6. Übungsblatt

- 1. Zeige: Eine eindimensionale Hopf-Mannigfaltigkeit $(\mathbb{C}\setminus\{0\})/\mathbb{Z}$, mit der \mathbb{Z} -Wirkung $k.z = \lambda^k z$ für ein $\lambda \in (0,1)$, ist isomorph zu einer elliptischen Kurve $\mathbb{C}/(\mathbb{Z} + \mathbb{Z}\tau)$. Bestimme ferner $\tau \in \mathbb{H}$ explizit in Abhängigkeit von λ .
- 2. Finde eine holomorphe Abbildung $f: X \to Y$ zwischen zusammenhängenden komplexen Mannigfaltigkeiten, so dass jede elliptische Kurve zu einer Faser von fisomorph ist.
- 3. Auf der Fermat-Kubik $V(x^3+y^3+z^3+w^3)\subset \mathbb{P}^3$ finde explizit 12 Geraden $L_1, \ldots, L_6, L'_1, \ldots, L'_6 \text{ mit}$
 - (i) $\forall i \neq j$: $L_i \cap L_j = \emptyset$, $L'_i \cap L'_j = \emptyset$, $L_i \cap L'_j \neq \emptyset$. (ii) $\forall i$: $L_i \cap L'_i = \emptyset$.

(Eine interaktive elementargeometrische Interpretation solcher Konfigurationen als Paare von Geraden auf den 6 Seiten eines Quaders findet sich auf http://enriques.mathematik.uni-mainz.de/csh/mathback/doublesix.html.)

- 4.* Sei $X\subset \mathbb{P}^3$ die Fermat-Kubik aus Aufgabe 3. Seien $L_1,L_2\subset X$ zwei disjunkte projektive Geraden.
 - (a) Zu $z \in X \setminus L_1$ sei $E_1(z) \subset \mathbb{P}^3$ die projektive Ebene, die z und L_1 enthält. Bestimme in homogenen Koordinaten die holomorphe Abbildung

$$\phi_1: X \longrightarrow L_2 \simeq \mathbb{P}^1$$
,

die $z \in X \setminus L_1$ auf den eindeutigen Schnittpunkt von $E_1(z)$ mit L_2 abbildet. Analog sei ϕ_2 definiert.

(b) Zeige, dass die Abbildung

$$\Phi = (\phi_2, \phi_1) : X \setminus (L_1 \cup L_2) \longrightarrow L_1 \times L_2 = \mathbb{P}^1 \times \mathbb{P}^1$$

genau 5 Geraden kontrahiert.