are available, the values of \hat{r}_i , $i=1,\ldots\ell$, are obtained according to Table 1. Therefore, the relationship (14) for evaluating the upper bound $\mathbf{G}_{\mathrm{bin}}^{\hat{\ell}}(\mathbf{t}_{\ell},c)$ can be represented in the following way:

$$\mathbf{G}_{\text{bin}}^{\hat{\ell}}(\mathbf{t}_{\ell}, c) = \sum_{i=1}^{\ell} \widehat{r}_{i} \cdot t_{i} = (r(c, \hat{\ell}) + 1) \cdot \sum_{i=1}^{\hat{\ell} - r(c, \hat{\ell})} t_{i} + \sum_{i=\hat{\ell} - r(c, \hat{\ell}) + 1}^{\hat{\ell}} (\hat{\ell} - i + 1) \cdot t_{i}$$

$$+ r(c - 1, \ell - \hat{\ell}) \cdot \sum_{i=\hat{\ell} + 1}^{\ell - r(c - 1, \ell - \hat{\ell})} t_{i} + \sum_{i=\ell - r(c - 1, \ell - \hat{\ell}) + 1}^{\ell} (\ell - i) \cdot t_{i},$$
(19)

where $\hat{\ell} = \hat{\ell}(\ell, c)$ is a fixed value for given ℓ and c [6,16].

Discrepancies between the upper bound $\mathbf{G}_{\mathrm{bin}}^{\ell}(\mathbf{t}_{\ell}, c)$ and the evaluation cost $\mathbf{T}_{\mathrm{bin}}(\mathbf{t}_{\ell}, c)$ are illustrated in Figure 3 for a set of step sequences of length ℓ , $0 \le \ell < 300$ with a step cost distribution $\mathbf{t}_{\ell} = \langle t_1, \ldots, t_{\ell} \rangle$. The latter is illustrated for $\ell = 300$ in Figure 3, left. For c = 4 the evaluation costs $\mathbf{T}_{\mathrm{bin}}(\mathbf{t}_{\ell}, 4)$ and the upper bound $\mathbf{G}_{\mathrm{bin}}^{\ell}(\mathbf{t}_{\ell}, 4)$ are depicted in Figure 3, right.

2.2.2 Construction of efficient reversal schedules

To construct an efficient reversal schedule for reversing a time-step sequence F_1, \ldots, F_l using c checkpoints we proceed as follows: store the initial intermediate state into the first checkpoint,

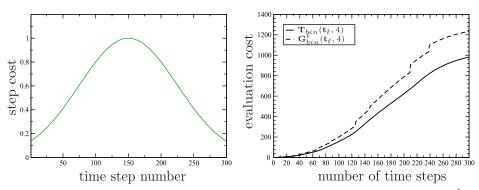


Figure 3. Left: Step cost distribution \mathbf{t}_{300} and right: binomial evaluation cost $\mathbf{T}_{bin}(\mathbf{t}_{\ell},4)$ and its upper bound $\mathbf{G}_{bin}^{\ell}(\mathbf{t}_{\ell},4)$.

determine a position $\hat{\ell}$ for the second checkpoint, and evaluate time steps $F_1,\ldots,F_{\hat{\ell}}$. After that, consider time steps $F_{\hat{\ell}+1},\ldots,F_l$ with (c-1) available checkpoints and perform the same operations as above. Once the subsequence $F_{\hat{\ell}+1},\ldots,F_l$ is reversed, consider the time steps $F_1,\ldots,F_{\hat{\ell}}$ with c available checkpoints and reverse them. Special cases: 'c=1' and 'the number of time steps to reverse is less than or equal to c' are to be handled trivially. The overall description is summarized in Algorithm 2, as shown below.

The critical point in the construction of efficient reversal schedules is the determination of the partition number $\hat{\ell}$. For this purpose, the principle of computing the upper bound $\mathbf{G}_{\mathrm{bin}}^{\hat{\ell}}(\mathbf{t}_{\ell},c)$ by (19) is used. In order to choose the optimal number $\hat{\ell}$, we evaluate the upper bound $\mathbf{G}_{\mathrm{bin}}^k(\mathbf{t}_{\ell},c)$ for all parameters k between one and (l-1), compare the computed quantities to each other and choose the minimal one. The corresponding value k, where the minimum is attained, denotes the number $\hat{\ell}$ of the intermediate state to be stored into the second checkpoint:

$$\hat{\ell} := \operatorname{argmin}_{0 < k < \ell} \{ \mathbf{G}_{\text{bin}}^{k}(\mathbf{t}_{\ell}, c) \}. \tag{20}$$

How the efficient reversal schedule $S_{ef}(\mathbf{t}_l, c)$ can be constructed and its temporal complexity $T_{ef}(\mathbf{t}_\ell, c)$ can be calculated is summarized in the following algorithm:

```
Algorithm 2 (Efficient reversal schedule S_{ef}(\mathbf{t}_{\mathbf{b_0}+1,\ell_0},c)).
    \mathbf{t}_{\mathbf{b_0}+\mathbf{1},\ell_0} = \langle t_{b_0+1}, \dots, t_{\ell_0} \rangle; \ \mathbf{T}_{\text{ef}}(\mathbf{t}_{\mathbf{b_0}+\mathbf{1},\ell_0}, c) = 0; \ b := b_0; \ e := \ell_0;
    efficient(b,e,c)
    begin
           Store the initial intermediate state into the checkpoint;
           if ((e - b > c) \text{ and } (c > 1))
                 \ell = \operatorname{argmin}_{b < k < e} \{ \mathbf{G}_{\text{bin}}^{k}(\mathbf{t_{b+1,e}}, c) \}
                 evaluate time stepsF_{b+1}, \ldots, F_{\hat{i}};
                \mathbf{T}_{\text{ef}}(\mathbf{t}_{\mathbf{b_0}+1,\ell_0},c) + = \sum_{i=h+1}^{\hat{\ell}} t_i;
                 efficient(b, \hat{\ell}, c);
                 efficient(\hat{\ell}, e, c - 1);
           fi;
           if (e - b \le c)
                 do: i = b + 1, \dots, e - 1
                       evaluate the forward time step F_i;
                       store the current intermediate state into the checkpoint;
```

```
end do \mathbf{do} \colon i = e, \dots, b+1 evaluate the adjoint time step \bar{F}_i; release the current intermediate state from the checkpoint; end do \mathbf{T}_{\mathrm{ef}}(\mathbf{t_{b_0+1,\ell_0}},c) + = \sum_{i=b+1}^{e-1} t_i; \underline{\mathbf{fi}}; \underline{\mathbf{if}}(c=1) \mathbf{do} \colon i = e, \dots, b+1 evaluate forward time steps F_{b+1}, \dots, F_{i-1}; evaluate the adjoint time step \bar{F}_i; end do \mathbf{T}_{\mathrm{ef}}(\mathbf{t_{b_0+1,\ell_0}},c) + = \sum_{j=b+1}^{e} (e-j) \cdot t_j; \underline{\mathbf{fi}}; end
```

As can be seen in Algorithm 2, in order to determine a place for the second checkpoint we have to compare certain values of $\mathbf{G}_{\mathrm{ef}}^{\hat{\ell}}$. However, in general these numbers are rapidly reduced in subsequent algorithmic steps, except for the extremal situation where all checkpoints have to be set each time at the very end of the step sequence. In conclusion, the temporal complexity needed for construction of efficient reversal schedules $\mathbf{S}_{\mathrm{ef}}(\mathbf{t}_{\ell},c)$ as proposed in Algorithm 2, is in most cases negligible compared with that for the construction of optimal reversal schedules $\mathbf{S}_{\mathrm{opt}}(\mathbf{t}_{\ell},c)$ in the non-uniform case.

The difference of efficient reversal schedules from binomial lies in the choice of the value $\hat{\ell}$, where the second checkpoint is to be stored. For binomial reversal schedules this value depends only on two parameters l an c. For efficient reversal schedules the step cost distribution is also taken into account as shown in Algorithm 2.

The example in Figure 4 shows an efficient reversal schedule $\mathbf{S}_{ef}(\mathbf{t}_{\ell}, c)$ constructed using Algorithm 2 above. Consider a sequence of seven time steps with a step cost distribution $\mathbf{t}_7 = \langle t_1, \ldots, t_7 \rangle = \langle 1, 2, \ldots, 6, 7 \rangle$. Three checkpoints are available. The evaluation cost $\mathbf{T}_{ef}(\mathbf{t}_7, 3)$ needed for the execution of this reversal schedule amounts to 27 units. The effort $\mathbf{T}_{bin}(\mathbf{t}_7, 3)$, resulting from the reversal of this step sequence using the binomial reversal schedule $\mathbf{S}_{bin}(7, 3)$, amounts to 30 units. Further numerical comparisons of efficient, optimal, and binomial reversal schedules are presented in [14] and in Section 4 of this paper, where efficient reversal schedules

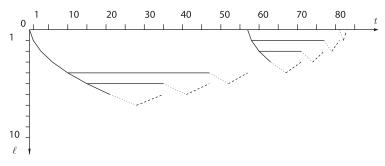


Figure 4. Efficient reversal schedule $\mathbf{S}_{ef}(\mathbf{t}_7,3)$ for step cost distribution $\mathbf{t}_7 = \langle 1,2,\ldots,6,7 \rangle$.

are applied to implement the inexact Newton method for the optimal control problem governed by the Navier–Stokes equations.

2.2.3 Computer implementation of efficient reversal schedules

Algorithm 2 from Section 2.2.2 is implemented in the computer routine a-revolve, involving static and adaptive checkpointing techniques. The corresponding checkpointing algorithm for implementing the Newton-CG method (Algorithm 1 from Section 1) is defined in terms of the following procedure:

```
ALGORITHM 3 (Checkpointing algorithm for Newton-CG).
                                                                   check = -1
    snaps = c
                      capo = 0
                                        adaptive = 0 or 1
                                                                                        turn = 0
    if (adaptive = 0): fine = \ell
    else:
                            fine = 0
    do
        t_{\rm capo} = \Delta t_{\rm capo}
        whatodo = a-revolve(check,capo,fine,t_{capo},w)
         switch(whatodo)
                 case advance:
                                      perform F_{\rm capo}, t = t + \Delta t_{\rm capo}
                 case takeshot:
                                      store(y,ystor,check)
                                      perform \hat{F}_{\text{capo}} \circ \text{init}(\text{lam}) \circ \bar{F}_{\text{capo}}, turn = 1
                 case firsturn:
                 case youturn:
                                      perform \hat{F}_{capo} \circ \bar{F}_{capo}
                 case restore:
                                      restore(y,ystor,check)
                 case error:
                                      print(schedule error!)
      end switch
        if (turn = 0) and (adapt = 1)
            fine = fine+1
    while((whatodo \neq terminate) && (whatodo \neq error))
```

The first line of Algorithm 3 contains initializations. Variable adapt = 1 if the number of time steps is unknown. Then, fine = 0 and we apply adaptive reversal schedules (for details see [12,14]). This situation corresponds to the calculation of the gradient $\hat{J}'(u)$. In this case we need only to evaluate primal and adjoint variables. Therefore, $F_{\rm capo} = Y_{\rm capo}$, $\hat{F}_{\rm capo} = \hat{Y}_{\rm capo}$, and $\bar{F}_{\rm capo} = \bar{Y}_{\rm capo}$ for all variables capo. Variable adapt = 0 if the number ℓ of time steps is known in advance. Then, fine = ℓ and efficient reversal schedules are applied to calculate the product reduced Hessian times vector which corresponds to $\hat{J}''(u)\delta u$. $F_{\rm capo}$, $\hat{F}_{\rm capo}$, and $\bar{F}_{\rm capo}$ denote forward, evaluating and recording, and adjoint steps, respectively, specified in Section 2.1.

The adjoint and the tangent of adjoint calculation is performed within a do-while-loop. Each execution of the loop-body starts with a call of a-revolve. Here, capo and fine determine the time steps to be reversed actually. The variables snaps and check denote the number of available and the number of actually stored checkpoints, respectively. $t_{\rm capo}$ denotes the cost of the forward time step $F_{\rm capo}$. In our example $t_{\rm capo}$ is set to be equal to the time step size, $t_{\rm capo} = \Delta t_{\rm capo}$. By w an array is denoted, which stores costs of all time steps. The value of turn shows whether the reversal sweep has been initialized or not.

Depending on the actual state of the reversal process, a-revolve returns a basic action according to Definition 2.1 of reversal schedules: advance = A_1 , takeshot = $W_{\rm check}$, restore = $R_{\rm check}$, firsturn or youturn = D. As can be seen, the do-while-loop is completely independent of the actual problem to be reversed. The functions $F_{\rm capo}$, $\hat{F}_{\rm capo}$, and $\bar{F}_{\rm capo}$ are required also for the

basic approach to calculate adjoints and tangents of adjoints. Hence, in order to apply a reversal schedule to reduce the memory requirement, one has to code only the routines for storing and retrieving a checkpoint in addition to the already written software. Therefore, it requires usually little work to incorporate a reversal schedule into the calculation.

To implement a single Newton step in Algorithm 1 from Section 1 we have to apply Algorithm 3 from above at least twice. Firstly, initializing adapt = 1 and utilizing adaptive reversal schedules to evaluate adjoints of the state equations in order to determine the value of the gradient $\hat{J}'(u)$, the number of time steps, and the step cost distribution, needed for the subsequent CG approach. Secondly, initializing adapt = 0 and utilizing static efficient reversal schedules to evaluate adjoints of the linearized state equations in order to calculate the product-reduced Hessian times vector $\hat{J}''(u)\delta u$. The last scheme has to be applied for each conjugate direction within a single CG step.

3. Application to the Navier–Stokes system

As model application we now illustrate how derivatives of the reduced functional \hat{J} in control of the instationary Navier–Stokes equations can be numerically realized utilizing the formalism developed in the previous sections. Since the focus of the present paper is a purely algorithmical one, we reduce the presentation of functional analytic prerequisites to a necessary minimum. Interested readers can refer to [10,11,13]. Let us introduce the solenoidal spaces

$$H := \{v \in L^2(\Omega)^2, \operatorname{div} v = 0\}^{\operatorname{clos}_{L^2}}$$
 and $V := \{v \in L^2(\Omega)^2, \operatorname{div} v = 0\}^{\operatorname{clos}_{H^1}}$.

From here onwards it is convenient to formulate the controlled instationary Navier–Stokes system in its primitive setting: given a control $u \in U$, find a solenoidal state y together with a pressure p such that

$$y_{t} - \nu \Delta y + (y \cdot \nabla)y + \nabla p = Bu \quad \text{in } Q,$$

$$-\text{div } y = 0 \quad \text{in } Q,$$

$$y(x, t) = 0 \quad \text{on } \partial \Omega \times (0, T),$$

$$y(x, 0) = y_{0}(x) \quad \text{in } \Omega$$

$$(21)$$

is satisfied, where $y_0 \in H$ denotes the initial value. Here, $\Omega \subset \mathbb{R}^2$ denotes the spatial domain, $Q := (0,T) \times \Omega$ is the time-space cylinder and B denotes the control operator which maps elements of the abstract Hilbert space U of controls to admissible right-hand sides. In the formalism of Section 1 this system is represented in the form of the operator equation G(y,u) = 0, where $G: Y \times U \to Z^* := L^2(V^*) \times H$ and $Y:= \{v \in L^2(V), v_t \in L^2(V^*)\}$. For details and notation we refer to the book [15] by Temam.

In order to express the actions of $\hat{J}'(u)$ and $\hat{J}''(u)$ for the cost functional given in Equation (2) we have to provide those of $G_y^{-1}(y, u)$ and $G_y^{-*}(y, u)$, respectively. To describe these actions let, for given $J_y(y, u) \in Y^*$, the vector function $\lambda \in Z$ be defined by

$$\lambda = (\lambda^{1}, \lambda^{2}) = -G_{y}(y, u)^{-*} J_{y}(y, u), \tag{22}$$

and let for $(f, v_0) \in Z^*$

$$v := G_{v}(y, u)^{-1}(f, v_{0}). \tag{23}$$

It is shown in [10,11] that under suitable regularity assumptions on J the adjoint variable λ of (22) together with the adjoint pressure ξ satisfies the system

$$-\lambda_t^1 - \nu \Delta \lambda^1 - (y \cdot \nabla)\lambda^1 + (\nabla y)^t \lambda^1 + \nabla \xi = -J_{1_y}^{(t)}(y) \quad \text{in } Q,$$

$$-\text{div } \lambda^1 = 0 \quad \text{in } Q,$$

$$\lambda^1(x, t) = 0 \quad \text{on } \partial \Omega \times (0, T),$$

$$\lambda^1(x, T) = -J_{1_y}^{(T)}(y) \quad \text{in } \Omega,$$

$$(24)$$

and $\lambda^2 = \lambda^1(0)$. The superscripts (t), (T) refer to a possible dependence of the functional J_{1_y} on the time instances (t) and (T), respectively. Finally, together with some pressure ρ the function v of (23) satisfies

$$v_{t} - v\Delta v + (y \cdot \nabla)v + (v \cdot \nabla)y + \nabla \rho = f \quad \text{in } Q,$$

$$-\text{div } v = 0 \quad \text{in } Q,$$

$$v(x, t) = 0 \quad \text{on } \partial\Omega \times (0, T),$$

$$v(x, 0) = v_{0}(x) \quad \text{in } \Omega.$$

$$(25)$$

Now, let $\lambda \equiv \lambda^1$. In order to compute approximations of (y, p), (λ, ξ) , and (v, ρ) the partial differential equations have to be discretized appropriately. For the numerical tests presented in the subsequent section, Taylor–Hood finite elements are used for spatial discretization, i.e. continuous, piecewise quadratic polynomials for the velocity approximation and continuous, piecewise linear polynomials for the pressure approximation. As time discretization scheme for the Navier–Stokes system (21), we apply the semi-implicit Euler method which performs implicit time stepping with respect to diffusive terms, while the convective terms are treated explicitly. The time integration is performed adaptively by the rule

$$\Delta t_j = 0.7 \frac{h}{\max_{x \in \Omega} |y(t_j)|},\tag{26}$$

where h denotes the grid size of the spatial discretization. We note that $y(t_j) \in \mathcal{C}(\bar{\Omega})$ can be guaranteed for $t_j \in (0,T)$ if $Bu \in L^2(Q)^2$ and $y_0 \in V \cap H^2(\Omega)^2$. These conditions form the minimal regularity requirements for proving error estimates for numerical approximation schemes of the Navier–Stokes system, compare [4,9]. Since Δt_j depends on the flow field $y(t_j)$, it is only possible to evaluate Δt_j for the current time step. Therefore, the number l of time steps is not known in advance. The resulting numerical scheme for a state $y^j \sim y(t_j)$ with $0 \le j < \ell$ is given by

$$\frac{y^{j+1} - y^j}{\Delta t_j} - \nu \Delta y^{j+1} + \nabla p^{j+1} = (Bu)^j - (y^j \nabla y^j) \quad \text{in } \Omega$$
$$-\operatorname{div} y^{j+1} = 0 \quad \text{in } \Omega, \quad y^{j+1} = 0 \quad \text{in } \partial \Omega$$
 (27)

with $y^0 = y(0)$. In the setting of Section 2 this forward integration scheme may be rewritten as

$$y^{j+1} = Y_{j+1}(y^j, \bar{u}^j), \tag{28}$$

where the time step function Y_{i+1} is given by $Y_{i+1}(y^j, \bar{u}^j) = Y(\Delta t_i, y^j, (Bu)^j)$ with

$$Y(\Delta t, y, z) := \Delta t (P - \Delta t \nu S)^{-1} (z - (y \nabla) y) + P y.$$

Here, S denotes the Stokes operator and P defines the Leray projection $L^2(\Omega)^2 \to H$, see [3].

The time discretization scheme of the adjoint variables λ in (24) is more involved. Here, we take the transpose of the semi-implicit time discretization of (25) given next; for $0 \le j < \ell$ let

$$\frac{v^{j+1}}{\Delta t_j} - v\Delta v^{j+1} + \nabla \rho^{j+1} = f^j + \frac{v^j}{\Delta t_j} - (y^j \nabla v^j) - (v^j \nabla y^j) \quad \text{in } \Omega$$

$$-\text{div } v^{j+1} = 0 \quad \text{in } \Omega, \quad v^{j+1} = 0 \quad \text{on } \partial\Omega,$$
(29)

where $v^0 = v(0)$. To derive the time integration scheme for the adjoint variables it is convenient to reformulate the initial condition for v in the form

$$\frac{v^0}{\Delta t_0} - \nu \Delta v^0 + \nabla \rho^0 = \frac{v_0}{\Delta t_0} - \nu \Delta v_0 \quad \text{in } \Omega$$

$$-\text{div } v^0 = 0 \quad \text{in } \Omega, \quad v^0 = 0 \quad \text{on } \partial \Omega,$$
(30)

where we set $\rho^0 \equiv 0$ and require $v_0 \in V \cap H^2(\Omega)^2$.

Formally transposing the scheme (29) and (30), we obtain for the adjoint equations and $j = \ell - k \ge 0$ the integration scheme

$$\frac{\lambda^{\ell-k}}{\Delta t_{\ell-k}} - \nu \Delta \lambda^{\ell-k} = \frac{\lambda^{\ell-k+1}}{\Delta t_{\ell-k}} - \nabla \xi^{\ell-k} - J_{1_{y}}^{(t_{\ell-k})}(y^{\ell-k})
+ (\lambda^{\ell-k+1} \nabla y^{\ell-k}) - (\nabla y^{\ell-k})^{t} \lambda^{\ell-k+1} \quad \text{in } \Omega,
-\text{div } \lambda^{\ell-k} = 0 \quad \text{in } \Omega, \quad \lambda^{\ell-k} = 0 \quad \text{on } \partial \Omega,$$
(31)

where the states $y^{\ell-k}$ are given by the solution of (27). We note, that the final state λ^{ℓ} in this integration scheme satisfies the quasi-Stokes system

$$\begin{split} \frac{\lambda^\ell}{\Delta t_\ell} - \nu \Delta \lambda^\ell - \nabla \xi^\ell &= -J_{1_y}^{(t_\ell)}(y^\ell, u^\ell) \quad \text{in } \Omega, \\ -\text{div } \lambda^\ell &= 0 \quad \text{in } \Omega, \quad \lambda^\ell = 0 \quad \text{on } \partial \Omega. \end{split}$$

The adjoint integration scheme may be rewritten as

$$\lambda^{j} = \bar{Y}_{j+1}(y^{j}, \bar{u}^{j}, \lambda^{j+1}) = \bar{Y}(\Delta t_{j}, y^{j}, \lambda^{j+1}), \tag{32}$$

where

$$\bar{Y}(\Delta t, y, z) := \Delta t (P - \nu \Delta t S)^{-1} (-J_{1_{\nu}}^{(t)}(y) + (z\nabla)y - (\nabla y)^{t}z) + Pz.$$
(33)

Furthermore, one finds that the evaluating and recording step $\hat{Y}(y^j, (Bu)^j)$ consists of the evaluation of $Y(\Delta t_i, y^j, (Bu)^j)$ and the storage of the new state vector y^{j+1} .

Next, let us discuss the time discretization of $\hat{J}''(u)\delta u$ described in Algorithm 3 from Section 1. To begin with we note that

$$\langle G_{yy}(y(u), u)(a, b), (\lambda, \lambda^2) \rangle_{Z^*, Z} = \langle (a\nabla)b + (b\nabla a), \lambda \rangle_{L^2(V^*), L^2(V)},$$

which is independent of y and u, and $G_u(y, u) = (-B, 0)$. To discretize step 1 of Algorithm 3 from Section 1 we propose to apply scheme (29) for the computation of v with $v_0 \equiv 0$, and y taken from (27). We recall that the time grid obtained from (26) is also used in this scheme, but

now the number of time steps and the step length Δt_j are fixed. In the setting of Section 2 this forward integration scheme may be rewritten as

$$v^{j+1} = V_{j+1}(y^j, v^j, \bar{u}^j) = V(\Delta t_j, y^j, v^j), \tag{34}$$

with

$$V(\Delta t, y, v) := \Delta t (P - \Delta t v S)^{-1} (f - (y \nabla)v - (v \nabla)y) + Pv.$$

As can be seen, Equations (28) and (34) exactly match the time stepping (7) which forms the basis for the reversal schedules presented in Section 2.

In step 2 of Algorithm 3 from Section 1 the numerical results of schemes (27) for y and (31) for λ are utilized to evaluate rhs. Finally, for the numerical computation of μ in step 3, we propose to use again scheme (31), where the terms containing the functional J have to be replaced by the corresponding terms of rhs from step 2. We emphasize that in general both, the state y and the variable v enter into rhs. This adjoint integration scheme may be rewritten as

$$\mu^{j} = \bar{V}_{j+1}(y^{j}, v^{j}, \bar{u}^{j}, \lambda^{j+1}, \mu^{j+1}) = \bar{V}(\Delta t_{j}, y^{j}, v^{j}, \lambda^{j+1}, \mu^{j+1}), \tag{35}$$

where

$$\bar{V}(\Delta t, y, v, \lambda, \mu) := \Delta t (P - v \Delta t S)^{-1} (rhs(y, \lambda) + (\mu \nabla)v - (\nabla v)^t \mu) + P\mu. \tag{36}$$

Then, (32) and (35) exactly match (8), e.g. the adjoint time steps exactly fit for the application of the reversal schedules. Furthermore, one finds that the evaluating and recording step $\hat{V}_{j+1}(y^j, v^j, \bar{u}^j)$ consists of the evaluation of $V(\Delta t_j, y^j, v^j)$ and the storage of the new state vector v^{j+1} .

4. Numerical results

A cavity flow problem serves as numerical example. The domain is defined by the unit square $\Omega := (0, 1) \times (0, 1)$. The final time is normalized to one, i.e. T = 1, and $\nu = 1/\text{Re}$ with Re = 10. The vector

$$y_0(x) = e \begin{bmatrix} (\cos 2\pi x_1 - 1) \sin 2\pi x_2 \\ -(\cos 2\pi x_2 - 1) \sin 2\pi x_1 \end{bmatrix}$$

with e denoting the Euler number is used as initial condition. The control goal consists of approximating the time-dependent desired state given by

$$z(x,t) = \begin{bmatrix} \varphi_{x_2}(x_1, x_2, t) \\ -\varphi_{x_1}(x_1, x_2, t) \end{bmatrix}.$$

Here, φ is defined through the stream function

$$\varphi(x_1, x_2, t) = \theta(x_1, t)\theta(x_2, t)$$
 with $\theta(y, t) = (1 - y)^2(1 - \cos 2k\pi t), y \in [0, 1].$

In order to measure the quality of the approximation, the tracking-type cost function

$$\hat{J}(u) = J(y, u) = \frac{1}{2} \int_0^T \int_{\Omega} |y - z|^2 dx dt + \frac{c}{2} \int_0^T \int_{\Omega} |u|^2 dx dt$$
 (37)

with c = 0.01 is chosen. Figure 5 shows the cavity flow at t = 0.01 together with the desired flow at t = T = 1.

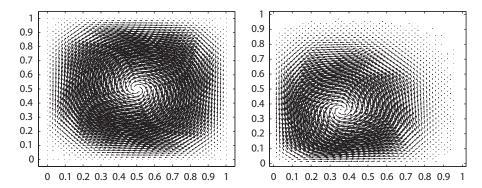


Figure 5. Left: Cavity flow at t = 0.01 and right: desired flow at T = 1.

To solve this optimal control problem, we apply the Newton-CG method described in Algorithm 1 from Section 1. An implementation of this algorithm using the basic approach would require a large amount of memory. Reversal schedules presented in Section 2 offer an opportunity to reduce this memory requirement drastically, while increasing the run-time only moderately. For this purpose, the routine a-revolve can be applied to compute the gradient $\hat{J}'(u)$ and the product of reduced Hessian times vector $\hat{J}''(u)\delta u$ (see Algorithm 3 from Section 2.2.3).

In the remainder of this section, we investigate the numerical performance of a-revolve. The application of adaptive reversal schedules for evaluating adjoints of Navier–Stokes systems is analysed in [12]. Thus, in the sequel of this paper we focus on the application of efficient reversal schedules for evaluating the product $\hat{J}''(u)\delta u$ of reduced Hessian times vector. The product $\hat{J}''(u)\delta u$ is computed applying a-revolve with various numbers of checkpoints.

Figure 6 shows the ratio for the temporal complexity of efficient and optimal reversal schedules applied to compute $\hat{J}''(u)\delta u$. This ratio is computed by

$$\frac{\mathbf{T}_{\text{ef}}(\mathbf{t}_{\ell}, c) - \mathbf{T}_{\text{opt}}(\mathbf{t}_{\ell}, c)}{\mathbf{T}_{\text{opt}}(\mathbf{t}_{\ell}, c)} * 100$$
(38)

for different step cost distributions \mathbf{t}_ℓ evaluated by (26) for various spatial discretizations. These ratios are plotted on the vertical axis. The horizontal axis denotes the number c of checkpoints used by the reversal schedule. As can be seen, $\mathbf{T}_{\rm ef}(\mathbf{t}_\ell,c)-\mathbf{T}_{\rm opt}(\mathbf{t}_\ell,c)$ varies between 5% and 12% relative to the optimal evaluation cost $\mathbf{T}_{\rm opt}(\mathbf{t}_\ell,c)$ for $2 \le c \le 40$ checkpoints. The evaluation cost ratio only compares the algorithmical performance of efficient and optimal reversal schedules in terms of step costs. For practical implementations it is more reasonable also to investigate the resulting computational run time.

Figure 7 shows the observed run-time behaviour for different number of time steps. Here, the vertical axis gives the ratio of the run-time needed to compute $\hat{J}''(u)\delta u$ using efficient and optimal reversal schedules. This ratio is computed by the formula

$$\frac{\text{run-time}(\text{realization of } \mathbf{S}_{\text{ef}}(\mathbf{t}_{\ell}, c))}{\text{run-time}(\text{realization of } \mathbf{S}_{\text{out}}(\mathbf{t}_{\ell}, c))}.$$
(39)

As can be seen, the computational run-time resulting from the application of efficient reversal schedules compares to that needed by optimal reversal schedules, and sometimes is even smaller. This can be explained by the additional computational requirement for constructing an appropriate optimal reversal schedule.

Figure 8 illustrates the ratio of run-time needed to compute the product $\hat{J}''(u)\delta u$ using efficient reversal schedules formed with the run-time to compute the reduced gradient $\hat{J}(u)$. These ratios

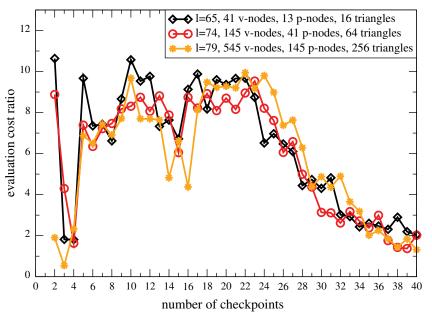


Figure 6. Evaluation cost needed to compute $\hat{J}''(u)\delta u$ using efficient and optimal reversal schedules.

are computed by the formula

$$\frac{\text{run-time(realization of } \mathbf{S}_{\text{ef}}(\mathbf{t}_{\ell}, c) \text{ to compute } \hat{J}''(u)\delta u)}{\text{run-time(computation of } \hat{J}(u)}.$$
(40)

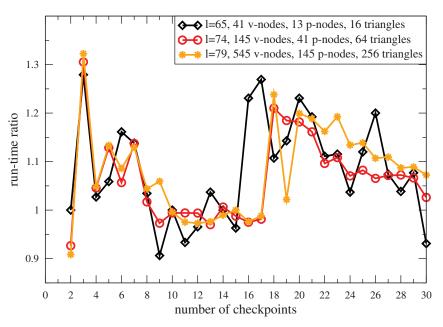


Figure 7. Run-time needed to compute $\hat{J}''(u)\delta u$ using efficient and optimal reversal schedules.

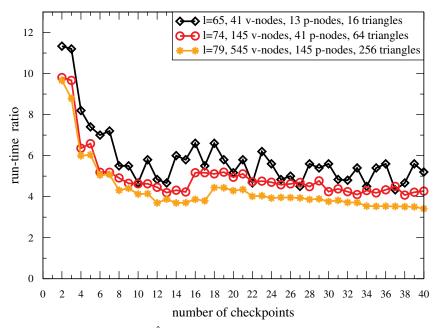


Figure 8. Run-time needed to compute $\hat{J}''(u)\delta u$ using efficient reversal schedules compared with that needed to compute the functional $\hat{J}(u)$.

To compare the achieved results with the basic approach for computing tangents of adjoints, we note that run-time for computing $\hat{J}''(u)\delta u$ is bounded by a small constant times run-time to compute $\hat{J}(u)$. The value of the constant varies between 7 and 10 depending on the specific operation counts and memory accesses [5]. As can be seen, the run-time ratio for the checkpointing approach varies between 4 and 7 for a reasonable number of checkpoints. This behaviour results in a slow down factor up to two when compared with the basic approach, where a complete trajectory is stored to compute the tangents of adjoints. Thus, using the checkpointing approach the computation of tangents of adjoints is at most twice as slow as the basic approach, where a complete forward trajectory is stored. Nevertheless, the memory requirement can be reduced enormously. Using a discretization with 2113 velocity nodes and 545 pressure nodes, one needs 76 kB to store one checkpoint. Hence, if the reversal schedule utilizes six checkpoints, the memory requirement equals 456 kB for calculating tangents of adjoints with efficient reversal schedules. If the basic approach is applied, the memory requirement amount to 7.6 MB. Therefore, efficient reversal schedules enable an immense memory reduction at a slight increase in run-time.

We observe that the dependence on the spatial discretization of all ratios presented so far is negligible. Figure 8 therefore indicates that above a certain lower bound the number of checkpoints can be varied without having a considerable influence on the run-time behaviour. This fact is illustrated by the flat development of the run-time ratios in Figure 8 if the number of checkpoints exceeds eight.

5. Conclusions

For the calculation of adjoints and tangents of adjoints one has to provide information computed during the forward integration in reverse order. The basic approach, namely the complete recording of the required information onto one stack, causes an enormous memory requirement. This paper

presents efficient reversal schedules that allow a drastic reduction of the memory requirement for the calculation of adjoints and tangents of adjoints while run-time compared with the basic approach increases only slightly. Moreover, efficient checkpointing causes only a slight increase in run-time compared with the optimal checkpointing. The resulting memory reduction and run-time behaviour is studied for an optimal control problem based on incompressible Navier–Stokes equations by applying the checkpointing routine a-revolve. For this example it is shown that a memory reduction of two orders of magnitude causes only a slow down factor of two in run-time.

References

- [1] M. Berggren, Numerical solution of a flow control problem: Vorticity reduction by dynamic boundary action, Siam J. Sci. Comput. 19(3) (1998), pp. 829–860.
- [2] M. Berggren, R. Glowinski, and J.L. Lions, A computational approach to controllability issues for flow-related models. I: Pointwise control of the viscous Burgers equation, Int. J. Comput. Fluid Dyn. 7(3) (1996), pp. 237–252.
- [3] P. Constantin and C. Foias, Navier-Stokes Equations, University of Chicago Press, Chicago, 1988.
- [4] K. Deckelnick and M. Hinze, Error estimates in space and time for tracking-type control of the instationary Stokes system, ISNM 143 (2002), pp. 87–103.
- [5] A. Griewank, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, Number 19 in Frontiers in Appl. Math. SIAM, Philadelphia, 2000.
- [6] A. Griewank and A. Walther, Revolve: An implementation of checkpointing for the reverse or adjoint mode of computational differentiation, ACM Trans. Math. Softw. 26 (2000), pp. 19–45.
- [7] J. Grimm, L. Pottier, and N. Rostaing-Schmidt, Optimal time and minimum space-time product for reversing a certain class of programs, in Computational Differentiation: Techniques, Applications, and Tools, M. Berz et al., eds., SIAM, Philadelphia, 1996, pp. 95–106.
- [8] V. Heuveline and A. Walther, Online checkpointing for parallel adjoint computation in PDEs: Application to goal oriented adaptivity and flow control, in Proceedings of Euro-Par 2006, LNCS 4128, W. Nagel et al., eds., Springer, Berlin/Heidelberg, 2006, pp. 689–699.
- [9] J.G. Heywood and R. Rannacher, Finite-element approximation of the nonstationary Navier-Stokes problem, I– IV, SIAM J. Numer. Anal. 19 (1982), pp. 275–311, 23 (1986), pp. 750–777, 25 (1988), pp. 489–512, 27 (1990), pp. 353–384.
- [10] M. Hinze, Optimal and instantaneous control of the instationary Navier-Stokes equations, Habilitationsschrift, Fachbereich Mathematik, Technische Universität Berlin, 1999.
- [11] M. Hinze and K. Kunisch, Second order methods for optimal control of time-dependent fluid flow, SIAM J. Control Optim. 40 (2001), pp. 925–946.
- [12] M. Hinze and J. Sternberg, A-revolve: An adaptive memory and run-time-reduced procedure for calculating adjoints, with an application to the instationary Navier-Stokes system, Optimis. Methods Softw. 20(6) (2005), pp. 645–663.
- [13] M. Hinze, J. Sternberg, and A. Walther, Discrete approximation schemes for reduced gradients and reduced Hessians in Navier–Stokes control utilising an optimal memory-reduced procedure for calculating adjoints, Optim. Control Appl. Methods 27 (2006), pp. 19–40.
- [14] J. Sternberg, Adaptive Umkehrschemata für Schrittfolgen mit nicht-uniformen Kosten, Diplomarbeit, Institut für Wissenschaftliches Rechnen, TU Dresden, 2002.
- [15] R. Temam, Navier-Stokes Equations, North-Holland, Amsterdam, 1979.
- [16] A. Walther, Program reversal schedules for single- and multi-processor machines, Ph.D. thesis, Institute of Scientific Computing, TU Dresden, 1999.
- [17] A. Walther and A. Griewank, Applying the checkpointing routine treeverse to discretisations of burgers' equation, in High Performance Scientific and Engineering Computing, H.-J. Bungartz, F. Durst, and C. Zenger, eds., volume 8 of Lecture Notes in Computational Science and Engineering, Springer, Berlin, 1999, pp. 13–24.
- [18] A. Walther and A. Griewank, Advantages of binomial checkpointing for memory-reduced adjoint calculations, in Numerical Mathematics and Advanced Applications, M. Feistauer et al., eds., Springer, Berlin, 2004, pp. 834–843.