Prof. Dr. Bernd Siebert

Complex Geometry WS 16/17

Exercises 10

1. Let L be the tautological line bundle on \mathbb{P}^1 with fibre through a point $[z_0, z_1] \in \mathbb{P}^1$ the line $\mathbb{C} \cdot (z_0, z_1)$. For a projective line $G \subset \mathbb{P}^n$, $n \ge 1$, describe $T_{\mathbb{P}^n}|_G$ by a cocycle and then show det $(T_{\mathbb{P}^n}|_G)^* \simeq L^{\otimes (n+1)}$.

2. Let \mathcal{L} be the sheaf of holomorphic sections of the tautological line bundle L on \mathbb{P}^1 (see Ex.10.1). Show that \mathcal{L} is isomorphic to the ideal sheaf \mathcal{I} of a point $p \in \mathbb{P}^1$, say of p = [0, 1].

3. Let L be the tautological line bundle on \mathbb{P}^n and $S_0 \subset L$ the image of the zero section. Define a holomorphic map

$$\pi: L \to \mathbb{C}^{n+1}$$

with $\pi(S_0) = 0$ and such that π restricts to an isomorphism $L \setminus S_0 \to \mathbb{C}^{n+1} \setminus \{0\}$. (Hint: π is isomorphic to the *blowing up* of \mathbb{C}^{n+1} at the point 0.)

4. Show that the holomorphic tangent bundle T_X of a complex torus $X = \mathbb{C}^n / \Lambda$ is trivial.

5. Let L be a holomorphic line bundle on a compact connected complex manifold X. Show that L is trivial if and only if L and L^* admit non-trivial global sections. (Hint: Use the sections to construct a non-trivial section of $L \otimes L^* \simeq \mathcal{O}_X$).