Prof. Dr. Bernd Siebert

Complex Geometry WS 16/17

Exercises 8

1. Let $\varphi : \mathcal{F} \to \mathcal{G}$ be a morphism of abelian sheaves on the topological space X. Show:

- (a) For any $p \in X$ it holds $(\ker \varphi)_p = \ker \varphi_p$.
- (b) For any $p \in X$ it holds $(\operatorname{im} \varphi)_p = \operatorname{im} \varphi_p$.

2. For a presheaf \mathcal{F} on a topological space X define its *étale space* in the following way. As a set

$$\acute{\mathrm{Et}}(\mathcal{F}) = \coprod_{p \in X} \mathcal{F}_p.$$

Any section $s \in \mathcal{F}(U)$ with $U \subset X$ open defines a map

$$\sigma_s: U \longrightarrow \acute{\mathrm{Et}}(\mathcal{F}), \quad p \longmapsto s_p.$$

Endow $\operatorname{\acute{Et}}(\mathcal{F})$ with the following topology: $V \subset \operatorname{\acute{Et}}(\mathcal{F})$ is open iff for any $U \subset X$ open and $s \in \mathcal{F}(U)$, the preimage $\sigma_s^{-1}(V) \subset U$ is open. Denote by

$$\pi : \operatorname{\acute{Et}}(\mathcal{F}) \to X$$

the projection map sending \mathcal{F}_p to p.

- (a) Show that π is continuous and that the sheaf of continuous sections of $\pi : \text{Ét}(\mathcal{F}) \to X$ is canonically isomorphic to the sheaf \mathcal{F}^+ associated to the presheaf \mathcal{F} .
- (b) If X is a complex manifold then the étale space of \mathcal{O}_X is Hausdorff, while the étale space of the sheaf \mathcal{C}^0 of continuous functions is not unless dim X = 0.
- (c) Let A be an abelian group. A sheaf \mathcal{F} on a topological space X is called a *local system with fibres* A if it is locally isomorphic to the constant sheaf with fibres A. Show that for a local system, $\pi : \text{Ét}(\mathcal{F}) \to X$ is a topological covering map.