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Introduction

This text is an expanded version of the lectures delivered by the authors at the CIME
summer school ”Symplectic 4-manifolds and algebraic surfaces”, Cetraro (Italy),
September 2–10, 2003. The aim of these lectures were mostly to introduce graduate
students to pseudo-holomorphic techniques for the study of the problem of isotopy
of symplectic submanifolds in dimension four. We tried to keep the style of the
lectures by emphasizing the basic reasons for the correctness of a result rather than
by providing full details.

Essentially none of the content claims any originality, but most of the results are
scattered in the literature in sometimes hard-to-read locations. For example, we
give a hands-on proof of the smooth parametrization of the space of holomorphic
cycles on a complex surface under some positivity assumption. This is usually
derived by the big machinery of deformation theory together with Banach-analytic
methods. For an uninitiated person it is hard not only to follow the formal arguments
needed to deduce the result from places in the literature, but also, and maybe
more importantly, to understand why it is true. While our treatment here has
the disadvantage to consider only a particular situation that does not even quite
suffice for the proof of the Main Theorem (Theorem 8.1) we hope that it is useful
for enhancing the understanding of this result outside the community of hardcore
complex analysts and abstract algebraic geometers.

One lecture was devoted to the beautiful theorem of Micallef and White on the
holomorphic nature of pseudo-holomorphic curve singularities. The original paper is
quite well written and this might be the reason that a proof of this theorem has not
appeared anywhere else until very recently, in the excellent monograph [McSa3]. It
devotes an appendix of 40 pages length to a careful derivation of this theorem and
of most of the necessary analytical tools. Following the general principle of these
lecture notes our purpose here is not to give a complete and necessarily technical
proof, but to condense the original proof to the essentials. We tried to achieve
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this goal by specializing to the paradigmical case of tacnodal singularities with a
“half-integrable” complex structure.

Another section treats the compactness theorem for pseudo-holomorphic curves.
A special feature of the presented proof is that it works for sequences of almost
complex structures only converging in the C 0-topology. This is essential in the
application to the symplectic isotopy problem.

We also give a self-contained presentation of Shevchishin’s study of moduli spaces
of equisingular pseudo-holomorphic maps and of second variations of pseudo-holo-
morphic curves. Here we provide streamlined proofs of the two results from [Sh] that
we use by only computing the second variation in the directions actually needed for
our purposes.

The last section discusses the proof of the main theorem, which is also the main
result from [SiTi3]. The logic of this proof is a bit involved, involving several reduc-
tion steps and two inductions, and we are not sure if the current presentation really
helps in understanding what is going on. Maybe somebody else has to take this up
again and add new ideas into streamlining this bit!

Finally there is one section on the application to symplectic Lefschetz fibrations.
This makes the link to the other lectures of the summer school, notably to those by
Auroux and Smith.

1. Pseudo-holomorphic curves

1.1. Almost complex and symplectic geometry. An almost complex structure
on a manifold M is a bundle endomorphism J : TM → TM with square − idTM

. In
other words, J makes TM into a complex vector bundle and we have the canonical
decomposition

TM ⊗R C = T 1,0
M ⊕ T 0,1

M = TM ⊕ TM

into real and imaginary parts. The second equality is an isomorphism of complex
vector bundles and TM is just another copy of TM with complex structure −J . For
switching between complex and real notation it is important to write down the latter
identifications explicitly:

TM −→ T 1,0
M , X 7−→ 1

2

(

X − iJX
)

,

and similarly with X+iJX for T 0,1
M . Standard examples are complex manifolds with

J(∂xµ) = ∂yµ , J(∂yµ) = −∂xµ for holomorphic coordinates zµ = xµ + iyµ. Then the

above isomorphism sends ∂xµ , ∂yµ ∈ TM to ∂zµ , i∂zµ ∈ T 1,0
M and to ∂z̄µ , i∂z̄µ ∈ T 0,1

M
respectively. Such integrable almost complex structures are characterized by the
vanishing of the Nijenhuis tensor, a (2, 1)-tensor depending only on J . In dimension
two an almost complex structure is nothing but a conformal structure and hence it
is integrable by classical theory. In higher dimensions there are manifolds having
almost complex structures but no integrable ones. For example, any symplectic
manifold (M,ω) possesses an almost complex structure, as we will see instantly, but
there are symplectic manifolds not even homotopy equivalent to a complex manifold,
see e.g. [OzSt].

The link between symplectic and almost complex geometry is by the notion of
tameness. An almost complex structure J is tamed by a symplectic form ω if
ω(X,JY ) > 0 for any X,Y ∈ TM \ {0}. The space J ω of ω-tamed almost complex
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structures is contractible. In fact, one first proves this for the space of compatible al-
most complex structures, which have the additional property ω(JX, JY ) = ω(X,Y )
for all X,Y . These are in one-to-one correspondence with Riemannian metrics g via
g(X,Y ) = ω(X,JY ), and hence form a contractible space. In particular, a com-
patible almost complex structure J0 in (M,ω) exists. Then the generalized Cayley
transform

J 7−→ (J + J0)
−1 ◦ (J − J0)

produces a diffeomorphism of J ω with the space of J0-antilinear endomorphisms A
of TM with ‖A‖ < 1 (this is the mapping norm for g0 = ω( . , J0 . )).

A differentiable map ϕ : N → M between almost complex manifolds is pseudo-
holomorphic if Dϕ is complex linear as map between complex vector bundles. If ϕ is
an embedding this leads to the notion of pseudo-holomorphic submanifold ϕ(N) ⊂
M . If the complex structures are integrable then pseudo-holomorphicity specializes
to holomorphicity. However, there are many more cases:

Proposition 1.1. For any symplectic submanifold Z ⊂ (M,ω) the space of J ∈
J ω(M) making Z into a pseudo-holomorphic submanifold is contractible.

The proof uses the same arguments as for the contractibility of J ω outlined
above. Another case of interest for us is the following, which can be proved by
direct computation.

Proposition 1.2. [SiTi3, Proposition 1.2] Let (M,ω) be a closed symplectic 4-
manifold and p : M → B a smooth fiber bundle with all fibers symplectic. Then
for any symplectic form ωB on B and any almost complex structure J on M making
the fibers of p pseudo-holomorphic, ωk := ω + k p∗(ωB) tames J for k ≫ 0.

The Cauchy-Riemann equation is over-determined in dimensions greater than
two and hence the study of pseudo-holomorphic maps ϕ : N → M promises to be
most interesting for dimN = 2. Then N is a (not necessarily connected) Riemann
surface, that we write Σ with almost complex structure j understood. The image
of ϕ is then called pseudo-holomorphic curve, or J-holomorphic curve if one wants
to explicitly refer to an almost complex structure J on M . A pseudo-holomorphic
curve is irreducible if Σ is connected, otherwise reducible. If ϕ does not factor non-
trivially over a holomorphic map to another Riemann surface we call ϕ reduced or
non-multiply covered, otherwise non-reduced or multiply covered.

1.2. Basic properties of pseudo-holomorphic curves. Pseudo-holomorphic
curves have a lot in common with holomorphic curves:

1) Regularity. If ϕ : Σ → (M,J) is of Sobolev class W 1,p, p > 2 (one weak derivative
in Lp) and satisfies the Cauchy-Riemann equation 1

2(Dϕ + J ◦Dϕ ◦ j) = 0 weakly,
then ϕ is smooth (C ∞; we assume J smooth). Note that by the Sobolev embedding
theorem W 1,p(Σ,M) ⊂ C0(Σ, N), so it suffices to work in charts.

2) Critical points. The set of critical points crit(ϕ) ⊂ Σ of a pseudo-holomorphic
map ϕ : Σ →M is discrete.

3) Intersections and identity theorem. Two different irreducible pseudo-holomorphic
curves intersect discretely and, if dimM = 4, with positive, finite intersection in-
dices.

4) Local holomorphicity. Let C ⊂ (M,J) be a pseudo-holomorphic curve with finitely
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many irreducible components and P ∈ C. Then there exists a neighborhood U ⊂M
of P and a C1-diffeomorphism Φ : U → Φ(U) ⊂ Cn such that Φ(C) is a holomorphic
curve near Φ(P ).

This is the content of the theorem of Micallef and White that we discuss in detail
in Section 3. Note that this implies (2) and (3).

5) Removable singularities. Let ∆∗ ⊂ C denote the pointed unit disk and ϕ : ∆∗ →
(M,J) a pseudo-holomorphic map. Assume that ϕ has bounded energy, that is
∫

∆∗ |Dϕ|2 < ∞ for any complete Riemannian metric on M . Then ϕ extends to a
pseudo-holomorphic map ∆ →M .

If ω tames the almost complex structure the energy can be bounded by the sym-
plectic area:

∫

∆∗ |Dϕ|2 < c·
∫

Σ ϕ
∗ω. Note that

∫

Σ ϕ
∗ω is a topological entity provided

Σ is closed.

6) Local existence. For any X ∈ TM of sufficiently small length there exists a
pseudo-holomorphic map ϕ : ∆ → M with Dϕ|0(∂t) = X. Here t is the standard
holomorphic coordinate on the unit disk.

The construction is by application of the implicit function theorem to appropriate
perturbations of the exponential map. Therefore it also works in families. In partic-
ular, any almost complex manifold can locally be fibered into pseudo-holomorphic
disks. In dimension 4 this implies the local existence of complex (-valued) coordi-
nates z,w such that z = const is a pseudo-holomorphic disk with w restricting to a
holomorphic coordinate. There exist then complex functions a, b with

T 0,1
M = C · (∂z̄ + a∂z + b∂w) + C · ∂w̄.

Conversely, any choices of a, b lead to an almost complex structure with z,w having
the same properties. This provides a convenient way to work with almost complex
structures respecting a given fibration of M by pseudo-holomorphic curves.

1.3. Moduli spaces. The real use of pseudo-holomorphic curves in symplectic ge-
ometry comes from looking at whole spaces of them rather than single elements.
There are various methods to set up the analysis to deal with such spaces. Here
we follow the treatment of [Sh], to which we refer for details. Let Tg be the Te-
ichmüller space of complex structures on a closed oriented surface Σ of genus g. The
advantage of working with Tg rather than with the Riemann moduli space is that
Tg parametrizes an actual family of complex structures on a fixed closed surface Σ.
Let G be the holomorphic automorphism group of the identity component of any
j ∈ Tg, that is G = PGL(2,C) for g = 0, G = U(1) × U(1) for g = 1 and G = 0

for g ≥ 2. Then Tg is an open ball in C3g−3+dimC G, and it parametrizes a family of
G-invariant complex structures. Let J be the Banach manifold of almost complex
structures on M , of class C l for some integer l > 2 fixed once and for all. The
particular choice is insignificant. The total moduli space M of pseudo-holomorphic
maps Σ →M is then a quotient of a subset of the Banach manifold

B := Tg ×W 1,p(Σ,M) × J .

The local shape of this Banach manifold is exhibited by its tangent spaces

TB,(j,ϕ,J) = H1(TΣ) ×W 1,p(ϕ∗TM ) × C l(EndTM ).
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Here H1(TΣ) is the cohomology with values in TΣ, viewed as holomorphic line bundle
over Σ. In more classical notation H1(TΣ) may be replaced by the space of holomor-
phic quadratic differentials. In any case, the tangent space to Tg is also a subspace
of C∞(End(TΣ)) via variations of j and this is how we are going to represent its
elements. To describe M consider the Banach bundle E over B with fibers

E(j,ϕ,J) = Lp(Σ, ϕ∗(TM , J) ⊗C Λ0,1),

where Λ0,1 is our shorthand notation for (T 0,1
Σ )∗ and where we wrote (TM , J) to

emphasize that TM is viewed as a complex vector bundle via J . Consider the section
s : B → E defined by the condition of complex linearity of Dϕ:

s(j, ϕ, J) = Dϕ+ J ◦Dϕ ◦ j.
Thus s(j, ϕ, J) = 0 iff ϕ : (Σ, j) → (M,J) is pseudo-holomorphic. We call the
operator defined by the right-hand side the nonlinear ∂̄-operator. If M = Cn with
its standard complex structure this is just twice the usual ∂̄-operator applied to
the components of ϕ. Define M̂ as the zero locus of s minus those (j, ϕ, J) defin-
ing a multiply covered pseudo-holomorphic map. In other words, we consider only
generically injective ϕ. This restriction is crucial for transversality to work, see
Lemma 1.4. There is an obvious action of G on B by composing ϕ with biholomor-

phisms of (Σ, j). The moduli space of our interest is the quotient M := M̂ /G of

the induced action on M̂ ⊂ B.

Proposition 1.3. M̂ ⊂ B is a submanifold and G acts properly and freely.

Sketch of proof. A torsion-free connection ∇ on M induces connections on ϕ∗TM
(also denoted ∇) and on E (denoted ∇E ). For (j′, v, J ′) ∈ T(j,ϕ,J) and w ∈ TΣ a
straightforward computation gives, in real notation
(

∇E
(j′,v,J ′)s

)

w = ∇wv + J ◦ ∇j(w)v + ∇vJ ◦Dj(w)ϕ+ J ′ ◦Dj(w)ϕ+ J ◦Dj′(w)ϕ.

Replacing w by j(w) changes signs, so ∇E
(j′,v,J ′)s lies in Lp(ϕ∗TM ⊗C Λ0,1) = E(j,ϕ,J)

as it should. The last two terms treat the variations of J and j respectively. The
first three terms compute the derivative of s for fixed almost complex structures.
They combine to a first order differential operator on ϕ∗TM denoted by

Dϕ,Jv = ∇v + J ◦ ∇j(.)v + ∇vJ ◦Dj(.)ϕ.

This operator is not generally J-linear, but has the form

Dϕ,J = 2∂̄ϕ,J +R,

with a J-linear differential operator ∂̄ϕ,J of type (0, 1) and with the J-antilinear part
R of order 0. (With our choices R = NJ( . ,Dϕ ◦ j) for NJ the Nijenhuis tensor of
J .) Then ∂̄ϕ,J defines a holomorphic structure on ϕ∗TM , and this ultimately is the
source of the holomorphic nature of pseudo-holomorphic maps. It is then standard
to deduce that Dϕ,J is Fredholm as map from W 1,p(ϕ∗TM ) to Lp(ϕ∗TM ⊗Λ0,1). To
finish the proof apply the implicit function theorem taking into account the following
Lemma 1.4, whose proof is an exercise.

The statements on the action of G are elementary to verify. �

Lemma 1.4. If ϕ : Σ →M is injective over an open set in Σ, then cokerDϕ,J can

be spanned by terms of the form J ′ ◦Dϕ ◦ j for J ′ ∈ TJJ = C l(End(TM )). �
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The proof of the proposition together with the Riemann-Roch count (index the-
orem) for the holomorphic vector bundle (ϕ∗TM , ∂̄ϕ,J) give the following.

Corollary 1.5. The projection π : M̂ → Tg × J is Fredholm of index

ind(Dϕ,J) = ind(∂̄ϕ,J) = 2 (degϕ∗TM + dimCM · (1 − g))

= 2 (c1(M) · ϕ∗[Σ] + dimCM · (1 − g))

�

A few words of caution are in order. First, for g = 0, 1 the action of G on B
is not differentiable, although it acts by differentiable transformations. The reason
is that differentiating along a family of biholomorphisms costs one derivative and
hence leads out of any space of finite differentiability. A related issue is that the
differentiable structure on B depends on the choice of map from Tg to the space of
complex structures on Σ. Because of elliptic regularity all of these issues disappear

after restriction to M̂ , so we may safely take the quotient by G there. One should
also be aware that there is still the mapping class group of Σ acting on M . Only
the quotient is the set of isomorphism classes of pseudo-holomorphic curves on M .
However, this quotient does not support a universal family of curves anymore, at
least not in the an̈ıve sense. As our interest in M is for Sard-type results it is
technically simpler to work with M rather than with this discrete quotient.

Moreover, for simplicity we henceforth essentially ignore the action of G. This
merely means that we drop some correction terms in the dimension counts for g =
0, 1.

Remark 1.6. 1) The derivative of a section of a vector bundle E over a manifold
B does not depend on the choice of a connection after restriction to the zero locus.
In fact, if v ∈ Ep lies on the zero locus, then TE ,v = TM,p ⊕ Ep canonically, and this
decomposition is the same as induced by any connection. Thus Formula (1.1) has

intrinsic meaning along M̂ . In particular, Ds defines a section of Hom(TB ,E )|M̂
that we need later on.

2) The projection π : M̂ → Tg × J need not be proper — sequences of pseudo-
holomorphic maps can have reducible or lower genus limits. Here are two typical
examples in the integrable situation.

(a) A family of plane quadrics degenerating to two lines.
Let Σ = CP1, M = CP2 and ϕε([t, u]) = [εt2, tu, εu2]. Then im(ϕε) is the
zero locus V (xz − ε2y2) = {[x, y, z] ∈ CP2 |xz − ε2y2 = 0}. For ε → 0 the
image Hausdorff converges to the union of two lines xz = 0. Hence ϕε can
not converge in any sense to a pseudo-holomorphic map Σ →M .

(b) A drop of genus by occurrence of cusps.
For ε 6= 0 the cubic curve V (x2z− y3 − εz3) ⊂ CP2 is a smooth holomorphic
curve of genus 1, hence the image of a holomorphic map ϕε from Σ = S1×S1.
For ε→ 0 the image of ϕε converges to the cuspidal cubic V (x2z−y3), which
is the bijective image of

CP1 → CP2, [t, u] → [t3, t2u, u3].

The Gromov compactness theorem explains the nature of this non-compactness pre-
cisely. In its modern form it states the compactness of a Hausdorff enlargement of the
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space of isomorphism classes of pseudo-holomorphic curves over any compact subset
of the space of almost complex structures J . The elements of the enlargement are
so-called stable maps, which are maps with domains nodal Riemann surfaces. For a
detailed discussion see Section 6.

1.4. Applications.

1.4.1. Ruled surfaces. In complex geometry a ruled surface is a holomorphic CP1-
bundle. They are all Kähler. A ruled surface is rational (birational to CP2) iff the
base of the fibration is CP1. A symplectic analogue are S2-bundles with a symplectic
structure making all fibers symplectic. The fibers are then symplectic spheres with
self-intersection 0. Conversely, a result of McDuff says that a symplectic manifold
with a symplectic sphere C ⊂ M with C · C ≥ 0 is either CP2 with the standard
structure (and C is a line or a conic) or a symplectic ruled surface (and C is a fiber
or, in the rational case, a positive section), up to symplectic blowing-up [MD]. The
proof employs pseudo-holomorphic techniques similar to what follows.

Now let p : (M4, I) → (S2, i) be a holomorphic rational ruled surface. In the
notation we indicated the complex structures by I and i. Let ω be a Kähler form on
M and J ω the space of ω-tamed almost complex structures. The following result
was used in [SiTi3] to reduce the isotopy problem to a fibered situation.

Proposition 1.7. For any J ∈ J ω, M arises as total space of an S2-bundle
p′ : M → S2 with all fibers J-holomorphic. Moreover, p′ is homotopic to p through
a homotopy of S2-bundles.

Sketch of proof. By connectedness of J ω there exists a path (Jt)t∈[0,1] connecting
I = J0 with J = J1. By a standard Sard-type argument

M(Jt) := [0, 1] ×J M = {(t, j, ϕ, J) ∈ [0, 1] × M |J = Jt}
is a manifold for an appropriate (“general”) choice of (Jt). Let MF,Jt ⊂ M(Jt) be
the subset of Jt-holomorphic curves homologous to a fiber F ⊂ M of p. The exact
sequence of complex vector bundles over the domain Σ = S2 of such a Jt-holomorphic
curve (see §2.2)

0 −→ TΣ −→ TM |Σ −→ NΣ|M −→ 0

gives c1(M) · [F ] = c1(TΣ) · [Σ] + F · F = 2. Then the dimension formula from
Corollary 1.5 shows

dimC MF,(Jt) = c1(M) · [F ] + dimCM · (1 − g) − dimG = 2 + 2 − 3 = 1.

Moreover, MF,Jt is compact by the Gromov compactness theorem since [F ] is a
primitive class in {A ∈ H2(M,Z) |

∫

[A] ω > 0}. In fact, by primitivity any pseudo-

holomorphic curve C representing [F ] has to be irreducible. Moreover, the genus
formula (Proposition 2.2 below) implies that any irreducible pseudo-holomorphic
curve representing [F ] has to be an embedded sphere. We will see in Proposition 2.4
that then the deformation theory of any C ∈ MF,Jt is unobstructed.

Next, the positivity of intersection indices of pseudo-holomorphic curves implies
that any two curves in MF,Jt are either disjoint or equal. Together with unobstruct-
edness we find that through any point P ∈ M passes exactly one Jt-holomorphic
curve homologous to F . Define

pt : M → MF,Jt, P 7−→ C, C the curve passing through P .



SYMPLECTIC ISOTOPY 9

Since MF,J0 ≃ S2 via C ↔ p−1(x) we may identify p0 = p. A computation on
the map of tangent spaces shows that pt is a submersion for any t. Finally, for
homological reasons MF,Jt ≃ S2 for any t. The proof is finished by setting p′ =
p1. �

1.4.2. Isotopy of symplectic surfaces. The main topic of these lectures is the isotopy
classification of symplectic surfaces. We are now ready to explain the relevance of
pseudo-holomorphic techniques for this question. Let (M4, I, ω) be a Kähler surface.
We wish to ask the following question.

If B ⊂M is a symplectic surface then is B isotopic to a holomorphic curve?

By isotopy we mean connected by a path inside the space of smooth symplectic
submanifolds. In cases of interest the space of smooth holomorphic curves repre-
senting [B] ∈ H2(M,Z) is connected. Hence a positive answer to our question shows
uniqueness of symplectic submanifolds homologous to B up to isotopy.

The use of pseudo-holomorphic techniques is straightforward. By the discus-
sion in Subsection 1.2 there exists a tamed almost complex structure J making B
a pseudo-holomorphic curve. As in 1.4.1 choose a generic path (Jt)t∈[0,1] in J ω

connecting J with the integrable complex structure I. Now try to deform B as
pseudo-holomorphic curve together with J . In other words, we want to find a family
(Bt)t∈[0,1] of submanifolds with Bt pseudo-holomorphic for Jt and with B0 = B.

There are two obstructions to carrying this through. Let MB,(Jt) be the moduli
space of pseudo-holomorphic submanifolds C ⊂ M homologous to B and pseudo-
holomorphic for some Jt. The first problem arises from the fact that the projection
MB,(Jt) → [0, 1] may have critical points. Thus if (Bt)t∈[0,t0] is a deformation of
B with the requested properties over the interval [0, t0] with t0 a critical point, it
might occur that Bt0 does not deform to a Jt-holomorphic curve for any t > t0.
We will see in Section 2 that this phenomenon does indeed not occur under certain
positivity conditions on M . The second reason is non-properness of the projection
MB,(Jt) → [0, 1]. It might happen that a family (Bt) exists on [0, t0), but does not
extend to t0. In view of the Gromov compactness theorem a different way to say
this is to view MB,(Jt) as an open subset of a larger moduli space M̃B,(Jt) of pseudo-
holomorphic cycles. Then the question is if the closed subset of singular cycles does
locally disconnect M̃B,(Jt) or not. Thus for this second question one has to study
deformations of singular pseudo-holomorphic cycles.

1.4.3. Pseudo-holomorphic spheres with prescribed singularities. Another variant of
the above technique allows the construction of pseudo-holomorphic spheres with
prescribed singularities. The following is from [SiTi3], Proposition 7.1.

Proposition 1.8. Let p : (M, I) → CP1 be a rational ruled surface and

ϕ : ∆ −→M

an injective holomorphic map. Let J be an almost complex structure on M making
p pseudo-holomorphic and agreeing with I in a neighborhood of ϕ(0).

Then for any k > 0 there exists a J-holomorphic sphere

ψk : CP1 −→M

approximating ϕ to k-th order at 0:

dM (ϕ(τ), ψk(τ)) = o(|τ |k).
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Here dM is the distance function for any Riemannian metric on M . This result
says that any plane holomorphic curve singularity arises as the singularity of a J-
holomorphic sphere, for J with the stated properties. The proof relies heavily on the
fact that M is a rational ruled surface. Note that the existence of a J-holomorphic
sphere not homologous to a fiber excludes ruled surfaces over a base of higher genus.

Sketch of proof. It is not hard to see that J can be connected to I by a path of
almost complex structures with the same properties as J . Therefore the idea is again
to start with a holomorphic solution to the problem and then to deform the almost
complex structure. Excluding the trivial case p ◦ ϕ = const write

ϕ(τ) = (τm, h(τ))

in holomorphic coordinates on M \ (F ∪ H) ≃ C2, F a fiber and H a positive
holomorphic section of p (H · H ≥ 0). Then h is a holomorphic function. Now
consider the space of pseudo-holomorphic maps CP1 →M of the form

τ 7−→
(

τm, h(τ) + o(|τ |l)
)

.

For appropriate l the moduli space of such maps has expected dimension 0. Then
for a generic path (Jt)t∈[0,1] of almost complex structures the union of such moduli
spaces over this path is a differentiable one-dimensional manifold q : Mϕ,(Jt) → [0, 1]
without critical points over t = 0, 1. By a straightforward dimension estimate the
corresponding moduli spaces of reducible pseudo-holomorphic curves occurring in
the Gromov compactness theorem are empty. Hence the projection q : Mϕ,(Jt) →
[0, 1] is proper. Thus Mϕ,(Jt) is a compact one-dimensional manifold with boundary
and all boundary points lie over {0, 1} ⊂ [0, 1]. The closed components of Mϕ,(Jt)

do not contribute to the moduli spaces for t = 0, 1. The other components have two
ends each, and they either map to the same boundary point of [0, 1] or to different
ones. In any case the parity of the cardinality of q−1(0) and of q−1(1) are the same,
as illustrated in the following figure.

t = 0 t = 1

Figure 1.1: A one-dimensional cobordism

Finally, an explicit computation shows that in the integrable situation the moduli
space has exactly one element. Therefore q−1(1) can not be empty either. An
element of this moduli space provides the desired J-holomorphic approximation of
ϕ. �

1.5. Pseudo-analytic inequalities. In this section we lay the foundations for the
study of critical points of pseudo-holomorphic maps. As this is a local question we
take as domain the unit disk, ϕ : ∆ → (M,J). The main point of this study is that
any singularity bears a certain kind of holomorphicity in itself, and the amount of
holomorphicity indeed increases with the complexity of the singularity. The reason
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for this to happen comes from the following series of results on differential inequalities
for the ∂̄-operator. For simplicity of proof we formulate these only for functions with
values in R rather than Rn as needed and then comment on how to generalize to
larger n.

Lemma 1.9. Let f ∈W 1,2(∆) fulfill |∂z̄f | ≤ φ·|f | almost everywhere for φ ∈ Lp(∆),
p > 2. Then either f = 0 or there exist a uniquely determined integer µ and
g ∈W 1,p(∆), g(0) 6= 0 with

f(z) = zµ · g(z) almost everywhere.

Proof. A standard elliptic bootstrapping argument shows f ∈ W 1,p(∆), see for ex-
ample [IvSh1], Lemma 3.1.1,i. This step requires p > 2. Next comes a trick attrib-

uted to Carleman to reduce to the holomorphic situation: By hypothesis
∣

∣

∣

∂z̄f
f

∣

∣

∣
≤ φ.

We will recall in Proposition 2.1 below that ∂z̄ : W 1,p(∆) → Lp(∆) is surjective.

Hence there exists ψ ∈W 1,p(∆) solving ∂z̄ψ = ∂z̄f
f . Then

∂z̄(e
−ψf) = e−ψ(−∂z̄ψ)f + e−ψ∂z̄f = 0

shows that e−ψf is a holomorphic function (Carleman similarity principle). Now
complex function theory tells us that e−ψf = zµ·h for h ∈ O(∆)∩W 1,p(∆), h(0) 6= 0.
Putting g = eψ · h gives the required representation of f . �

Remark 1.10. 1) As for an intrinsic interpretation of µ note that it is the intersection
multiplicity of the graph of h with the graph of the zero function inside ∆×C at point
(0, 0). Multiplication by eψ induces a homeomorphism of ∆×C and transforms the
graph of h into the graph of f . Hence µ is a topologically defined entity depending
only on f .

2) The Carleman trick replaces the use of a general removable singularities theorem
for solutions of differential inequalities due to Harvey and Polking that was employed
in [IvSh1], Lemma 3.1.1. Unlike the Carleman trick this method generalizes to maps
f : ∆ → Cn with n > 1. Another possibility that works also n > 1 is to use the
Hartman-Wintner theorem on the polynomial behavior of solutions of certain partial
differential equations in two variables, see e.g. [McSa3]. A third approach appeared
in the printed version [IvSh2] of [IvSh1]; here the authors noticed that one can
deduce a Carleman similarity principle also for maps f : ∆ → Cn by viewing f as
a holomorphic section of ∆ × Cn, viewed as holomorphic vector bundle with non-
standard ∂̄-operator. This is arguably the easiest method to deduce the result for
all n. �

A similar looking lemma of quite different flavor deduces holomorphicity up to
some order from a polynomial estimate on |∂z̄f |. Again we took this from [IvSh1],
but the proof given there makes unnecessary use of Lemma 1.9.

Lemma 1.11. Let f ∈ L2(∆) fulfill |∂z̄f | ≤ φ · |z|ν almost everywhere for some
φ ∈ Lp(∆), p > 2 and ν ∈ N. Then either f = 0 or there exists P ∈ C[z], degP ≤ ν
and g ∈W 1,p(∆), g(0) = 0 with

f(z) = P (z) + zν · g(z) almost everywhere.

Proof. By induction over ν, the case ν = 0 being trivial. Assume the case ν − 1 is
true. Elliptic regularity gives f ∈ W 1,p(∆). By the Sobolev embedding theorem f
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is Hölder continuous of exponent α = 1− 2
p ∈ (0, 1). Hence f1 =

f − f(0)

z
is L2 and

|∂z̄f1| =

∣

∣

∣

∣

∂z̄f

z

∣

∣

∣

∣

≤ φ · |z|ν−1.

Therefore induction applies to f1 and we see f1 = P1 +zν−1 ·g with g of the required
form. Plugging in the definition of f1 gives f = (f(0)+zP1)+z

ν ·g, so P = f(0)+zP1

is the correct definition of P .

Remark 1.12. The lemma generalizes in a straightforward manner to maps f : ∆ →
Cn. In this situation the line C · P (0) has a geometric interpretation as complex
tangent line of im(f) in f(0), which by definition is the limit of lines C·(f(z)−f(0)) ∈
CPn−1 for z 6= 0, z → 0. �

Combining the two lemmas gives the following useful result, which again gener-
alizes to maps f : ∆ → Cn.

Proposition 1.13. Let f ∈ L2(∆) fulfill |∂z̄f | ≤ φ|z|ν |f | almost everywhere for
φ ∈ Lp(∆), p > 2 and ν ∈ N. Then either f = 0 or there exist uniquely determined
µ, ν ∈ N and P ∈ C[z], degP ≤ ν, P (0) 6= 0, g ∈W 1,p(∆), g(0) = 0 with

f(z) = zµ
(

P (z) + zν · g(z)
)

almost everywhere.

Proof. Lemma 1.9 gives f = zµg. Now by hypothesis g also fulfills the stated
estimate:

|∂z̄g| =

∣

∣

∣

∣

∂z̄f

zµ

∣

∣

∣

∣

≤ φ|z|ν
∣

∣

∣

∣

f

zµ

∣

∣

∣

∣

= φ|zν | · |g|.

Thus replacing f by g reduces to the case f(0) 6= 0 and µ = 0. The result then
follows by Lemma 1.11 applied to f with φ replaced by φ · |f |. �

2. Unobstructedness I: Smooth and nodal curves

2.1. Preliminaries on the ∂̄-equation. The crucial tool to study the ∂̄-equation
analytically is the inhomogeneous Cauchy integral formula. It says

f = Hf + T (∂z̄f)(2.1)

for all f ∈ C 1(∆) with integral operators

Hf(z) =
1

2πi

∫

∂∆

f(w)

w − z
dw , Tg(z) =

1

2πi

∫

∆

g(w)

w − z
dw ∧ dw̄ .

(All functions in this section are C-valued.) The first operator H maps continuous
functions defined on S1 = ∂∆ to holomorphic functions on ∆. Continuity of Hf
along the boundary is not generally true if f is just continuous. To understand this
note that any f ∈ C 0(S1) can be written as a Fourier series

∑

n∈Z
anz

n and then
Hf =

∑

n∈N
anz

n is the projection to the space of functions spanned by non-negative
Fourier modes. This function need not be continuous.

The integrand of the second integral operator T looks discontinuous, but in fact
it is not as one sees in polar coordinates with center w = z. For differentiability
properties one computes ∂z̄T = id from (2.1), while ∂zT = S with S the singular
integral operator

Sg(z) =
1

2πi
lim
ε→0

∫

∆\Bε(z)

g(w)

(w − z)2
dw ∧ dw̄ .
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The Calderon-Zygmund theorem says that S is a continuous map from Lp(∆) to
itself for 1 < p < ∞. Recall also that the Sobolev space W 1,p(∆) consists of Lp-
functions with weak partial derivatives in Lp too. For p > 2 it holds 1 − 2

p > 0,

so the Sobolev embedding theorem implies that any f ∈ W 1,p(∆) has a continuous
representative. Moreover, the map W 1,p(∆) → C0(∆) thus defined is continuous.
Thus (2.1) holds for f ∈ W 1,p(∆) for any p > 2. Summarizing the discussion, the
Cauchy integral formula induces the following remarkable direct sum decomposition
of W 1,p(∆).

Proposition 2.1. Let 2 < p <∞. Then (H, ∂̄) : W 1,p(∆) −→
(

O(∆)∩W 1,p(∆)
)

×
Lp(∆) is an isomorphism. In particular, for any g ∈ Lp(∆) there exists f ∈W 1,p(∆)
with ∂z̄f = g.

Thus any f ∈W 1,p(∆) can be written in the form h+T (∂z̄f) with h holomorphic
in ∆ and continuously extending to ∆ and T (∂z̄f)|∂∆ gathering all negative Fourier
coefficients of f |∆.

2.2. The normal ∂̄-operator. We have already described pseudo-holomorphic
maps by a non-linear PDE. One trivial variation of a pseudo-holomorphic map is
by reparametrization. It is sometimes useful to get rid of this part, especially if one
is interested in pseudo-holomorphic curves rather than pseudo-holomorphic maps.
This is achieved by the normal ∂̄-operator that we now introduce.

Recall that for a pseudo-holomorphic map ϕ : Σ → M the operator ∂̄ϕ,J from
(1.1) in §1.3 defines a natural holomorphic structure on ϕ∗TM compatible with the
holomorphic structure on TΣ. In fact, a straightforward computation shows

Dϕ ◦ ∂̄TΣ
= ∂̄ϕ,J ◦Dϕ.

If ϕ is an immersion we thus obtain a short exact sequence of holomorphic vector
bundles over Σ

0 −→ TΣ −→ ϕ∗(TM ) −→ N −→ 0.

This sequence defines the normal bundle N along ϕ. If ϕ has critical points it is
still possible to define a normal bundle as follows. For a complex vector bundle V
denote by O(V ) the sheaf of holomorphic sections of V . While at critical points
Dϕ : TΣ → ϕ∗TM is not injective the map of sheaves O(TΣ) → O(ϕ∗TM ) still is.
As an example consider ϕ(t) = (t2, t3) as map from ∆ to C2 with standard complex
structure. Then

Dϕ(∂t) = 2t ∂z + 3t2 ∂w,(2.2)

and as germ of holomorphic function the right-side is non-zero. Thus in any case we
obtain a short exact sequence of sheaves of OΣ-modules

0 −→ O(TΣ)
Dϕ−→ O(ϕ∗TM ) −→ N −→ 0.(2.3)

From the definition, N is just some coherent sheaf on Σ. But on a Riemann surface
any coherent sheaf splits uniquely into a skyscraper sheaf (discrete support) and the
sheaf of sections of a holomorphic vector bundle. Thus we may write

N = N tor ⊕O(N)

for some holomorphic vector bundle N . We call N the normal sheaf along ϕ and
N the normal bundle. The skyscraper sheaf N tor is the subsheaf of N generated
by sections that are annihilated by multiplication by some non-zero holomorphic
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function (“torsion sections”). In our example ϕ(t) = (t2, t3) the section v = 2 ∂z +
3t ∂w of ϕ∗TM is contained in the image of O(TΣ) for t 6= 0, but not at t = 0,
while tv = Dϕ(∂t). In fact, N tor is isomorphic to a copy of C over t = 0 generated
by the germ of v at 0. Then N is the holomorphic line bundle generated by any
a(t)∂z + b(t)∂w with b(0) 6= 0.

As a simple but very powerful application of the normal sequence (2.3) we record
the genus formula for pseudo-holomorphic curves in dimension four.

Proposition 2.2. Let (M,J) be an almost complex 4-manifold and C ⊂ M an
irreducible pseudo-holomorphic curve. Then

2g(C) − 2 ≤ c1(M) · C +C · C,
with equality if and only if C is smooth.

Proof. Let ϕ : Σ → M be the pseudo-holomorphic map with image C. Since
deg TΣ = 2g(C) − 2 the normal sequence (2.3) shows

2g(C) − 2 = degϕ∗TM + degN + lgN tor = c1(M) · C + degN + lgN tor.

Here lgN tor is the sum of the C-vector space dimensions of the stalks of N . This
term vanishes iff N = 0, that is, iff ϕ is an immersion. The degree of N equals C ·C
if C is smooth and drops by the self-intersection number of ϕ in the immersed case.
By the PDE description of the space of pseudo-holomorphic maps from a unit disk
to M , it is not hard to show that locally in Σ any pseudo-holomorphic map Σ →M
can be perturbed to a pseudo-holomorphic immersion. At the expense of changing
J away from the singularities of C slightly this statement globalizes. This process
does not change any of g(C), c1(M) · C and C · C. Hence the result for general C
follows from the immersed case. �

To get rid of N tor it is convenient to go over to meromorphic sections of TΣ with
poles of order at most ordP Dϕ in a critical point P of Dϕ. In fact, the sheaf
of such meromorphic sections is the sheaf of holomorphic sections of a line bundle
that we conveniently denote TΣ[A], where A is the divisor

∑

P∈crit(ϕ)(ordP Dϕ) · P .

Then TΣ[A] = kern(ϕ∗TM → N) and hence we obtain the short exact sequence of
holomorphic vector bundles

0 −→ TΣ[A]
Dϕ−→ ϕ∗TM −→ N −→ 0.

Thus by (2.2) together withR◦Dϕ = 0 the operatorDϕ,J = ∂̄ϕ,J+R : W 1,p(ϕ∗TM ) →
Lp(ϕ∗TM ⊗ Λ0,1) fits into the following commutative diagram with exact rows.

0 −−−−→ W 1,p(TΣ[A]) −−−−→ W 1,p(ϕ∗TM ) −−−−→ W 1,p(N) −−−−→ 0

∂̄TΣ





y





y
Dϕ,J





y
DN
ϕ,J

0 −−−−→ Lp(TΣ[A] ⊗ Λ0,1) −−−−→ Lp(ϕ∗TM ⊗ Λ0,1) −−−−→ Lp(N ⊗ Λ0,1) −−−−→ 0

This defines the normal ∂̄J -operator D
N
ϕ,J . As with Dϕ,J we have the decomposition

DN
ϕ,J = ∂̄N +RN into complex linear and a zero order complex anti-linear part. By

the snake lemma the diagram readily induces the long exact sequence

0 −−−−→ H0(TΣ[A]) −−−−→ kernDϕ,J −−−−→ kernDN
ϕ,J

−−−−→ H1(TΣ[A]) −−−−→ cokerDϕ,J −−−−→ cokerDN
ϕ,J −−−−→ 0
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The cohomology groups on the left are Dolbeault cohomology groups for the holo-
morphic vector bundle TΣ[A] or sheaf cohomology groups of the corresponding co-
herent sheaves. Forgetting the twist by A then gives the following exact sequence.

(2.4)
0 −−−−→ H0(TΣ) −−−−→ kernDϕ,J −−−−→ kernDN

ϕ,J ⊕H0(N tor)

−−−−→ H1(TΣ) −−−−→ cokerDϕ,J −−−−→ cokerDN
ϕ,J −−−−→ 0

The terms in this sequence have a geometric interpretation. Each column is asso-
ciated to a deformation problem. The left-most column deals with deformations of
Riemann surfaces: H0(TΣ) is the space of holomorphic vector fields on Σ. It is trivial
except in genera 0 and 1, where it gives infinitesimal holomorphic reparametriza-
tions of ϕ. As already mentioned in §1.3, the space H1(TΣ) is isomorphic to the
space of holomorphic quadratic differentials via Serre-duality and hence describes
the tangent space to the Riemann or Teichmüller space of complex structures on Σ.
Every element of this space is the tangent vector of an actual one-parameter family
of complex structures on Σ — this deformation problem is unobstructed.

The middle column covers the deformation problem of ϕ as pseudo-holomorphic
curve with almost complex structures both on M and on Σ fixed. In fact, Dϕ,J is the
linearization of the Fredholm map describing the space of pseudo-holomorphic maps
(Σ, j) → (M,J) with fixed almost complex structures (see proof of Proposition 1.3).
If cokerDϕ,J 6= 0 this moduli space might not be smooth of the expected dimension
ind(Dϕ,J), and this is then an obstructed deformation problem.

The maps from the left column to the middle column also have an interesting
meaning. On the upper part, H0(TΣ) → kernDϕ,J describes infinitesimal holomor-
phic reparametrizations as infinitesimal deformations of ϕ. On the lower part, the
image of H1(TΣ) in cokerDϕ,J exhibits those obstructions of the deformation prob-
lem of ϕ with fixed almost complex structures that can be killed by variations of the
complex structure of Σ.

The right column is maybe the most interesting. First, there are no obstructions
to the deformations of ϕ as J-holomorphic map iff cokerDN

ϕ,J = 0, provided we allow
variations of the complex structure of Σ. Thus when it comes to the smoothness
of the moduli space relative J then cokerDN

ϕ,J is much more relevant than the
more traditional cokerDϕ,J . Finally, the term on the upper right corner consists
of two terms, with H0(N tor) reflecting deformations of the singularities. In fact,
infinitesimal deformations with vanishing component on this part can be realized
by sections of ϕ∗TM with zeros of the same orders as those of Dϕ. This follows
directly from the definition of N tor. Such deformations are exactly those keeping
the number of critical points of ϕ. Note that while N tor does not explicitly show up in
the obstruction space cokerDN

ϕ,J , it does influence this space by lowering the degree

of N . The exact sequence also gives the (non-canonical) direct sum decomposition

kernDN
ϕ,J ⊕H0(N tor) =

(

kernDϕ,J/H
0(TΣ)

)

⊕ kern
(

H1(TΣ) → cokerDϕ,J

)

.

The decomposition on the right-hand side mixes local and global contributions. The
previous discussion gives the following interpretation: kernDϕ,J/H

0(TΣ) is the space
of infinitesimal deformations of ϕ as J-holomorphic map modulo biholomorphisms;
kern

(

H1(TΣ) → cokerDϕ,J

)

is the tangent space to the space of complex structures
on Σ that can be realized by variations of ϕ as J-holomorphic map.

Summarizing this discussion, it is the right column that describes the moduli
space of pseudo-holomorphic maps for fixed J . In particular, if cokerDN

ϕ,J = 0 then
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the moduli space MJ ⊂ M of J-holomorphic maps Σ → M for arbitrary complex
structures on Σ is smooth at (ϕ, J, j) with tangent space

TMJ ,(ϕ,J,j) = kernDN
ϕ,J ⊕H0(N tor).

2.3. Immersed curves. If dimM = 4 and ϕ : Σ → M is an immersion then N is
a holomorphic line bundle and

N ⊗ TΣ ≃ ϕ∗(detTM ).

Here TM is taken as complex vector bundle. From this we are going to deduce a
cohomological criterion for surjectivity of

DN
ϕ,J = ∂̄ +R : W 1,p(N) −→ Lp(N ⊗ Λ0,1).

By elliptic theory the cokernel of DN
ϕ,J is dual to the kernel of its formal adjoint

operator

(DN
ϕ,J)

∗ : W 1,p(N∗ ⊗ Λ1,0) −→ Lp(N∗ ⊗ Λ1,1).

Note that (DN
ϕ,J)

∗ = ∂̄−R∗ is also of Cauchy-Riemann type. Now in dimension 4 the
bundle N is a holomorphic line bundle over Σ. In a local holomorphic trivialization
(DN

ϕ,J )∗ therefore takes the form f 7→ ∂̄f+αf+βf̄ for some functions α, β. Solutions
of such equations are called pseudo-analytic. While related this notion predates
pseudo-holomorphicity and should not be mixed up with it.

Lemma 2.3. Let α, β ∈ Lp(∆) and let f ∈W 1,p(∆) \ {0} fulfill

∂z̄f + αf + βf̄ = 0.

Then all zeros of f are isolated and positive.

Proof. This is another application of the Carleman trick, cf. proof of Lemma 1.9.
Replacing α by α+ β · f̄/f reduces to the case β = 0. Note that f̄/f is bounded, so
β · f̄ /f stays in Lp. By Proposition 2.1 there exists g ∈ W 1,p(∆) solving ∂z̄g = α.
Then

∂z̄(e
gf) = eg(∂z̄g · f + ∂z̄f) = eg(αf + ∂z̄f) = 0.

Thus the diffeomorphism Ψ : (z,w) 7→ (z, eg(z)w) transforms the graph of f into the
graph of a holomorphic function. �

Here is the cohomological unobstructedness theorem for immersed curves.

Proposition 2.4. Let (M,J) be a 4-dimensional almost complex manifold,and ϕ :
Σ → M an immersed J-holomorphic curve with c1(M) · [C] > 0. Then the moduli
space MJ of J-holomorphic maps to M is smooth at (j, ϕ, J).

Proof. By the previous discussion the result follows once we show the vanishing of
kern(DN

ϕ,J)
∗. An element of this space is a section of the holomorphic line bundle

N∗ ⊗ Λ1,0 over Σ of degree

deg(N∗ ⊗ Λ1,0) = deg(detT ∗
M |C) = −c1(M) · [C] < 0.

In a local holomorphic trivialization it is represented by a pseudo-analytic function.
Thus by Lemma 2.3 and the degree computation it has to be identically zero. �
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2.4. Smoothings of nodal curves. A pseudo-holomorphic curve C ⊂ M is a
nodal curve if all singularities of C are transversal unions of two smooth branches.
It is natural to consider a nodal curve as the image of an injective map from a
nodal Riemann surface. A nodal Riemann surface is a union of Riemann surfaces
Σi with finitely many disjoint pairs of points identified. The identification map
Σ̂ :=

∐

iΣi → Σ from the disjoint union is called normalization. (This notion
has a more precise meaning in complex analysis.) A map ϕ : Σ → M is pseudo-

holomorphic if it is continuous and if the composition ϕ̂ : Σ̂ → Σ → M is pseudo-
holomorphic. Analogously one defines W 1,p-spaces for p > 2.

For a nodal curve C it is possible to extend the above discussion to include
topology change by smoothing the nodes, as in zw = t for (z,w) ∈ ∆ × ∆ and t
the deformation parameter. This follows from the by now well-understood gluing
construction for pseudo-holomorphic maps. There are various ways to achieve this,
see for example [LiTi], [Si]. They share a formulation by a family of non-linear
Fredholm operators

∏

i

H1(TΣi) ×W 1,p(ϕ∗TM ) −→ Lp(ϕ∗TM ⊗ Λ0,1),

parametrized by l = ♯nodes gluing parameters (t1, . . . , tl) ∈ Cl of sufficiently small
norm. (The definitions of W 1,p and Lp near the nodes vary from approach to ap-
proach.) Thus fixed (t1, . . . , tl) gives the deformation problem with given topologi-
cal type as discussed above, and putting ti = 0 means keeping the i-th node. The
linearization D′

ϕ,J of this operator for (t1, . . . , tl) = 0 and fixed almost complex
structures fits into a diagram very similar to the one above:

0 −−−−→ W 1,p(TΣ[A]) −−−−→ W 1,p(ϕ∗TM ) −−−−→ W 1,p(N ′) −−−−→ 0

∂̄TΣ





y





y

D′
ϕ,J





y
DN ′

ϕ,J

0 −−−−→ Lp(TΣ[A] ⊗ Λ0,1) −−−−→ Lp(ϕ∗TM ⊗ Λ0,1) −−−−→ Lp(N ′ ⊗ Λ0,1) −−−−→ 0.

In the right column N ′ denotes the image of N under the normalization map:

N ′ :=
⊕

i

ϕ∗
i TM/Dϕi(TΣi).

Thus N ′ is a holomorphic line bundle on Σ only away from the nodes, while near
a node it is a direct sum of line bundles on each of the two branches. Note that
surjectivity of W 1,p(Σ, ϕ∗TM ) → W 1,p(Σ,N ′) is special to the nodal case in dimen-
sion 4 since it requires the tangent spaces of the branches at a node P ∈ ϕ(C) to
generate TM,P . A crucial observation then is that the obstructions to this extended
deformation problem can be computed on the normalization:

cokerDN ′

ϕ,J = cokerDN
ϕ̂,J .

This follows by chasing the diagrams. Geometrically the identity can be understood
by saying that it is the same to deform ϕ as pseudo-holomorphic map or to deform
each of the maps Σi →M separately. In fact, the position of the identification points
of the Σi are uniquely determined by the maps to M . In view of the cohomological
unobstructedness theorem and the implicit function theorem relative J × Cl we
obtain the following strengthening of Proposition 2.4.
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Proposition 2.5. [Sk] Let C ⊂ M be a nodal J-holomorphic curve on an almost
complex 4-manifold (M,J), C =

⋃

Ci. Assume that c1(M)·Ci > 0 for every i. Then
the moduli space of J-holomorphic curves homologous to C is a smooth manifold of
real dimension c1(M) ·C +C ·C. The subset parametrizing nodal curves is locally a
transversal union of submanifolds of real codimension 2. In particular, there exists
a sequence of smooth J-holomorphic curves Cn ⊂M with Cn → C in the Hausdorff
sense (C can be smoothed), and such smoothings are unique up to isotopy through
smooth J-holomorphic curves. �

3. The theorem of Micallef and White

3.1. Statement of theorem. In this section we discuss the theorem of Micallef
and White on the holomorphicity of germs of pseudo-holomorphic curves up to C 1-
diffeomorphism. The precise statement is the following.

Theorem 3.1. (Micallef and White [MiWh], Theorem 6.2.) Let J be an almost
complex structure on a neighborhood of the origin in R2n with J|0 = I, the standard

complex structure on Cn = R2n. Let C ⊂ R2n be a J-holomorphic curve with 0 ∈ C.
Then there exists a neighborhood U of 0 ∈ R2n and a C 1-diffeomorphism Φ : U →

V ⊂ Cn, Φ(0) = 0, DΦ|0 = id, such that Φ(C) ⊂ V is defined by complex polynomial
equations. In particular, Φ(C) is a holomorphic curve.

The proof in loc. cit. might seem a bit computational on first reading, but the
basic idea is in fact quite elegant and simple. As it is one substantial ingredient in
our proof of the isotopy theorem, we include a discussion here. For simplicity we
restrict to the two-dimensional, pseudo-holomorphically fibered situation, just as in
§1.4.1. In other words, there are complex coordinates z,w with (z,w) 7→ z pseudo-

holomorphic. Then w can be chosen in such a way that T 1,0
M = C · (∂z̄ + b∂w)+C ·∂w̄

for a C-valued function b with b(0, 0) = 0. This will be enough for our application
and it still captures the essentials of the fully general proof.

3.2. The case of tacnodes. Traditionally a tacnode is a higher order contact point
of a union of smooth holomorphic curves, its branches. The same definition makes
sense pseudo-holomorphically. We assume this tangent to be w = 0. Then the i-th
branch of our pseudo-holomorphic tacnode is the image of

∆ −→ C2, t 7−→ (t, fi(t)),

with fi(0) = 0, Dfi|0 = 0. The pseudo-holomorphicity equation takes the form

∂t̄fi = b(t, fi(t)). For i 6= j this gives the equation

0 =
(

∂t̄fj − b(t, fj)
)

−
(

∂t̄fi − b(t, fi)
)

= ∂t̄(fj − fi) −
b(t, fj) − b(t, fi)

fj − fi
· (fj − fi).

Now
(

b(t, fj) − b(t, fi)
)

/(fj − fi) is bounded, and hence fj − fi is another instance
of a pseudo-analytic function. The Carleman trick in Lemma 2.3 now implies that
fi and fj osculate only to finite order. (This also follows from Aronszajn’s unique
continuation theorem [Ar].)

On the other hand, if fj−fi = O(|t|n) then |∂t̄(fj−fi)| =
∣

∣b(t, fi(t))−b(t, fj(t))
∣

∣ =
O(|t|n) by pseudo-holomorphicity and hence, by Lemma 1.11

fj(t) − fi(t) = atn + o(|t|n).(3.1)
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The polynomial leading term provides the handle to holomorphicity. The diffeomor-
phism Φ will be of the form

Φ(z,w) = (z,w − E(z,w)).

To construct E(z,w) consider the approximations

fi,n = M.V.
{

fj
∣

∣fj − fi = o(|t|n)
}

to fi, for every i and n ≥ 1. M.V. stands for the arithmetic mean. Because we
are dealing with a tacnode, fi,1 = fj,1 for every i, j, and by finiteness of osculation
orders, there exists N with fi,n = fi for every n ≥ N . Now (3.1) gives ai,n ∈ C and
functions Ei,n with

fi,n − fi,n−1 = ai,nt
n + Ei,n(t), Ei,n(t) = o(|t|n).

Summing from n = 1 to N shows

fi =
N
∑

n=2

ai,nt
n + fi,1(t) +

N
∑

n=2

Ei,n(t).(3.2)

The rest is a matter of merging the various Ei,n into E(z,w) to achieve Φ(t, fi(t)) =

(t,
∑N

n=2 ai,nt
n). We are going to set E =

∑N
i=1Ei with Ei(z,w) = Ei,n(z) in a strip

osculating to order n to the graph of fi,n. More precisely, choose a smooth cut-off
function ρ : R≥0 → [0, 1] with ρ(s) = 1 for s ∈ [0, 1/2] and ρ(s) = 0 for s ≥ 1. Then
for n = 1 define

E1(z,w) = ρ

( |w|
|z|3/2

)

· fi,1(z).

The exponent 3/2 may be replaced by any number in (1, 2). For n ≥ 2 take

En(z,w) =







ρ

( |w − fi,n(z)|
ε|z|n

)

· Ei,n(z), |w − fi,n(z)| ≤ ε|z|n

0, otherwise.

To see that this is well-defined for ε and |z| sufficiently small note that by construc-
tion fi,n and fj,n osculate polynomially to dominant order. If this order is larger
than n then fi,n = fj,n. Otherwise |fj,n(z)− fi,n(z)| > ε|z|n for ε and |z| sufficiently
small. See Figure 3.1 for illustration.

suppE4

suppE1

Figure 3.1: The supports of En. Figure 3.2: Different tangent lines.
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The distinction between the cases n = 1 and n > 1 at this stage could be avoided by
formally setting Ei,1 = fi,1. However, to also treat branches with different tangents
later on, we want Φ to be the identity outside a region of the form |z| ≤ |w|a with
a > 1.

Finally note that by construction En(t, fi(t)) = Ei,n(t), and hence

Φ(t, fi(t)) =
(

t, fi(t) −
∑

n

En(t, fi(t))
)

=
(

t, fi(t) −
N
∑

n=2

Ei,n(t) − fi,1(t)
) (3.2)

= (t,
N
∑

n=1

ai,nt
n).

This finishes the proof of Theorem 3.1 for the case of tacnodes under the made
simplifying assumptions.

As for differentiability it is clear that Φ is smooth away from (0, 0). But ∂wEn
involves the term

∣

∣

∣

∣

∂w̄ρ
( |w − fi,n|

ε · |z|n
)

∣

∣

∣

∣

=
1

|z|n · o(|z|n) = o(1).

Thus ϕ may only be C 1.

3.3. The general case. In the general case the branches of C are images of pseudo-
holomorphic maps

∆ −→ C2, t 7−→ (tQi , fi(t)),

for some Qi ∈ N. Note our simplifying assumption that the projection onto the first
coordinate be pseudo-holomorphic. By composing with branched covers t 7→ tmi

we may assume Qi = Q for all i. The pseudo-holomorphicity equation then reads
∂t̄fi = Qt̄Qb(t, fi(t)). The proof now proceeds as before but we deal with multi-
valued functions Ei,n of z. A simple way to implement this is by enlarging the set
of functions fi by including compositions with t 7→ ζt for all Q-th roots of unity ζ.
The definition of En(z,w) then reads

En(z,w) =







ρ

( |w − fi,n(t)|
ε|t|n

)

·Ei,n(t), |w − fi,n(t)| ≤ ε|z|n

0, otherwise,

for any t with tQ = z. This is well-defined as before since the set of functions fi is
invariant under composition with t 7→ ζt whenever ζQ = 1.

Finally, if C has branches with different tangent lines do the construction for the
union of branches with given tangent line separately. The diffeomorphisms obtained
in this way are the identity outside of trumpet-like sets osculating to the tangent
lines as in Figure 3.2. Hence their composition maps each branch to an algebraic
curve as claimed in the theorem.

4. Unobstructedness II: The integrable case

4.1. Motivation. We saw in Section 2 that if c1(M) evaluates strictly positively
on a smooth pseudo-holomorphic curve in a four-manifold then this curve has un-
obstructed deformations. The only known generalizations to singular curves rely on
parametrized deformations. These deformations preserve the geometric genus and,
by the genus formula, lead at best to a nodal curve. Unobstructedness in this re-
stricted class of deformations is a stronger statement, which thus requires stronger
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assumptions. In particular, the types of the singular points enter as a condition, and
this limits heavily the usefulness of such results for the isotopy problem. Note these
problems do already arise in the integrable situation. For example, not every curve
on a complex surface can be deformed into a curve of the same geometric genus with
only nodes as singularities. This is a fact of life and can not be circumvented by
clever arguments.

Thus we need to allow an increase of geometric genus. There are two points of
views for this. The first one looks at a singular pseudo-holomorphic curve as the
image of a pseudo-holomorphic map from a nodal Riemann surface, as obtained
by the Compactness Theorem (Section 6). While this is a good point of view for
many general problems such as defining Gromov-Witten invariants, we are now
dealing with maps from a reducible domain to a complex two-dimensional space.
This has the effect that (total) degree arguments alone as in Section 2 do not give
good unobstructedness results. For example, unobstructedness fails whenever the
limit stable map contracts components of higher genus. Moreover, it is not hard to
show that not all stable maps allowed by topology can arise. There are subtle and
largely ununderstood analytical obstructions preventing this. Again both problems
are inherited from the integrable situation. A characterization of holomorphic or
algebraic stable maps that can arise as limit is an unsolved problem in algebraic
geometry. There is some elementary discussion on this in the context of stable
reduction in [HaMo]. If a good theory of unobstructedness in the integrable case
from the point of view of stable maps was possible it would likely generalize to the
pseudo-holomorphic setting. Unfortunately, such theory is not in sight.

The second point of view considers deformations of the limit as a cycle. The
purpose of this section is to prove unobstructedness in the integrable situation under
the mere assumption that every component evaluates strictly positively on c1(M).
This is the direct analogue of Proposition 2.4. Integrability is essential here as
the analytic description of deformations of pseudo-holomorphic cycles becomes very
singular under the presence of multiple components, see [SiTi2].

4.2. Special covers. We now begin with the proper content of this section. Let
X be a complex surface, not necessarily compact but without boundary. In our
application X will be a tubular neighborhood of a limit pseudo-holomorphic cycle
in a rational ruled almost complex four-manifold M , endowed with a different, inte-
grable almost complex structure. Let C =

∑

imiCi be a compact holomorphic cycle
of complex dimension one. We assume C to be effective, that is mi > 0 for all i.
There is a general theory on the existence of moduli spaces of compact holomorphic
cycles of any dimension, due to Barlet [Bl]. For the case at hand it can be greatly
simplified and this is what we will do in this section.

The approach presented here differs from [SiTi3], §4 in being strictly local around
C. This has the advantage to link the linearization of the modeling PDE to coho-
mology on the curve very directly. However, such a treatment is not possible if C
contains fibers of our ruled surface M → S2, and then the more global point of view
of [SiTi3] becomes necessary.

The essential simplification is the existence of special covers of a neighborhood of
|C| =

⋃

i Ci.

Hypothesis 4.1. There exists an open cover U = {Uµ} of a neighborhood of C in
M with the following properties:
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(1) cl(Uµ) ≃ Aµ × ∆̄, where Aµ is a compact, connected Riemann surface with
non-empty boundary and ∆̄ ⊂ C is the closed unit disk.

(2) (Aµ × ∂∆) ∩ |C| = ∅.
(3) Uκ∩Uµ∩Uν = ∅ for any pairwise different κ, µ, ν. The fiber structures given

by projection to Aµ are compatible on overlaps. �

The symbol “≃” denotes biholomorphism. The point of these covers is that on Uµ
there is a holomorphic projection Uµ → inn(Aµ) with restriction to |C| proper and
with finite fibers, hence a branched covering. Such cycles in Aµ×C of degree b over
Aµ have a description by b holomorphic functions via Weierstraß polynomials, see
below. Locally this indeed works in any dimension. But it is generally impossible
to make the projections match on overlaps as required by (3), not even locally and
for smooth C. The reason is that the analytic germ of M along C need not be
isomorphic to the germ of the holomorphic normal bundle along the zero section.
This almost always fails in the positive (“ample”) case that we are interested in, see
[La]. For our application to cycles in ruled surfaces, however, we can use the bundle
projection, provided C does not contain fiber components. Without this assumption
the arguments below still work but require a more difficult discussion of change of
projections, as in [Bl]. As the emphasis of these lectures is on explaining why things
are true rather than generality we choose to impose this simplifying assumption.

Another, more severe, simplification special to one-dimensional C is that we do
not allow triple intersections. This implies that Aµ can not be contractible for all µ
unless all components of C are rational, and hence our charts have a certain global
flavor. Under the presence of triple intersections it seems impossible to get our direct
connection of the modeling of the moduli space with cohomological data on C.

Lemma 4.2. Assume there exists a map p : M → S with dimS = 1 such that p is
a holomorphic submersion near |C| and no component of |C| contains a connected
component of a fiber of p. Then Hypothesis 4.1 is fulfilled.

Proof. Denote by Z ⊂M the finite set of singular points of |C| and of critical points
of the projection |C| → S. Add finitely many points to Z to make sure that Z
intersects each irreducible component of |C|. For P ∈ |C| let F = p−1(p(P )) be the
fiber through P . Then F ∩ |C| is an analytic subset of F that by hypothesis does
not contain a connected component of F . Since F is complex one-dimensional P is
an isolated point of F ∩ C. Because p is a submersion there exists a holomorphic
chart (z,w) : U(P ) → C2 in a neighborhood of P in M with (z,w)(P ) = 0 and
z = const describing the fibers of p. We may assume U(P ) to be so small that |C|
is the zero locus of a holomorphic function h defined on all of U(P ). Let ε > 0
be such that F ∩ w−1(Bε(0)) = {P}. Then min

{

|f(0, w)|
∣

∣ |w| = ε
}

> 0. Hence
for δ > 0 sufficiently small min{|f(z,w)| | |w| = ε, |z| ≤ δ} remains nonzero. This
shows |C| ∩ (z,w)−1(Bδ(0) × ∂Bε(0)) = ∅. This verifies Hypothesis 4.1,1 and 2 for
U(P ), while the compatibility of fiber structures in 4.1,3 holds by construction. This
defines elements U1, . . . , U♯Z of the open cover U intersecting Z.

To finish the construction we define one more open set U0 as follows. This con-
struction relies on Stein theory, see e.g. [GrRe] or [KpKp] for the basics. (With
some effort this can be replaced by more elementary arguments, but it does not
seem worthwhile doing here for a technical result like this.) Choose a Riemannian
metric on M . Let δ be so small that B2δ(Z) ⊂ ⋃ν≥1 Uν . Since we have chosen Z to

intersect each irreducible component of |C|, the complement |C|\clBδ(Z) is a union
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of open Riemann surfaces. Thus |C|\clBδ(Z) is a Stein submanifold of M \clBδ(Z),
hence has a Stein neighborhood W ⊂ M \ clBδ(Z). Now every hypersurface in a
Stein manifold is defined by one global holomorphic function, say f in our case. So
f is a global version of the fiber coordinate w before. Then for δ sufficiently small
the projection

U0 :=
{

P ∈W \ clB3δ/2(Z)
∣

∣ |f(P )| < δ
} p−→ S

factors holomorphically through π : U0 → |C| \ clB3δ/2(Z). This is an instance
of so-called Stein factorization, which contracts the connected components of the
fibers of a holomorphic map. Choosing δ even smaller this factorization gives a
biholomorphism

U0
(π,f)−→ |C| \ clBδ(Z) × ∆

extending to cl(U0). Hence U0, U1, . . . , U♯Z provides the desired open cover U . �

4.3. Description of deformation space. Having a cover fulfilling Hypothesis 4.1
it is easy to describe the moduli space of small deformations of C as the fiber of
a holomorphic, non-linear Fredholm map. We use Čech notation Uµν = Uµ ∩ Uν ,
Uκµν = Uκ ∩ Uµ ∩ Uν . Write Vµ = inn(Aµ). Fix p > 2 and denote by Op(Vµ)
the space of holomorphic functions on inn(Vµ) of class Lp. This is a Banach space
with the Lp-norm defined by a Riemannian metric on Aµ, chosen once and for all.
Similarly define Op(Vµν) and Op(Vκµν).

To describe deformations of C let us first consider the local situation on Vµ×∆ ⊂
M . For this discussion we drop the index µ. Denote by w the coordinate on the unit
disk. For any holomorphic cycle C ′ on V ×∆ with |C ′|∩(V ×∂∆) = ∅ the Weierstraß
preparation theorem gives bounded holomorphic functions a1, . . . , ab ∈ Op(V ) with
wb+a1w

b−1+ . . .+ab = 0 describing C ′, see e.g. [GrHa]. Here b is the relative degree
of C ′ over V , and everything takes multiplicities into account. The tuple (a1, . . . , ab)
should be thought of as a holomorphic map from V to the b-fold symmetric product
Symb C of C with itself.

Digression on Symb C. By definition Symb C is the quotient of C × . . . × C by the
permutation action of the symmetric group Sb on b letters. Quite generally, if a
finite group acts on a complex manifold or complex space X then the topological
space X/G has naturally the structure of a complex space by declaring a function
on X/G holomorphic whenever its pull-back to X is holomorphic. For the case of
the permutation action on the coordinates of Cb we claim that the map

Φ : Symd C −→ Cd

induced by (σ1, . . . , σb) : Cb → Cb is a biholomorphism. Here

σk(w1, . . . , wb) =
∑

1≤i1<i2<...<ik≤b
wi1wi2 . . . wib

is the i-th elementary symmetric polynomial. In fact, set-theoretically Symb C para-
metrizes unordered tuples of b not necessarily disjoint points in C. By the funda-
mental theorem of algebra there is precisely one monic (leading coefficient equal to
1) polynomial of degree b having this zero set, with multiplicities. The coefficients of
this polynomial are the elementary symmetric functions in the zeros. This shows that
Φ is bijective. Now any symmetric holomorphic function in w1, . . . , wb is a holomor-
phic function in σ1, . . . , σb. Thus Φ is a biholomorphism. By the same token, if w,w′
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are two holomorphic coordinates on an open set W ⊂ C then the induced holomor-
phic coordinates σi, σ

′
i, i = 1, . . . , b, are related by a biholomorphic transformation.

Note however that something peculiar is happening to the differentiable structure:
Not every Sb-invariant smooth function on Cb leads to a smooth function on Symb C

for the differentiable structure coming from holomorphic geometry. As an example
consider b = 2 and the function f(w1, w2) = (w1 −w2)(w̄1 − w̄2) = |w1 −w2|2. This
is the pull-back of |σ2

1 −σ2|, which is only a Lipschitz function on Sym2 C. Another,
evident feature of symmetric products is that a neighborhood of a point

∑

imiPi of

Symb C with the Pi pairwise disjoint, is canonically biholomorphic to an open set in
∏

i Symmi C. End of digression.

From this discussion it follows that we can compare Weierstraß representations
with compatible projections. Let (aµ : Vµ → Symbµ C) ∈ Op(Vµ)

bµ be the Weierstraß

representations for the given cycle C. Let V b
µν ⊂ Vµν be the union of connected

components where the covering degree is equal to b. Note that V b
µν = ∅ whenever

b > min{bµ, bν}. For a′µ sufficiently close to aµ in Lp there is a cycle C ′
µ in Uµ with

Weierstraß representation a′µ. Denote by Fµ a sufficiently small neighborhood of aµ
in Op(Vµ)

bµ where this is the case. For every µ, ν, b let F b
µν = Op(V b

µν)
b, viewed as

space of maps V b
µν → Symb C. The above discussion gives comparison maps

Θb
µν : Fν −→ F b

µν .

Define the gluing map by

Θ :
∏

µ

Fµ −→
∏

µ<ν,b

F b
µν , Θ(a′µ) = (a′µ − Θb

µν(a
′
ν))µν .(4.1)

Clearly (a′µ)µ glues to a holomorphic cycle iff Θ(a′µ) = 0. We will see that Θ is a
holomorphic Fredholm map with kernel and cokernel canonically isomorphic to the
first two cohomology groups of the normal sheaf of C in M . To follow this plan, two
more digressions are necessary. One to explain the notion of normal sheaf and one
for the needed properties of sheaf cohomology.

4.4. The holomorphic normal sheaf. One definition of tangent vector of a differ-
entiable manifold M at a point P works by emphasizing its property of derivation.
Let C∞

M,P be the space of germs of smooth functions at P . An element of this space
is represented by a smooth function defined on a neighborhood of P , and two such
functions give the same element if they agree on a common neighborhood. Apply-
ing a tangent vector X ∈ TM,P on representing functions defines an R-linear map
D : C∞

M,P → R. For f, g ∈ C∞
M,P Leibniz’ rule gives

X(fg) = fX(g) + gX(f).

In particular, X(f2) = 0 if f(P ) = 0 and X(1) = X(12) = 2X(1) = 0. Thus
the interesting part of D is the induced map on m

∞
P /(m

∞
p )2 where m

∞
P = {f ∈

C∞
M,P | f(P ) = 0} is the maximal ideal of the ring C∞

M,P . We claim that the map

TM,P → HomR(m∞
P /(m

∞
p )2,R) is an isomorphism. In fact, let x1, . . . , xn be co-

ordinates of M around P . Then X =
∑

i ai∂xi applied to xi yields ai, so the
map is injective. On the other hand, if f ∈ m

∞
P then by the Taylor formula
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f −∑i ∂xif(P ) · xi ∈ (m∞)2, and hence any linear map m
∞
P /(m

∞
p )2 → R is de-

termined by its values on xi. This gives the well-known canonical identification

TM,P = HomR(m∞
P /(m

∞
p )2,R).

If M is a complex manifold then the holomorphic tangent space at P can similarly
be described by considering holomorphic functions and C-linear maps.

Now if Z ⊂M is a submanifold the same philosophy applies to the normal bundle.
For this and what follows we will inevitably need some elementary sheaf theory that
we are also trying to explain briefly.

An (abelian) sheaf is an association of an abelian group F(U) (the sections of
F over U) to every open subset U ⊂ M , together with restriction homomorphisms
ρV U : F(U) → F(V ) whenever V ⊂ U . The restriction maps must be compatible
with composition. Moreover, the following sheaf axioms must hold for every covering
{Ui} of an open set U ⊂M . Write Uij = Ui ∩ Uj .

(S1) (local-global principle) If s ∈ F(U) and ρUiU (s) = 0 for all i then s = 0.
(S2) (gluing axiom) Given si ∈ F(Ui) with ρUijUi(si) = ρUijUj(sj) for every i, j

there exists s ∈ F(U) with si = ρUiU (s).

The following are straightforward examples:

(1) C∞
M : U 7→ {f : U → R smooth} with restriction of functions defining the

restriction maps.
(2) For E ↓M a fiber bundle the sheaf C∞(E) of smooth sections of E.
(3) For M a complex manifold, OM : U 7→ {f : U → C holomorphic}. This is a

subsheaf of the sheaf of complex valued smooth functions on M .
(4) For G an abelian group the constant sheaf

GM : U 7→ {f : U → G locally constant},
ρV U the restriction. The sections of this sheaf over any connected open set
are identified with elements of G.

A homomorphism of sheaves F → G is a system of homomorphisms F(U) → G(U)
compatible with restriction.

Returning to the normal bundle of Z ⊂M let I∞
Z be the sheaf of smooth functions

vanishing along Z. Then a normal vector field ν along Z on U ⊂ Z induces a well-
defined map

I∞
Z (U) −→ C∞

Z (U), f 7−→
(

ν̃(f)
)∣

∣

Z
,

where ν̃ is a lift of ν to a vector field on M defined on a neighborhood of U in M .
As we restrict to Z after evaluation and since f vanishes along Z the result does not
depend on the choice of lift. Now as with TM,P one checks that (I∞

Z (U))2 maps to
zero and that the map of sheaves

C∞(NZ|M ) −→ HomC ∞
Z

(I∞
Z /(I∞

Z )2,C∞
Z )

is an isomorphism. A section over U of the Hom-sheaf on the right is a (C∞
Z )|U -

linear sheaf homomorphism (I∞
Z /(I∞

Z )2)|U → (C∞
Z )|U . Note that multiplication of

sections I∞
Z /(I∞

Z )2 by sections of C∞
Z is well-defined, so this makes sense.

Generally one has to be careful here where to put the brackets because the notions
of quotient and Hom-sheaves are a bit delicate. For example, if F → G is a sheaf
homomorphism the sheaf axioms need not hold for Q : U 7→ G(U)/F(U). The
standard example for this is the inclusion ZM → C∞

M with M = R2 \ {0} or any
other non-simply connected space. On the complements of the positive and negative
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real half-axes 1/2π of the angle in polar coordinates give sections of C∞
M agreeing

on R2 \ R modulo integers, but they do not glue to a single-valued function on M .
In any case, there is a canonical procedure to force the sheaf axioms, by taking

the sheaf of continuous sections of the space of stalks

Ét(Q) :=
∐

P∈M
lim
−→

U∋P

Q(U)

(étale space) of Q. Every s ∈ Q(U) induces a section of Ét(Q) over U , and the

images of these sections are taken as basis for the topology of Ét(Q). In writing
down quotient or Hom-sheaves it is understood to apply this procedure. This is the
general definition that we will need for the holomorphic situation momentarily, but
it is in fact not needed for sheaves that allow partitions of unity (fine sheaves) such as
I∞
Z . So a section of HomC ∞

Z
(I∞
Z /(I∞

Z )2,C∞
Z ) over U is indeed just a C∞

Z (U)-linear

map of section spaces I∞
Z (U)/(I∞

Z (U))2 → C∞
Z (U).

Now if M is a complex manifold and Z ⊂M is a complex submanifold then NZ|M
is a holomorphic vector bundle. Let IZ ⊂ OM be the sheaf of holomorphic functions
on M vanishing along Z. Then the natural map

O(NZ|M ) −→ HomOZ
(IZ/I2

Z ,OZ)

is an isomorphism. Explicitly, if Z is locally given by one equation f = 0 then f
generates IZ/I2

Z as an OZ -module. Hence a section ϕ of the Hom-sheaf on the right
is uniquely defined by ϕ(f), a holomorphic function on Z. This provides an explicit
local identification of O(NZ|M) with OZ , which is nothing but a local holomorphic
trivialization of NZ|M .

Now the whole point of this discussion is that it generalizes well to the non-
reduced situation. Let us discuss this in the most simple situation of a multiple
point mP in M = C. Taking P the origin and w for the coordinate on C (z will
have a different meaning below) we have ImP = OC ·wm and OmP = OC/ImP is an
m-dimensional complex vector space with basis 1, w, . . . , wm−1. A homomorphism
ImP /(ImP )2 → OmP is uniquely defined by (α0, . . . , αm) ∈ Cm via

wm 7−→ α0 + α1w + . . .+ αm−1w
m−1.

This fits well with limits as follows. Consider mP as the limit of m pairwise different
points Zt := {P1(t), . . . , Pm(t)}, t > 0, given by the vanishing of ft := wm +

a1(t)w
m−1 + . . .+am(t) where ai(t)

t→0−→ 0. Then IZ(t)/(IZ(t))
2 =

⊕

i IPi(t)/ (IPi(t))
2

is the sheaf with one copy of C at each point of Z(t) (a “skyscraper sheaf”). Thus
⊕

i TPi(t) = Hom(IZ(t)/(IZ(t))
2,OZ(T )). Now IZ(t)/(IZ(t))

2 is globally generated

over OZ(T ) by ft, and 1, w, . . . , wm−1 are a basis for the sections of OZ(T ) as a
complex vector space. This gives an identification of

⊕

i TPi(t) with polynomials

α0 + α1w + . . . + αm−1w
m−1, so this is compatible with the description at t = 0!

Note that a family of vector fields along Z(t) has a limit for t → 0 if and only if it
extends to a continuous family of holomorphic vector fields in a neighborhood of P .
The limit is then the limit of (m− 1)-jets of this family.

It therefore makes sense to define, for any subspace Z ⊂ M defined by an ideal
sheaf IZ ⊂ OM , reduced or not, the holomorphic normal sheaf

NZ|M := HomOZ
(IZ/I2

Z ,OZ),
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where OZ = OM/IZ is the sheaf of holomorphic functions on Z. In our appli-
cation we have Z the generally non-reduced subspace of M defined by the one-
codimensional cycle C. By abuse of notation we use C both to denote the cycle and
this subspace. Explicitly, IC is the sheaf locally generated by

∏

i f
mi
i if C =

∑

imiCi
and fi vanishes to first order along Ci. Note that such a choice of generator of IC
gives a local identification of NC|M with OC .

The importance of the normal sheaf for us comes from its relation with local
deformations of holomorphic cycles.

Lemma 4.3. Let V be a complex manifold and consider the open subset M ⊂
Op(V,Symb C) of tuples (a1, . . . , ab) such that the zero set of f(a1,...,ab)(z,w) := wb +

a1(z)w
b−1+. . .+ab(z) is contained in V ×∆. Then there is a canonical isomorphism

T(a1,...,ab)M ≃ Γ(C,NC|V×∆),

for C the holomorphic cycle in V × ∆ defined by f(a1,...,ab).

Proof. The map sends d
dt

∣

∣

t=0
(a1(t), . . . , ab(t)) = (α1, . . . , αb) to the section

f(a1,...,ab) 7−→ wb + α1w
b−1 + . . .+ αb.

By the above discussion every global holomorphic function on C has a unique repre-
sentative of the form wb+α1w

b−1 + . . .+αb. Hence this map is an isomorphism. �

4.5. Computation of the linearization. If F is an abelian sheaf on a topological
space X and U = {Ui} is an open cover ofX the Čech cohomology groups Ȟk(U ,F)
are the cohomology groups of the Čech complex (C•(U ,F)) with cochains

Ck(U ,F) =
∏

i0<i1<...<ik

Γ(Ui0 ∩ . . . ∩ Uik ,F),

and differentials

ď(si0 . . . sik)i0...ik =
(

∑

l

(−1)lsi0...̂il...ik

)

i0...ik
.

By the gluing axiom (S2) it holds Ȟ0(U ,F) = F(X).

Theorem 4.4. Θ is a holomorphic map with kernDΘ = Ȟ0(V ,NC|M ) and

cokerDΘ = Ȟ1(V ,NC|M).

Proof. The holomorphicity claim is evident. For the linearization we remark that
the components of Θ factor over

(a′µ, a
′
ν) 7−→ (a′µ,Θ

b
µν(a

′
ν)) 7−→ (a′µ − Θb

µν(a
′
ν)).

In view of Lemma 4.3 the linearization at (aµ, aν) of the components of the first
map are canonically the restriction maps Γ(C ∩ Uµ,NC|M ) → Γ(C ∩ Uµν ,NC|M ),
Γ(C ∩ Uν ,NC|M ) → Γ(C ∩ Uµν ,NC|M). Hence DΘ is canonically isomorphic to the

Čech complex
∏

µ

Γ(C ∩ Uµ,NC|M ) −→
∏

µ<ν

Γ(C ∩ Uµν ,NC|M ), (αµ)µ 7−→ (αµ − αν)µν .

Note that Ck(C ∩ U ,NC|M) = 0 for k > 1 because triple intersection in U are
empty. �
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4.6. A vanishing theorem. For this paragraph we assume some familiarity with
sheaf cohomology and Serre duality on singular curves. So this section will be (even)
harder to read for somebody without training in complex geometry. Unfortunately
we could not find a more elementary treatment.

It is well-known that the Čech cohomology groups Ȟ i(C∩V ,NC|M)) are finite di-

mensional and canonically isomorphic to the sheaf cohomology groups H i(C,NC|M ),
see [GrHa] and the references given there. In particular, Θ is a non-linear Fredholm
map. Our aim in this paragraph is to prove surjectivity of its linearization by the
following result.

Proposition 4.5. Let C =
∑r

i=0miCi be a compact holomorphic cycle on a com-
plex surface M . Assume that c1(M) · Ci > 0 and Ci · Ci ≥ 0 for every i. Then
H1(C,NC|M ) = 0.

Proof. In view of the identification NC|M = OC(C) a stronger statement is the van-

ishing of H1(C,OC′(C)) for every effective subcycle C ′ ⊂ C. This latter formulation
allows an induction over the sum of the multiplicities of C ′.

As an auxiliary statement we first show the vanishing of H1(OCi(C
′′)) for every

i and every subcycle C ′′ of C containing Ci. Serre duality (see e.g. [BtPeVe], The-
orem II.6.1) shows that H1(OCi(C

′′)) is dual to H0(HomOCi
(OCi(C

′′),OCi)⊗ ωCi).
Here ωCi is the dualizing sheaf of Ci. If KM denotes the sheaf of holomorphic sec-
tions of detT ∗

M then it can be computed as ωCi = KM ⊗ NCi|M = KM ⊗ OCi(Ci).
Therefore

Hom(OCi(C
′′),OCi) ⊗ ωCi ≃ OCi(−C ′′) ⊗ ωCi ≃ KM ⊗OCi(Ci − C ′′).

But KM ⊗ OCi(Ci − C ′′) is the sheaf of sections of a holomorphic line bundle over
Ci of degree c1(T

∗
M ) · Ci − Ci · (C ′′ − Ci) ≤ −c1(M) · Ci < 0. Here we use that C ′′

contains Ci and Ci ·Ci ≥ 0. Because Ci is reduced and irreducible this implies that
any global section of this line bundle is trivial. Hence H1(OCi(C

′′)) = 0.
Putting C ′ = Ci for some i starts the induction. For the induction step assume

H1(C,OC′(C)) = 0 and let i be such that C ′ + Ci is still a subcycle of C. Let
IC′|C′+Ci

be the ideal sheaf of C ′ in C ′+Ci. Because IC′+Ci
= IC′ ·ICi multiplication

induces an isomorphism OCi(−C ′) = IC′ ⊗ (OM/ICi) ≃ IC′|C′+Ci
. Thus we have a

restriction sequence

0 −→ OC′+Ci
(C) ⊗OCi(−C ′) −→ OC′+Ci

(C) −→ OC′(C) −→ 0.

Observing OC′+Ci
(C) ⊗ OCi(−C ′) ≃ OCi(C − C ′) the long exact cohomology se-

quence reads

. . . −→ H1(OCi(C − C ′)) −→ H1(OC′+Ci
(C)) −→ H1(OC′(C)) −→ . . .

The term on the right vanishes by induction hypothesis, while the term on the left
vanishes by the auxiliary result applied to C ′′ = C −C ′. Hence H1(OC′+Ci

(C)) = 0
proving the induction step. �

4.7. The unobstructedness theorem. Under the assumptions of Proposition 4.5
and Hypothesis 4.1 we now have a description of deformations of C by the fiber
of a holomorphic map between complex Banach manifolds whose linearization is
surjective with finite dimensional kernel. Applying the implicit function theorem
gives the main theorem of this lecture.
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Theorem 4.6. Let M be a complex surface and C =
∑

imiCi a compact holomor-
phic 1-cycle with c1(M) · Ci > 0 and Ci · Ci ≥ 0 for all i. Assume that a covering
U of a neighborhood of |C| in M exists satisfying Hypotheses 4.1, 1–3. Then the
space of holomorphic cycles in M is a complex manifold of dimension Γ(NC|M) in
a neighborhood of C. Moreover, analogous statements hold for a family of complex
structures on M preserving the data described in Hypothesis 4.1.

Remark 4.7. The hypotheses of the theorem do not imply that the cycle C is the
limit of smooth cycles. For example, Γ(NC|M) may still be trivial and then C
does not deform at all. Smoothability only follows with the additional requirement
that NC|M is globally generated. This statement can be checked by a transversality
argument inside symmetric products of C, cf. [SiTi3], Lemma 4.8.

The proof of global generatedness at some P ∈ M in our fibered situation p :
M → S2 follows from comparing dimensions of Γ(NC|M) and Γ(NC|M(−F )) where

F = p−1(p(P )). These dimensions differ maximally, namely by the sum of the fibers
of NC|M over |C| ∩ F if also H1(NC|M(−F )) = 0. This is true by the same method
as seen because also (c1(M) −H).Ci > 0. See [SiTi3], Lemma 4.4 for details.

In any case, if C is the limit of smooth curves then the subset of the moduli
space parametrizing singular cycles is a proper analytic subset of the moduli space,
which is smooth, and hence does not locally disconnect the moduli space at C.
In particular, any two smoothings of C are isotopic through a family of smooth
holomorphic curves staying close to C.

5. Application to symplectic topology in dimension four

One point of view on symplectic topology is as an area somewhere between com-
plex geometry and differential topology. On one hand symplectic constructions
sometimes have the same or almost the flexibility as constructions in differential
topology. As an example think of Gompf’s symplectic normal sum [Go]. It re-
quires two symplectic manifolds M1,M2 with symplectic hypersurfaces D1 ⊂ M1,
D2 ⊂ M2 (real codimension two) and a symplectomorphism Φ : D1 → D2 with a

lift to an isomorphism of symplectic line bundles Φ̃ : ND1|M1
→ Φ∗(N∗

D2|M2
). The

result is a well-defined one-parameter family of symplectic manifolds M1 ∐Φ,ε M2;
each of its elements is diffeomorphic to the union of Mi \ Ui, where Ui is a tubular

neighborhood of Di and the boundaries ∂Ui are identified via Φ̃. So the difference
to a purely differential-topological construction is that 1) the bundle isomorphism
Φ needs to preserve the symplectic normal structure along Di and 2) there is a
finite-dimensional parameter space to the construction.

Compare this with the analogous problem in complex geometry. Here Di ⊂Mi is
a divisor and one can form a singular complex space M1 ∐Φ M2 by gluing M1 and
M2 via an isomorphism Φ : D1 ≃ D2. The singularity looks locally like Di times the
union of coordinate lines zw = 0 in C2. However, even if the holomorphic line bun-
dles ND1|M1

and Φ∗N∗
D2|M2

are isomorphic there need not exist a smoothing of this

space [PsPi]. A smoothing would locally replace zw = 0 by zw = ε in appropriate
holomorphic coordinates. Should this smoothing problem be unobstructed, it has as
local parameter space the product of a complex disk for the smoothing parameter
ε and some finite-dimensional space dealing with deformations of the singular space
M1 ∐ΦM2. Note how the deformation parameter ε reappears on the symplectic side
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as gluing parameter. The most essential difference to the symplectic situation is the
appearance of obstructions.

The correspondence between complex and symplectic geometry can be expected
to be especially interesting in dimension four, where a great deal is known classically
on the complex side and where differential topology is so rich. In this context it is
quite natural to consider the question when a symplectic submanifold in CP2 is
isotopic to a holomorphic curve, which is the main topic of these lectures. An
even stronger motivation is explained in the contribution by Auroux and Smith
to this volume [AuSm], where they discuss how closely related the classification of
symplectic manifolds is to the classification of symplectic surfaces in CP2. (These
surfaces can have classical singularities, that is, nodes and cusps.)

The purpose of this section is to give a slightly different view on the relation
between complex and symplectic geometry via Lefschetz fibrations. We will see that
a certain class of Lefschetz fibrations called hyperelliptic arises as two-fold covers of
rational ruled surfaces, and that our isotopy theorem for symplectic submanifolds of
S2-bundles over S2 gives a classification of a subclass of such Lefschetz fibrations.
This point of view also has an interpretation via representations of the braid group,
a topic of independent interest.

5.1. Monodromy representations — Hurwitz equivalence. A symplectic Lef-
schetz fibration of an oriented four-manifold (M,ω) is a proper differentiable sur-
jection q : M → S2 with only finitely many critical points in pairwise disjoint
fibers with local model C2 → C, (z,w) 7→ zw. Here z,w and the coordinate on S2

are complex-valued and compatible with the orientations. With the famous excep-
tion of certain genus-one fiber bundles without sections, for example a Hopf-surface
S3 × S1 → S2, see [McSa2], Expl. 6.5 for a discussion. M then has a distinguished
deformation class of symplectic structures characterized by the property that each
fiber is symplectic [GoSt]. Note that if ω has this property then this is also the case
for q∗ωS2 + εω for any ε > 0. In particular, this deformation class of symplectic
structures has q∗ωS2 in its closure.

For a general discussion of Lefschetz fibrations we refer to the lectures of Auroux
and Smith. From this discussion recall that any symplectic four-manifold (M,ω)
with [ω] ∈ H2(M,Q) arises as total space of a Lefschetz fibration after blowing up
finitely many disjoint points and with fibers Poincaré dual to the pull-back of k[ω]
for k ≫ 0 [Do]. The fibration structure is unique up to isotopy for each k ≫ 0. In
other words, for each ray Q>0ω of symplectic structures with rational cohomology
one can associate a sequence of Lefschetz fibrations, which is unique up to taking
subsequences. However, the sequence depends heavily on the choice of [ω], and it
also seems difficult to control the effect of increasing k on the fibration structure.
Conversely, it is also difficult to characterize Lefschetz fibrations arising in this way.
Necessary conditions are the existence of sections with self-intersection number −1
and irreducibility of all singular fibers for k ≫ 0 [Sm2], but these conditions are
certainly not sufficient. So at the moment the use of this point of view for an
effective classification of symplectic four-manifolds is limited.

On the other hand, in algebraic geometry Lefschetz fibrations have been especially
useful for low degrees, that is, for low genus of the fibers. This is the point of view
taken up in this section symplectically.
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5.2. Hyperelliptic Lefschetz fibrations. Auroux and Smith explain in their lec-
tures that a symplectic Lefschetz fibration π : M → S2 with singular fibers over
s1, . . . , sµ ∈ S2 is characterized by its monodromy representation into the mapping
class group

ρ : π1(S
2 \ {s1, . . . , sµ}, s0) −→ π0 Diff+(π−1(Σ)).

Here s0 ∈ S2 \ {s1, . . . , sµ} is some fixed non-critical point in the base and Σ =
π−1(s0). For each loop running around only one critical point once the monodromy
is a Dehn twist. There is even a one-to-one correspondence between isomorphism
classes of Lefschetz fibrations with µ singular fibers along with a diffeomorphism
π−1(s0) ≃ Σ, and such representations [Ka].

If one chooses a generating set of µ loops γ1, . . . , γµ intersecting only in s0 and
running around only one of the critical points then ρ is uniquely determined by
the tuple (τ1, . . . , τµ) of µ Dehn twists τi = ρ(γi) of Σ. Conversely, any such tuple
with the property

∏

i τi = 1 arises from such a representation. This gives a descrip-
tion of symplectic Lefschetz fibrations up to isomorphism by finite algebraic data,
namely by the word τ1 . . . τµ of Dehn twists in the genus-g mapping class group
MCg ≃ π0 Diff+(π−1(Σ)). This description is unique up to an overall conjugation
(coming from the choice of isomorphism MCg ≃ π0 Diff+(π−1(Σ))) and up to so-
called Hurwitz equivalence. The latter accounts for the choice of γ1, . . . , γµ. It is
generated by transformations of the form

τ1 . . . τrτr+1 . . . τµ −→ τ1 . . . τr+1(τr)τr+1 . . . τµ,

(Hurwitz move) where (τr)τr+1 = τ−1
r+1τrτr+1. Note that the set of Dehn twists is

stable under conjugation, and hence the word on the right-hand side still consists of
Dehn twists.

We now want to look at a special class of Lefschetz fibrations called hyperelliptic.
By definition their monodromy representations take values in the hyperelliptic map-
ping class group HMCg ⊂ MCg. Recall that a hyperelliptic curve of genus g is an
algebraic curve that admits a two-fold cover κ : Σ → CP1 branched in 2g+2 points.
The hyperelliptic mapping class group is the subgroup of MCg of isotopy classes of
diffeomorphisms of Σ respecting κ. So each σ ∈ HMCg induces a diffeomorphism of
S2 fixing the branch set, well-defined up to isotopy. This defines a homomorphism

HMCg −→ MC(S2, 2g + 2)

to the mapping class group of S2 marked with a set of 2g + 2 points. The kernel is
generated by the hyperelliptic involution that swaps the two points in the fibers of κ.
For genus two it happens that HMCg = MCg, otherwise the inclusion HMCg ⊂ MCg

is strict. For all this a good reference is the book [Bi].
Of course, given a closed surface Σ of genus g there are many involutions with

2g+2 fixed points exhibiting Σ as two-fold cover of S2, and each will give a different
copy of HMCg in MCg. The definition of hyperelliptic Lefschetz fibrations requires
that im ρ ⊂ HMCg for one such choice of involution.

One method to produce a hyperelliptic Lefschetz fibration M → S2 is as com-
position of a two-fold cover with an S2-bundles p : P → S2, with branch locus a
so-called Hurwitz curve B ⊂ P of degree 2g+ 2 over S2. Recall from the lectures of
Auroux and Smith that a smooth submanifold B ⊂ P is a Hurwitz curve if near the
critical points of the composition B → P → S2 there are local complex coordinates
(z,w) on P such that p(z,w) = z and B is locally given by w = z2. Then B → S2
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is a branched cover of degree 2g + 2 with only simple branch points. The critical
points of this projection will then produce singular fibers as follows. In the local
coordinates (z,w) introduced above M is locally the solution set of v2 − w2 + z.
This four-dimensional manifold has complex coordinates v′ = v−w, w′ = v+w be-
cause one can eliminate z. The projection to the z-coordinate then has the standard
description (v′, w′) 7→ v′w′ of a Lefschetz fibration near a singular point.

This construction yields hyperelliptic Lefschetz fibrations with only irreducible
singular fibers. But there are relatively minimal hyperelliptic Lefschetz fibrations
with reducible fibers. (To be relatively minimal means that we have not introduced
reducible fibers artificially by blowing up the total space. Technically this leads to
spheres contained in fibers with self-intersection number −1, and “relatively mini-
mal” means there are no such spheres.) After a slight perturbation of the Lefschetz
fibration any fiber contains at most one critical point (some take this as a condition
in the definition of Lefschetz fibrations), and then any reducible fiber is a union of
two surfaces, of genera h and g − h for some 0 < h < [g/2].

Now how can one construct hyperelliptic Lefschetz fibrations with reducible fibers?
Here is the construction of the model for a neighborhood of a singular fiber with
irreducible components of genera h and g − h. Let ∆ ⊂ C be the unit disk, and
consider in ∆ × CP1 the holomorphic curve B̄ given by

(w − α1) · . . . · (w − α2(g−h)+1) · (w − β1z
2) · . . . · (w − β2h+1z

2) = 0.(5.1)

Here z is the coordinate on ∆, w is the affine coordinate on C ⊂ CP1, and both the
αi and the βj are pairwise disjoint and non-zero. So B̄ consists of 2g+ 2 irreducible
components, each projecting isomorphically to ∆. There is one singular point at
(0, 0), a tacnode with tangent line w = 0 and contained in 2h + 1 branches of B̄.
Figure 5.1, left, depicts the case g = 2, h = 1.

B
B1

–1

–1

–1

–1

E

Γ

Γ´

ρ2ρ1

–2 B2

F

Figure 5.1: Producing reducible fibers (g = 2, h = 1).

Now let ρ1 : P1 → ∆ × CP1 be the blow up at (0, 0). This replaces the fiber F over
z = 0 by two (−1)-spheres, the strict transform F1 of F and another one E contracted
under ρ1. By taking the strict transform B1 of B̄ (the closure of ρ−1

1 (B̄) \ E) the
tacnode of B̄ transforms to an ordinary singular point of multiplicity 2h + 1 lying
on E \ F . Another blow up ρ2 : P̃ → P1 in this singular point desingularizes B1.
The strict transform Γ of E is a sphere of self-intersection −2. So the fiber over 0 of
P̃ → ∆ is a union of two (−1)-spheres and one (−2)-sphere intersecting as depicted
in Figure 5.1 on the right. Denote by B2 the strict transform of B1 under the second
blow-up.
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It is not hard to check that, viewed as divisor, B2 + Γ is divisible by 2 up to
rational equivalence, just as B̄. Hence there exists a holomorphic line bundle L on
P̃ with a section s with zero locus B2 + Γ. The solution set to u2 = s with u ∈ L
is a two-fold cover of P̃ branched over B2 + Γ. This is an instance of the standard
construction of cyclic branched covers with given branch locus.

The projection M̃ → ∆ is a local model for a genus-g Lefschetz fibration. The
singular fiber over 0 ∈ ∆ is a chain of three components, of genera g − h, 0 and h,
respectively. Since Γ is a (−2)-sphere in the branch locus the rational component
κ̃−1(Γ) has self-intersection number −1 and hence can be contracted. The result is a
manifold M with the projection to ∆ the desired local model of a relatively minimal
Lefschetz fibration with a reducible fiber with components of genera h and g−h. It
is obviously hyperelliptic by construction.

One interesting remark is that the covering involution of M̃ descends to M . This
action has one fixed point at the unique critical point of the fibration M → ∆.
In local holomorphic coordinates it looks like (u, v) 7→ (−u,−v), and the ring of
invariant holomorphic functions is generated by x = u2, y = v2, z = uv (this can be
chosen to agree with the z from before). The generators fulfill the relation z2 = xy,
so the quotient is isomorphic to the two-fold cover of C2 branched over the coordinate
axes. This is called the A1-singularity, and we have just verified the well-known fact
that this singularity is what one obtains locally by contracting the (−2)-curve Γ on

P̃ . Alternatively, and maybe more appropriately, one should view the singular space
P obtained by this contraction as the orbifold M/(Z/2).

5.3. Braid Monodromy and the structure of hyperelliptic Lefschetz fibra-

tions. We have now found a way to construct a hyperelliptic Lefschetz fibration
starting from certain branch surfaces B̄ in S2-bundles p̄ : P̄ → S2. This surface
may have tacnodal singularities with non-vertical tangent line, and these account
for reducible singular fibers in the resulting Lefschetz fibration. Otherwise the pro-
jection B̄ → S2 is a simply branched covering with the simple branch points leading
to irreducible singular fibers.

Theorem 5.1. [SiTi1] Any hyperelliptic Lefschetz fibration arises in this way.

The case of genus-two has also been proved in [Sm1], and a slightly more topo-
logical proof is contained in [Fu]. The key ingredients of our proof are to describe B
by its monodromy in the braid group B(S2, 2g + 2) of the sphere on 2g+ 2 strands,
and to observe that B(S2, 2g + 2) is also a Z/2-extension of MC(S2, 2g + 2), just as
HMCg. While nevertheless B(S2, 2g + 2) and HMCg are not isomorphic, there is a
one-to-one correspondence between the set of half-twists in the braid group on one
side and the set of Dehn-twists in HMCg on the other side. This correspondence
identifies the two kinds of monodromy representations. We now give some more
details.

For a topological space X the braid group on d strands B(X, d) can be defined as
the fundamental group of the configuration space

X [d] := (X × . . .×X \ ∆)/Sd.

Here ∆ = {(x1, . . . , xd) ∈ Xd | ∃i 6= j, xi = xj} is the generalized diagonal and Sd

acts by permutation of the components. So a braid takes a number of fixed points
on X, moves them with t ∈ [0, 1] such that at no time t two points coincide, and
such that at t = 1 we end up with a permutation of the tuple we started with.
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If X is a two-dimensional oriented manifold and γ : [0, 1] → X \{P1, . . . , Pk} is an
embedded differentiable path connecting two different Pj , Pk then there is a braid
exchanging Pj and Pk as in the following figure.

Pk

Pj

Figure 5.2: A half-twist.

Any such braid is called a half-twist. Note that the set of half-twists is invariant
under the action of the group of homeomorphisms on X fixing {P1, . . . , Pk}.

The classical Artin braid group Bd := B(R2, k) can be explicitly described as

follows. Take as points Pj := e2π
√
−1j/k the k-th roots of unity. Then define σj as

the half-twist associated to the line segment connecting Pj and Pj+1 for 1 ≤ j < d.
In the following we take the index j modulo d. Then Bk is the group generated by
the σj subject to the famous braid relations

σjσk = σkσj for |j − k| ≥ 2,

σjσj+1σj = σjσj+1σj for all j.

It is important to note that there are infinitely many different sets of generators
such as the σj , one for each self-intersection free path running through all the Pj .
This is responsible for some of the complications when dealing with the braid group.

Now given one of our branch surfaces p : B̄ ⊂ P̄ with critical set {s1, . . . , sµ} ⊂ S2

a closed path γ in S2 \{s1, . . . , sµ} defines a braid in S2 by trivializing P̄ over γ and
by interpreting the pull-back of B over γ as the strands of the braid. This defines
the monodromy representation

ρ′ : π1(S
2 \ {s1, . . . , sµ}, s0) −→ B(S2, 2g + 2),

which characterizes B̄ uniquely up to isotopy. Note that the braid group on the
right is really the braid group of the fiber p̄−1(s0) with the point set B̄ ∩ p̄−1(s0).

The following possibilities arise for the monodromy around a loop γ enclosing only
one of the si. If B̄ is smooth over si then B̄ → S2 has a simple branch point over si.
In this case ρ′(γ) is the half-twist swapping the two branches of B coming together
at the branch point. Otherwise B̄ has a tacnode mapping to si. Then the local
standard form (5.1) gives the following description of ρ′(γ). There is an embedded
loop S1 →֒ S2 = p̄−1(s0) passing through a subset Pi1 , . . . , Pi2h+1

of B̄ ∩ p̄−1(s0) and
not enclosing any other Pj . Now ρ′(γ) is given by a full counterclockwise rotation
of these points along the loop, and by the identity on all other points.

The point now is that in the hyperelliptic case any Dehn twist arises as a two-
fold cover of a distinguished braid of the described form once a choice of a north
pole ∞ ∈ S2 has been made. In fact, the three groups HMCg, MC(S2, 2g + 2)
and B(S2, 2g + 2) all have 2g + 2 generators σ1, . . . , σ2g+1 fulfilling the Artin braid
relations, and in addition

(1) MC(S2, 2g + 2): I = 1, T = 1,
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(2) HMCg: I
2 = 1, T = 1, and I is central (Iσi = σiI for all i),

(3) B(S2, 2g + 2): I = 1, and this implies T 2 = 1 and T central,

where
I = σ1 . . . σ2g+1σ2g+1 . . . σ1, T = (σ1 . . . σ2g+1)

2g+2

Geometrically, I ∈ HMCg is the hyperelliptic involution; it induces the trivial ele-
ment in MC(S2, 2g+2), and it can not be produced from braids via two-fold covers.
On the other hand, T is the full-twist along a loop passing through all the points;
its square is the trivial braid as one sees by “pulling the bundle of strands across
∞ ∈ S2”, and again it induces the trivial element in both MC(S2, 2g + 2) and in
HMCg.

Thus given a hyperelliptic Lefschetz fibration one can produce a branch surface B̄
uniquely up to isotopy by going via braid monodromy. There are two minor global
issues with this, one being the extension of B̄ over one point at infinity, the other
homological two-divisibility of B̄. The latter follows by an a priori computation of
the possible numbers of singular fibers of each type, of the critical points of B̄ and
their relation to the homology class of B̄. The first issue can be resolved by closing
up B̄ either in the trivial or in the non-trivial S2-bundle over S2.

5.4. Symplectic Noether-Horikawa surfaces. Conjectures. A simple, but
important observation is that any of the branch surfaces B̃ ⊂ P̃ are symplectic with
respect to ωP̃ + kp̃∗ωS2, for k ≫ 0. Here ωP̃ and ωS2 are any Kähler structures

on P̃ and on S2, and P̃ → P resolves the tacnodes of B̄ ⊂ P . Thus the question
whether a hyperelliptic Lefschetz fibrations is isomorphic (as a Lefschetz fibration)

to a holomorphic one, is equivalent to asking if B̃ can be deformed to a holomorphic
curve within the class of branch surfaces in P̃ .

For the understanding of symplectic Lefschetz fibrations this point of view is
certainly limited for the following two reasons. One, it is not true that any hyper-
elliptic Lefschetz fibration is isomorphic to a holomorphic one. For example, [OzSt]
shows that fiber sums of two copies of a certain genus-2 Lefschetz fibration produce
infinitely many pairwise non-homeomorphic symplectic 4-manifolds of which only
finitely many can be realized as complex manifolds. And two, the general classifica-
tion of holomorphic branch curves up to isotopy, hence of hyperelliptic holomorphic
Lefschetz fibrations, is complicated, see e.g. [Ch].

On the other hand, the complex geometry becomes regular in a certain stable
range, when the deformation theory of the branch curve is always unobstructed.
This is the case when the total number µ of singular fibers is much larger than the
number t of reducible singular fibers. In the genus-2 case, the discussions in [Ch]
suggest µ > 18t as this stable range. The example of [OzSt] has µ = 4t. So in our
opinion, the holomorphic point of view is appropriate for a classification in a certain
stable range.

Conjecture 5.2. For any g there exists an integer Ng such that any hyperelliptic
symplectic genus-g Lefschetz fibration with µ singular fibers of which t are reducible,
and such that

µ > Ngt,

is isomorphic to a holomorphic one.

The holomorphic classification in the stable range should in turn be simple. We
expect that there is only a very small number of deformation classes of holomorphic
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genus-g Lefschetz fibrations with fixed numbers and types of singular fibers (given
by the genera of its irreducible components), distinguished by topological invariants
of the total space such as Euler characteristic and signature.

The conjecture in particular says that any hyperelliptic Lefschetz fibration with
reducible fibers is holomorphic. By the discussion above this is equivalent to saying
that each smooth branch surface (no tacnodes) in a rational ruled surface is isotopic
as branch surface to a holomorphic curve. The main theorem of these lectures
Theorem 8.1 says that this is true for connected B̄ provided deg(B̄ → S2) ≤ 7. If B̄
is disconnected it is either a product, or it has precisely two components and one of
them is a section. In the disconnected case the monodromy representation does not
act transitively on the set of strands, while this is true in the case with connected
B̄. (With hindsight we will even see that in the connected case the monodromy
representation is surjective.) In any case, we say the case with connected B̄ has
transitive monodromy. Then we have the following:

Theorem 5.3. [SiTi3] A Lefschetz fibration with only irreducible singular fibers
of genus two, or of genus one with a section, and with transitive monodromy is
isomorphic to a holomorphic Lefschetz fibration.

By the standard technique of degeneration to nodal curves (see [Te] for a survey)
it is not hard to compute the braid monodromy for smooth algebraic branch curves
in CP1-bundles over CP1, i.e. in Hirzebruch surfaces Fk. [Ch].

Proposition 5.4. The braid monodromy word of a smooth algebraic curve B̄ ⊂ Fk
of degree d and with µ critical points is Hurwitz-equivalent to one of the following:

(1) (σ1 . . . σd−1σd−1 . . . σ1)
µ

2d−2 (B̄ connected and k even).

(2) (σ1 . . . σd−1σd−1 . . . σ1)
µ−d(d−1)

2d−2 (σ1 . . . σd−1)
d (B̄ connected and k odd).

(3) (σ1 . . . σd−2)
µ

d−2 (B̄ disconnected; k = 2d).

Taken together this gives a complete classification of symplectic Lefschetz fibra-
tions with only irreducible singular fibers and transitive monodromy in genus two.

In the non-hyperelliptic case it is not clear what an analogue of Conjecture 5.2
should be. Any symplectic manifold arises as total space of a symplectic Lefschetz
fibration without reducible singular fibers, after blowing up finitely many points
[Do],[Sm2]. Thus the absence of reducible singular fibers alone certainly do not
suffice as obstruction to holomorphicity.

By purely braid-theoretic methods Auroux very recently achieved the following
beautiful stable classification result:

Theorem 5.5. [Au2] For each g there exists a universal genus-g Lefschetz fibration
π0
g with the following property: Given two genus-g Lefschetz fibrations πi : Mi → S2,
i = 1, 2, with the same numbers of reducible fibers then the fiber connected sums of
πi with sufficiently many copies of π0

g are isomorphic Lefschetz fibrations, provided

(1) there exist sections Σi ⊂Mi with the same self-intersection numbers, and
(2) M1 and M2 have the same Euler number.

This refines a previous, slightly simpler result by the same author for the genus 2
case [Au1] building on Theorem 5.3.
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6. The C 0-compactness theorem for pseudo-holomorphic curves

In this section we discuss a compactness theorem for J-holomorphic maps in the
case that J is only assumed to be continuous. Such a compactness theorem was
first due to Gromov [Gv] and was further discussed by Parker-Wolfson, Pansu, Ye
and Ruan-Tian ([PrWo], [Pn], [Ye], [RuTi]). For the reader’s convenience, we will
present a proof of this compactness theorem and emphasize that it depends only
on the C 0-norm of the involved almost complex structures. Our proof basically
follows [Ti], where further smoothness was discussed. We should point out that the
dependence on a weaker norm for the almost complex structures is crucial in our
study of the symplectic isotopy problem.

6.1. Statement of theorem. Conventions. First we note that in this section by
a J-holomorphic map we mean a Hölder continuous (C 0,α, 0 < α < 1) map from a
Riemann surface Σ into M whose derivative is L2-bounded and which satisfies the J-
holomorphicity equation in the distributional sense. Explicitly, the last phrase says
that for any smooth vector field X on M with compact support in a neighborhood
of f(Σ) and any smooth vector field v with compact support in Σ,

∫

Σ
g
(

X,Df(v) + J ·Df(jΣ(v))
)

dz = 0,

where jΣ denotes the conformal structure of Σ. This coincides with the standard
J-holomorphicity equation whenever f is smooth. By our assumption on f , any
L2-section of f∗TM over Σ can be approximated in the L2-topology by a smooth
vector field, so it follows that the above equation for f also holds when X is replaced
by any L2-section of f∗TM .

As before, we denote by (M,ω) a compact symplectic manifold and by g a fixed
Riemannian metric. Let Ji be a sequence of continuous almost complex structures
on M converging to J∞ in the C 0-topology that are uniformly tamed in the following
sense: There exists a constant c > 0 such that for any X ∈ TM and any i

(6.1) cg(X,X) ≤ ω(X,JiX) ≤ c−1g(X,X).

Here is the main result of this section.

Theorem 6.1. Let (M,ω) and g be as above. Assume that Σi is a sequence of
Riemann surfaces of fixed genus and fi : Σi →M are Ji-holomorphic with uniformly
bounded homology classes fi∗[Σi] ∈ H2(M,Z).

Then there is a connected singular Riemann surface Σ∞ with finitely many irre-
ducible components Σ∞,a, and smooth maps φi : Σi → Σ∞ such that the following
holds.

(1) φi is invertible on the pre-image of the regular part of Σ∞.
(2) A subsequence of fi ◦ φ−1

i converges to a J∞-holomorphic map f∞ on the
regular part of Σ∞ in the C 0-topology.

(3) Each f∞|Σ∞,a extends to a J∞-holomorphic map from Σ∞,a into M , and the
homology classes fi∗[Σi] converge to f∞∗[Σ∞] in H2(M,Z).

The rest of this section is devoted to the proof. We start with the monotonicity
formula for pseudo-holomorphic maps.
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6.2. The monotonicity formula for pseudo-holomorphic maps. For nota-
tional simplicity we will denote by J one of the almost complex structures Ji or
J∞. Let I and gstan denote the standard almost complex structure and standard
flat Riemannian metric on R2n, respectively. By (6.1), for any η > 0 there is a
uniform δη such that for any geodesic ball BR(p) (p ∈ M and R ≤ δη), there is a
C 1-diffeomorphism φ : BR(p) → BR(0) ⊂ R2n such that

(6.2) ‖J − φ∗I‖C 0(BR(p)) ≤ η,

where norms are taken with respect to g. We may further assume that ‖g −
φ∗gstan‖C 0 ≤ C for some uniform constant C.

Denote by ∆r the disk in C with center at the origin and radius r, and ∆ = ∆1.
Throughout the proof c will be a uniform constant whose actual value may vary.

Lemma 6.2. There is an ǫ > 0 such that for any α ∈ (0, 1) and any J-holomorphic
map f : ∆r →M (r > 0) with

∫

∆r
|Df |2gdz ≤ ǫ, we have

(6.3)

∫

Br′(q)
|Df |2gdz ≤ cαr

′2α, ∀q ∈ ∆r/2 and r′ ≤ r/4,

Moreover, we have

(6.4) diamf(∆r′/2) ≤ cα
√
ǫ

(

r′

r

)α

.

Here cα is a uniform constant which may depend on α.

Proof. Since all estimates are scaling-invariant, we may assume r = 1. Let η > 0 be
a sufficiently small positive number and let δη be given as in (6.2). (Later we will use
the cases η = 1/6 and η = 1−α

3 .) For simplicity, we will write δ for δη and identify

BR(p), p = f(0), with BR(0) ⊂ R2n by the diffeomorphism φ in (6.2). Because g
and φ∗gstan are uniformly equivalent we may then also replace | . |g in the statement
by the standard norm | . | in Rn. Choose any ρ0 ≤ 1

2 so that f(B2ρ0(0)) ⊂ Bδ(p).
As input in Morrey’s Lemma (see e.g. [GiTr], Lemma 12.2) we now derive a growth
condition for the local L2-norm of Df at a fixed y ∈ Bρ0(0), see (6.6).

In polar coordinates (r, θ) centered at y, the Cauchy-Riemann equation becomes

∂f

∂r
+

1

r
J
∂f

∂θ
= 0,

and |Df |2 = |∂rf |2 + |r−1∂θf |2. In particular, both |∂rf |2 and |r−1∂θf |2 are close
to 1

2 |Df |2:
∣

∣2|∂rf |2 − |Df |2
∣

∣ =
∣

∣|I∂rf |2 − |r−1∂θf |2
∣

∣

≤
∣

∣(J − I)∂rf
∣

∣

2
+
∣

∣|J∂rf |2 − |r−1∂θf |2
∣

∣ ≤ η|Df |2,(6.5)
∣

∣2|r−1∂θf |2 − |Df |2
∣

∣ ≤ η|Df |2.
We also obtain the pointwise estimate

0 =
∣

∣∂rf + r−1J∂θf
∣

∣

2
=
∣

∣∂rf + r−1I∂θf + r−1(J − I)∂θf
∣

∣

2

=
∣

∣∂rf + r−1I∂θf
∣

∣

2
+ 2
〈

∂rf + r−1I∂θf, r
−1(J − I)∂θf

〉

+
∣

∣r−1(J − I)∂θf
∣

∣

2

≥
∣

∣∂rf
∣

∣

2
+ 2
〈

∂rf, r
−1I∂θf

〉

+
∣

∣r−1I∂θf
∣

∣

2 − 2η ·
(

|∂rf |+ |r−1∂θf |
)

|∂θf |
= (1 − 2η)

∣

∣Df
∣

∣

2
+ 2
〈

∂rf, r
−1I∂θf

〉

.
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Then integrating by parts twice, we have for ρ ≤ ρ0 and any constant vector λ ∈ Rn,

0 =

∫

Bρ(y)

∣

∣

∂f

∂r
+

1

r
J
∂f

∂θ

∣

∣

2
rdrdθ

≥ (1 − 2η)

∫

Bρ(y)

∣

∣Df
∣

∣

2
rdrdθ + 2

∫ ρ

0

∫ 2π

0

〈∂f

∂r
, I(

∂f

∂θ
)
〉

drdθ

= (1 − 2η)

∫

Bρ(y)

∣

∣Df
∣

∣

2
rdrdθ + 2

∫ 2π

0

〈

f − λ, I(
∂f

∂θ
)
〉

(ρ, θ)dθ

−2

∫ ρ

0

∫ 2π

0

〈

f − λ, I(
∂2f

∂r∂θ
)
〉

drdθ

= (1 − 2η)

∫

Bρ(y)

∣

∣Df
∣

∣

2
rdrdθ + 2

∫ 2π

0

〈

f − λ, I(
∂f

∂θ
)
〉

(ρ, θ)dθ

+2

∫ ρ

0

∫ 2π

0

〈∂f

∂θ
, I(

∂f

∂r
)
〉

drdθ.

The last term gives another (1 − 2η)
∫

Bρ(y)

∣

∣Df
∣

∣

2
rdrdθ by the following:

2r−1
〈

∂θf, I∂rf
〉

=
〈

r−1∂θf, I∂rf
〉

+
〈

r−1I∂θf, ∂rf
〉

≥ −2
∣

∣Df
∣

∣

2 · η +
〈

r−1∂θf, J∂rf
〉

+
〈

r−1J∂θf, ∂rf
〉

= −2
∣

∣Df
∣

∣

2 · η +
∣

∣r−1∂θf
∣

∣

2
+
∣

∣∂rf
∣

∣

2
= (1 − 2η)

∣

∣Df
∣

∣

2
.

It follows that

(1 − 2η)

∫

Bρ(y)

∣

∣Df
∣

∣

2
rdrdθ ≤ −

∫ 2π

0
〈f − λ, I(

∂f

∂θ
)
〉

dθ.

≤
(

∫ 2π

0
|f − λ|2dθ

)1/2
·
(

∫ 2π

0

∣

∣

∣

∣

∂f

∂θ

∣

∣

∣

∣

2

dθ
)1/2

.

Now choose

λ =
1

2π

∫ 2π

0
fdθ.

Then by the Poincaré inequality on the unit circle, we have
∫ 2π

0
|f − λ|2dθ ≤

∫ 2π

0

∣

∣

∣

∣

∂f

∂θ

∣

∣

∣

∣

2

dθ ≤ ρ2

∫ 2π

0

∣

∣

∣

∣

r−1∂f

∂θ

∣

∣

∣

∣

2

dθ.

Moreover, |r−1∂θf |2 ≤ (1 + η/2)|Df |2 (6.5) and 1−2η
1+η/2 ≥ 1 − 3η for 0 < η < 1.

Plugging all this into the previous inequality gives

(1 − 3η)

∫

Bρ(y)
|Df |2rdrdθ ≤ ρ2

2

∫ 2π

0
|Df |2dθ.

But
∂

∂ρ

∫

Bρ(y)
|Df |2rdrdθ = ρ

∫ 2π

0
|Df |2dθ,

so the above is the same as

2(1 − 3η)

∫

Bρ(y)
|Df |2rdrdθ ≤ ρ

∂

∂ρ

∫

Bρ(y)
|Df |2rdrdθ,
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that is,

∂

∂ρ

(

ρ2(1−3η)

∫

Bρ(y)
|Df |2rdrdθ

)

≥ 0.

This implies, for any ρ < ρ0 and y ∈ Bρ0(0),
∫

Bρ(y)
|Df |2rdrdθ ≤ c

( ρ

ρ0

)2(1−3η)
∫

∆
|Df |2rdrdθ,(6.6)

where c is a uniform constant. It follows from this and Morrey’s lemma that

sup
x,y∈∆ρ0

|f(x) − f(y)|
d(x, y)1−3η

≤ cηρ
−1+3η
0

(
∫

∆
|Df |2rdrdθ

)1/2

,

where cη is some uniform constant depending only on η. In particular, choosing
η = 1/6, we obtain for x, y ∈ ∆ρ0

|f(x) − f(y)| ≤ cη

(d(x, y)

ρ0

)1/2
· √ε ≤ cη

√
2
√
ε.

Thus the diameter of f(∆ρ0) is bounded by c
√
ǫ.

It remains to prove that if ǫ is sufficiently small, then f(∆1/2) is contained in a
ball of radius δ. In fact, we can then set ρ0 = 1/2 above and conclude the desired
uniform estimates for α = 1 − 3η. For any x ∈ ∆, define

t(x) = sup
{

t ∈ [0, 1/2]
∣

∣ diam(f(Bt(1−|x|)(x))) ≤ δ
}

.

If the above claim is false then t(0) < 1/2. Let x0 ∈ ∆1/2 be such that t(x0) =
inf t(x) < 1/2. Set a(x) = t(x)(1 − |x|). Then for any x ∈ Ba(x0)(x0), we have

a(x) ≥ t(x0)(1 − |x|) ≥ a(x0) − t(x0)|x− x0| > a(x0) − t(x0)a(x0) >
1

2
a(x0).

This implies Ba(x)(x) ⊃ Ba(x0)/2(x) and thus, from the above diameter estimate, for
any x ∈ Ba(x0)(x0), we have

diam(f(Ba(x0)/2(x))) ≤ c
√
ǫ.

It follows that

diam(f(Ba(x0)(x0))) ≤ 2c
√
ǫ.

Since the constant c here depends only on δ, we get a contradiction if ǫ is sufficiently
small. The claim is proved. �

6.3. A removable singularities theorem. As an application of the Monotonicity
Lemma we derive the following sort of Uhlenbeck removable singularity theorem
under the condition that J is only continuous as described above.

Proposition 6.3. Let (M,ω) and J be as above. If f : ∆r0\{0} → M is a J-
holomorphic map with

∫

∆r0
|Df |2gdz < ∞, then f extends to a Hölder continuous

map from ∆ into M .

Proof. Fix any α ∈ (0, 1). By choosing r0 smaller, we may assume
∫

∆r0

|Df |2gdz < ǫ,

where ǫ is as in Lemma 6.2.
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Let x, y ∈ ∆r0/2 with |y| ≤ |x|, say. If |x− y| ≤ |x|/2, then by Lemma 6.2 applied
to the restriction of f to Br0/2(x) ⊂ ∆r0, we have

d(f(x), f(y)) ≤ diam(f(B|x−y|(x))) ≤ 2cα
√
ǫ

( |x− y|
r0

)α

.

If |x− y| > |x|/2 ≥ |y|/2, choose z such that it is collinear to x and has |z| = |y|.
Note that we can cover ∂B|y|(0) by 12 balls of radius |y|/2, so applying Lemma 6.2

at most 12 times, we get

d(f(z), f(y)) ≤ 12cα
√
ǫ

( |y|
r0

)α

≤ 24cα
√
ǫ

( |x− y|
r0

)α

.

Next we can find finitely many balls B|x|/2(x0), . . . , B|x|/2k(xk) such that x0 = x,

xk = z and xi+1 ∈ B|xi/2|(xi). Then applying Lemma 6.2, we get

d(f(z), f(x)) ≤
(

1 + 1
2 + . . .+ 1

2k−1

)

cα
√
ǫ

( |x|
r0

)α

≤ 4cα
√
ǫ

( |x− y|
r0

)α

.

Hence,

d(f(x), f(y)) ≤ 28cα
√
ǫ

( |x− y|
r0

)α

.

It follows that f extends to a Hölder continuous map from ∆r0/2 to M . �

6.4. Proof of theorem. Now we are in position to prove Theorem 6.1.
First we observe: There is a uniform constant c depending only on g and [ω](fi∗[Σi])

such that for any fi,
∫

Σi

|Dfi|2gdz ≤ c.

Therefore, the L2-norm of Dfi is uniformly bounded.
Next we observe: If ǫ in Lemma 6.2 is sufficiently small, say c1/2

√
ǫ ≤ δ1/6, then

for each i, either fi is a constant map or
∫

Σi

|Dfi|2gdz ≥ ǫ > 0.

This can be seen as follows: If the above inequality is reversed, Lemma 6.2 implies
that the image fi(Σi) lies in a Euclidean ball; on a ball the symplectic form ω is
exact and so the energy is zero, that is, fi is constant.

Consider the following class of metrics hi on the regular part of Σi. The metrics hi
have uniformly bounded geometry, namely, for each p ∈ Σi there is a local conformal
coordinate chart (U, z) of Σα containing p such that U is identified with the unit
ball ∆ and

hi|U = eϕdzdz̄

for some ϕ(z) satisfying:

‖ϕ‖C k(U) ≤ ck, for any k > 0,

where ck are uniform constants independent of i. We also require that there are
finitely many cylinder-like necks Ni,a ⊂ Σi (a = 1, . . . , ni) satisfying:
(1) ni are uniformly bounded independent of α;
(2) The complement Σi\

⋃

aNi,a is covered by finitely many geodesic balls BR(pi,j)
(1 ≤ j ≤ mi) of hi in Σi, where R and mi are uniformly bounded;
(3) Each Ni,a is diffeomorphic to a cylinder of the form S1 × (α, β) (α and β may be
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±∞) satisfying: If s, t denote the standard coordinates of S1 × [0, β) or S1 × (α, 0],
then

hi|Ni,a = eϕ(ds2 + dt2),

where ϕ is a smooth function satisfying uniform bounds as stated above.
We will say that such a hi is admissible. We will call {hi} uniformly admissible

if all hi are admissible with uniform constants R, ck, etc..
Admissible metrics always exist on any Σi. We will start with a fixed sequence

of uniformly admissible metrics hi on Σi. We will introduce a new sequence of
uniformly admissible metrics h̃i on Σi such that there is a uniform bound on the
gradient of fi. Once this is done, the theorem follows easily.

We will define h̃i by induction.
Set

ri = inf
{

r
∣

∣

∣

∫

Br(x,hi)
|Dfi|2hi,gdz ≥ ǫ for some x ∈ Σi

}

.

Here | · |h,g denotes the norm induced by g on M and h on the domain. If ri is

uniformly bounded from below, the induction stops and we just take h̃i = hi. Then
our main theorem follows from Lemma 6.2 and standard convergence theory.

Now assume that ri tends to zero as i goes to infinity. By going over to a subse-
quence we may assume ri ≤ 1/2 for all i. Let p1

i be the point where ri is attained.
Let z be a local complex coordinate on Σi centered at p1

i and with values containing
2∆ ⊂ C. Define h1

i = hi outside the region where |z| < 1 and

h1
i =

r−2
i

χi(r
−2
i |z|2)

hi for |z| < 1.

Here χi : R → R is a cut-off function satisfying: χ(t) = 1 for t ≤ 1, χi(t) = t−1/2 for
t ∈ [2, r−2

i ], and χi(t) = r−2
i for t ≥ r−2

i + 1; we may also assume that 0 ≤ χ′
i(t) ≤ 1.

Clearly, we have h1
i ≥ hi and it holds hi(z) = r−2

i hi for |z| ≤ r2i and hi(z) = hi
for |z| ≥ r−2

i + 1. It is easy to check that the sequence h1
i is uniformly admissible.

Moreover, we have
∫

B1(p1i ,h
1
i )
|Dfi|2h1

i ,g
dz = ǫ

where B1(p
1
i , h

1
i ) denotes the geodesic ball of radius 1 and centered at pi with respect

to the metric h1
i .

Next we define

r1i = inf
{

r
∣

∣

∣

∫

Br(x,h1
i )
|Dfi|2h1

i ,g
dz ≥ ǫ for some x ∈ Σi

}

.

If r1i is uniformly bounded from below, the induction stops and we just take h̃i = h1
i .

Then our main theorem again follows from Lemma 6.2 and standard convergence
theory. Otherwise, by taking a subsequence if necessary, we may assume that r1i → 0
as i→ ∞ and r1i ≤ 1/2 for all i. Let p2

i be the point where r1i is attained. Then for
i sufficiently large, p2

i ∈ Σ\B2(p
1
i , h

1
i ). For simplicity, we assume that this is true for

all i. Now we can get h2
i by repeating the above construction with hi replaced by

h1
i . Clearly, h2

i coincides with h1
i on B1(pi, h

1
i ), so

B1(p
1
i , h

2
i ) = B1(p

1
i , h

1
i ).
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We also have B1(p
2
i , h

2
i ) ∩B1(p

1
i , h

1
i ) = ∅ and

∫

B1(p2i ,h
2
i )
|Dfi|2h2

i ,g
dz = ǫ > 0.

We can continue this process to construct metrics hLi (L ≥ 2) and find points pαi
(α = 1, . . . , L) such that B1(p

α
i , h

L
i ) ∩B1(p

β
i , h

L
i ) = ∅ for any α 6= β and

∫

B1(pα
i ,h

L
i )

|Dfi|2hL
i ,g
dz = ǫ > 0.

It follows that

c ≥
∫

Σi

|Dfi|2hL
i ,g
dz ≥ Lǫ.

Hence the process has to stop at some L. We obtain h̃i = hLi and a uniform r0 > 0
such that for any x ∈ Σi,

∫

Br0 (x,h̃i)
|Dfi|2h̃i,g

dz < ǫ.

By uniform admissibility of h̃i, we may choose m and R such that there are finitely
many cylinder-like necks Ni,α ⊂ Σi (α = 1, . . . , l) satisfying:

(1) Σi\
⋃

αNi,α is covered by geodesic balls BR(qij, h̃i) (1 ≤ j ≤ m) in Σi;
(2) Each Ni,α is diffeomorphic to a cylinder of the form S1× (ai,α, bi,α) (ai,α and bi,α
may be ±∞).

Now by taking a subsequence if necessary, we may assume that for each j, the
sequence (Σi, h̃i, qij) of pointed metric spaces converges to a Riemann surface Σ0

∞,j.

Such a limit Σ0
∞,j is of the form

Σ∞,j\{pj1, . . . , pjγj},
where Σ∞,j is a compact Riemann surface. More precisely, there is a natural ad-

missible metric h̃∞,j on each Σ0
∞,j and a point q∞j in Σ0

∞,j, such that for any fixed

r > 0, when i is sufficiently large, there is a diffeomorphism φi,r from Br(q∞j, h̃∞,j)

onto Br(qij, h̃i) satisfying: φi,r(q∞j) = qij and the pull-backs φ∗i,rh̃i converge to h̃∞,j

uniformly in the C∞-topology over Br(q∞j, h̃∞,j). Note that such a convergence of

h̃i is assured by uniform admissibility.
Next we put together all these Σ∞,j to form a connected curve Σ′

∞ as follows:
For any two components Σ∞,j and Σ∞,j′, we identify punctures pjs ∈ Σ∞,j and
pj′s′ ∈ Σ∞,j′ (j may be equal to j′) if for any sufficiently large i and r, the boundaries

of Br(qij , h̃i) and Br(qij′ , h̃i) specified above are contained in a cylindrical neck Ni,α.
In this way, we get a connected curve Σ∞ (not necessarily stable) since each Σi is
connected.

Since we have
∫

Br0 (x,h̃i)
|Dfi|2h̃i,g

dz < ǫ,

by taking a subsequence if necessary, we may assume that fi converge to a J-
holomorphic map f∞ from

⋃

j Σ0
∞,j into M . By Proposition 6.3, f∞ extends to a

Hölder continuous J-holomorphic map from Σ∞ into M . There is clearly also a
limiting metric h̃∞ on Σ∞, and Σ∞ has the same genus as Σi for large i.
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It remains to show that the homology class of f∞ is the same as that of fi. By
convergence we have

∫

Σ∞

|Df∞|2
h̃∞,g

dz = lim
r→∞

lim
i→∞

∫

S

j Br(qij ,h̃i)
|Dfi|2h̃i,g

dz.

In fact, since the complement of
⋃

j Br(qij, h̃i) in Σi is contained in the union of

cylindrical necks Ni,α, it suffices to show that for each i, if Ni,α = S1 × (a, b), then

lim
r→∞

lim
i→∞

∫

S1×(a+r,b−r)
|Dfi|2h̃i,g

dz = 0.

This can be seen as follows: By our choice of h̃i, we know that for any p ∈ Ni,α,
∫

B1(p,h̃i)
|Dfi|2h̃i,g

dz ≤ ǫ.

It follows from Lemma 6.2 that

diam(fi(B2(p, h̃i))) ≤ c

√

∫

B4(p,h̃i)
|Dfi|2h̃i,g

dz,

where c is a uniform constant. Since ǫ is small, both fi(S
1×{a+r}) and fi(S

1×{b−
r}) are contained in geodesic balls of radius c

√
ǫ. Moreover, by varying r slightly,

we may assume that
∫

S1×(a+r,b−r)
|Dfi|2h̃i,g

dz ≤ 10

∫

B4(p,h̃i)
|Dfi|2h̃i,g

dz.

It follows that there are two smooth maps uij : ∆1 →M (j = 1, 2) with

ui1|∂∆1 = fi|S1×{a+r}, ui2|∂∆1 = fi|S1×{b−r}.

and such that
∫

∆1

|Dui1|2h̃i,g
≤ c

∫

S1×(a+r−2,a+r+2))
|Dfi|2h̃i,g

dz

and
∫

∆1

|Dui2|2h̃i,g
≤ c

∫

S1×(b−r−2,b−r+2))
|Dfi|2h̃i,g

dz,

where c is a uniform constant. The maps fi|Ni,α and uij can be easily glued together

to form a continuous map from S2 into M . Since each fi|S1×[d−1,d+1], where d ∈
(a + r, b − r), is contained in a small geodesic ball of M , this map must be null
homologous. It follows

∫

S1×(a+r,b−r)
|Dfi|2h̃i,g

dz =

∫

S1×(a+r,b−r)
f∗i ω =

∫

∆1

u∗i1ω −
∫

∆1

u∗i2ω.

Therefore, we have
∫

S1×(a+r,b−r)
|Dfi|2h̃i,g

dz ≤ c

∫

S1×(a+r−2,a+r+2)∪(b−r−2,b−r+2)
|Dfi|2h̃i,g

dz.

This implies that the homology classes of fi converge to the homology class of f∞.
So Theorem 6.1 is proved. �
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Remark 6.4. If (Σi, fi) are stable maps, we may construct a stable limit (Σ∞, f∞).
Observe that Σ′

∞ may have components Σ∞,j where f∞ restricts to a constant map
and which are conformal to CP 1 and contain fewer than three other components.
There are two possibilities for such Σ∞,j’s. If a Σ∞,j attaches to only one other
component, we simply drop Σ∞,j from the construction; if Σ∞,j contains exactly
two other components, then we contract Σ∞,j and identify those points where Σ∞,j

intersects with the other two components. Carrying out this process inductively, we
eventually obtain a connected curve Σ∞ such that the induced f∞ : Σ∞ → M is a
stable map.

7. Second variation of the ∂̄J -equation and applications

In Section 1 we saw that one prime difficulty in proving the isotopy theorem is the
existence of a smoothing of a singular pseudo-holomorphic curve. Under positivity
assumptions nodal curves can always be smoothed according to Proposition 2.5. So
to solve this problem it remains to find criteria when a pseudo-holomorphic map
ϕ : Σ → M can be deformed to an immersion with only transversal branches.
This seems generally a difficult problem, but over generic paths of almost complex
structures miracles happen.

The content of this section is the technical heart of Shevchishin’s work in [Sh].
The purpose of our presentation is to make this work more accessible by specializing
to what we actually need.

7.1. Comparisons of first and second variations. Any of our moduli spaces M
of pseudo-holomorphic maps is the zero set of a transverse section s of a Banach
bundle E over a Banach manifold B. This ambient Banach manifold also comes with
a submersion π to a Banach manifold of almost complex structures. The purpose of
this paragraph is to relate the first and second variations of s with those of π.

After choosing a local trivialization of the Banach bundle we have the abstract sit-
uation of two submersions of Banach manifolds. For the first variation the following
result holds.

Proposition 7.1. Let Φ : X → Y , Ψ : X → Z be locally split submersions of
Banach manifolds. For P ∈ X let M = Φ−1(Φ(P )), F = Ψ−1(Ψ(P )) be the fibers
through P and Φ̄ = Φ|F , Ψ̄ = Ψ|M the restrictions.

Then there exist canonical isomorphisms

kern(DΦ̄|P ) = kern(DΦ|P ) ∩ kern(DΨ|P ) = kern(DΨ̄|P ),

coker(DΦ̄|P ) = (TY ,Φ(P ) ⊕ TZ ,Ψ(P ))/(DΦ|P ,DΨ|P )(TX ,P ) = coker(DΨ̄|P ).

Proof. Let X = TX ,P , Y = TY ,Φ(P ), Z = TZ ,Ψ(P ), M = kernDΦ = TM ,P ,
F = kernDΨ = TF ,P . The claim follows from the following commutative dia-
gram with exact rows.
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0 −−−−→ kern(DΦ̄|P ) −−−−→ F
DΦ̄|P−−−−→ Y −−−−→ coker(DΦ̄|P ) −−−−→ 0

∥

∥

∥





y





y





y

≃

0 −−−−→ F ∩M −−−−→ X
(DΦ|P ,DΨ|P )−−−−−−−−−→ Y ⊕ Z −−−−→ (Y ⊕ Z)/X −−−−→ 0

∥

∥

∥

x





x





x





≃

0 −−−−→ kern(DΨ̄|P ) −−−−→ M
DΨ̄|P−−−−→ Z −−−−→ coker(DΨ̄|P ) −−−−→ 0

�

As an application of this lemma we can detect critical points of the projection
M → J by looking at critical points of s for fixed almost complex structure. Note
also that the linearization of a section B → E of a Banach bundle at any point P
of its zero set is a well-defined map TB,P → EP . In fact, if Q ∈ EP lies on the zero
section then TE ,Q ≃ TB,P ⊕ EP canonically.

The intrinsic meaning of the second variation is less apparent. In the notation of
the proposition we are interested in situations when Ψ|M is totally degenerate at P ,
that is, if TM ,P = TM ,P ∩ TF ,P . Now in any case the second variations of Φ̄ and Ψ̄
induce two bilinear maps

β1 : (TM ,P ∩ TF ,P ) × (TM ,P ∩ TF ,P ) −→ coker(DΦ̄|P )

β2 : (TM ,P ∩ TF ,P ) × (TM ,P ∩ TF ,P ) −→ coker(DΨ̄|P ),

as follows. For v,w ∈ TM ,P ∩ TF ,P let ṽ, w̃ be local sections around P of TF and
TM , respectively, with ṽ(P ) = v, w̃(P ) = w. Then DΦ̄ · ṽ is a section αṽ of Φ̄∗TY

with αṽ(P ) = 0 since ṽ(P ) = v lies in TM ,P = kernDΦ. If

prY : TΦ̄∗TY ,P = TF ,P ⊕ TY ,Φ(P ) −→ TY ,Φ(P )

denotes the projection define

β1(v,w) = prY (Dαṽ · w),

viewed modulo DΦ̄(TPF ). This definition does not depend on the choice of exten-
sion ṽ by applying the following lemma with ṽ the difference of two extensions.

Lemma 7.2. If ṽ(P ) = 0 then prY (Dαṽ · w) ∈ im(DΦ̄).

Proof. In the local situation of open sets in Banach spaces X ⊂ X = TX ,P , Y ⊂
Y = TY ,Φ(P ), Z ⊂ Z = TZ ,Ψ(P ) we have

prY (Dαṽ · w) = ∂w(∂ṽΦ) = ∂2
wṽ(P )Φ +DΦ · ∂wṽ.

The claim follows because ṽ(P ) = 0 and ∂wṽ ∈ TPF . �

The analogous definition with Φ and Ψ swapped defines β2.

Proposition 7.3. Let Φ : X → Y , Ψ : X → Z be submersions of Banach
manifolds with splittable differentials. For P ∈ X let M = Φ−1(Φ(P )), F =
Ψ−1(Ψ(P )) be the fibers through P and Φ̄ = Φ|F , Ψ̄ = Ψ|M the restrictions. Let Λ :
coker(DΦ̄|P ) → coker(DΨ̄|P ) denote the canonical isomorphism of Proposition 7.1
and β1, β2 the bilinear maps introduced above. Then

β2 = Λ ◦ β1.
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Proof. In the local situation of the proofs of Proposition 7.1 and Lemma 7.2 by the
definition of ṽ, w̃ it holds ∂ṽΨ = 0, ∂w̃Φ = 0. Hence

(DΦ|P ,DΨ|P )[w̃, ṽ] =
(

DΦ|P [w̃, ṽ],DΨ|P [w̃, ṽ]
)

=
(

∂w(∂ṽΦ) − ∂v(∂w̃Φ), ∂w(∂ṽΨ) − ∂v(∂w̃Ψ)
)

= (β1(v,w), 0) − (0, β2(v,w)).

Hence β1(v,w) and β2(v,w) induce the same element in (Y ⊕ Z)/X, that is, β2 =
Λ ◦ β1. �

7.2. Moduli spaces of pseudo-holomorphic curves with prescribed singu-

larities. Let ϕ : Σ → (M,J) be a pseudo-holomorphic map with Dϕ vanishing at
P of order µ− 1 > 0. Then C = imϕ has a singular point at ϕ(0). The number µ
is the multiplicity of the singularity, which agrees with the degree of the composi-
tion of ϕ with a general local projection M → C with J-holomorphic fibers. (For
non-general projections this mapping degree can be larger than the multiplicity.)
Choosing charts we may assume M = C2, Σ = ∆, ϕ(0) = 0 and J to agree with the
standard complex structure I at 0. Let j be the complex structure on ∆. Writing
0 = Dϕ+ J ◦Dϕ ◦ j = (Dϕ+ I ◦Dϕ ◦ j) + (J − I) ◦Dϕ ◦ j gives the estimate

∣

∣∂t̄ϕ(t)
∣

∣ ≤ c · |t|µ−1 · |ϕ|.
Thus the higher dimensional analogue of Proposition 1.13 shows that ϕ is polynomial
in t up to order 2µ−1. It is not hard to see that this defines a holomorphic (2µ−1)-
jet on T∆,0 with values in TM,ϕ(0). Note that this jet generally does not determine
the topological type of ϕ. In the integrable situation one needs twice the Milnor
number of ϕ minus one coefficients for this, and the Milnor number can be arbitrarily
large for given multiplicity.

The induced jet with values in the normal bundle Nϕ,0 (see §2.2) vanishes either
identically or to order µ+ ν, 0 ≤ ν ≤ µ− 1. Define the cusp index of ϕ at P to be µ
in the former case and to equal ν ≤ µ−1 in the latter case. (In [Sh] the multiplicity
and cusp index are called primary and secondary cusp indices, respectively.)

For example, let ϕ : ∆ → (C2, J) be a pseudo-holomorphic singularity of multi-
plicity 2. Then

ϕ(t) =
(

αt2 + βt3 + a(t), γt2 + δt3 + b(t)
)

with one of α or β non-zero and a(t) = o(|t|3), b(t) = o(|t|3). A linear coordinate

change transforms

(

α β
γ δ

)

to

(

1 0
0 δ

)

, and hence we may assume α = 1, β = γ = 0

and δ = 0 or 1. Then ϕ defines the 3-jet with values in TM,ϕ(0) represented by

t 7→ t2∂z + δt3∂w. Going over to N means reducing modulo ∂z . This leads to the
3-jet represented by t 7→ δt3. Thus ϕ has cusp index 0 if δ 6= 0 and cusp index 1
otherwise. In analogy with the integrable situation the former singularity is called
an ordinary cusp. We have seen that in this case

ϕ(t) = (t2, t3) + o(|t|3)
in appropriate complex coordinates. We will use this below.

We can now define moduli spaces Mµ,ν with prescribed multiplicities (µ1, . . . , µm)
and cusp indices (ν1, . . . , νm), 0 ≤ νi ≤ µi, in k marked points P1, . . . , Pm ∈ Σ, and
an immersion everywhere else. A straightforward transversality argument shows
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that Mµ,ν is a submanifold of the total moduli space M (without marked points)
of real codimension

2(|µ|n−m(n+ 1)) + 2(n− 1)|ν|,(7.1)

where n = dimCM . For details see [Sh], §§3.2, 3.3.

7.3. The locus of constant deficiency. By the implicit function theorem critical
points of the projection π : M → J have the property that the ∂̄J -operator for
fixed J is obstructed. In fact, according to Proposition 7.1 the cokernels of the
respective linearizations

D(j,ϕ,J) = Dϕ,J + J ◦Dϕ ◦ j′

and Dπ|(j,ϕ,J) are canonically isomorphic. It is therefore important to study the
stratification of M into subsets

M h1 := {(j, ϕ, J) ∈ M | dimcoker(D(j,ϕ,J)) ≥ h1}.
To obtain an analytic description note that the discussion in §2.2 implies the follow-
ing:

cokerD(J,ϕ,j) = cokerDϕ,J/H
1(TΣ) = cokerDN

ϕ,J .

So in studying cokerDπ we might as well study the cokernel of the normal ∂̄-operator
DN
ϕ,J .

The bundles N = Nϕ = ϕ∗TM/Dϕ(TΣ[A]) on Σ from §2.2 do not patch to a
complex line bundle on M × Σ because their degree decreases under the presence
of critical points of ϕ. However, once we restrict to Mµ,ν the holomorphic line
bundles O([A]) encoding the vanishing orders of Dϕ vary differentiably with ϕ;
hence for any µ,ν there exists a complex line bundle N on Mµ,ν × Σ with fibers
Nϕ relative Mµ,ν. For the following discussion we therefore restrict to one such
stratum Mµ,ν ⊂ M . Denote by N , F the Banach bundles over Mµ,ν with fibers
W 1,p(Nϕ) and Lp(Nϕ ⊗ Λ0,1), respectively. The normal ∂̄-operators define a family
of Fredholm operators

σ : N −→ F
with the property that for any x = (j, ϕ, J) ∈ Mµ,ν there is a canonical isomorphism

coker σx = cokerDN
ϕ,J = cokerDπ|x.

To understand the situation around some x0 = (j, ϕ, J) ∈ Mµ,ν choose a comple-
ment Q ⊂ Fx0 to imσx0 and let V ⊂ Nx0 be a complement to kernσx0 . Extend
these subspaces to subbundles V ⊂ N and Q ⊂ F . (Here and in the following we
suppress the necessary restrictions to an appropriate neighborhood of x0.) Then

V ⊕Q −→ F , (v, q) 7−→ σ(v) + q

is an isomorphism around x0 since this is true at x0. In particular, σ(V) ⊂ F is a
subbundle and there are canonical isomorphisms

Q ≃−→ F/σ(V), V ≃−→ F/Q.
Having set up the bundles Q and V we fit kern σx0 into a vector bundle by setting

K := kern(N → F/Q).
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By the Fredholm property of σ this is a bundle of finite rank; it contains kernσx for
any x and it is complementary to V:

K ⊕ V = N .

We claim that σ induces a section σ̄ of the finite rank bundle Hom(K,Q) with the
property that there are canonical isomorphisms

kernσx ≃ kern σ̄x, coker σx ≃ coker σ̄x,

for any x ∈ Mµ,ν in the domain of our construction. In fact, this follows readily
from the Snake Lemma applied to the following commutative diagram with exact
columns and rows.

kern σ̄x kernσx




y





y

0 −−−−→ Kx −−−−→ Nx −−−−→ Nx/Kx −−−−→ 0

σ̄x





y

σx





y





y

≃

0 −−−−→ Qx −−−−→ Fx −−−−→ Fx/Qx −−−−→ 0




y





y

coker σ̄x coker σx

(7.2)

Because σx maps Nx/Kx isomorphically to Fx/Qx we also see that

M h1

µ,ν =
{

(j, ϕ, J) ∈ Mµ,ν

∣

∣ dimcokerDπ(j,ϕ,J) ≥ h1
}

, h1 = dim coker σx

equals the zero locus of σ̄ viewed as section of Hom(K,Q) locally.

Proposition 7.4. ([Sh], Corollary 4.4.2.) M h1
µ,ν is a submanifold inside Mµ,ν of

codimension (index + h1) · h1.

Proof. This follows from the implicit function theorem once we prove that σ̄ is a
transverse section for Hom(K,Q) since

rankHom(K,Q) = (index + h1) · h1.

To this end we look at variations at x ∈ M with ϕ and j fixed and with the variation
Js of J constant along imϕ. Note that such a path stays inside M . The pull-back
to the path of the bundles N and F with fibers

W 1,p(N) = W 1,p(ϕ∗TM )/Dϕ
(

W 1,p(TΣ)[A]
)

Lp(N ⊗ Λ0,1) = Lp(ϕ∗TM ⊗ Λ0,1)/Dϕ
(

Lp(TΣ)[A] ⊗ Λ0,1
)

are manifestly trivial. Now σ is fiberwise given by DN
ϕ,J , which in turn can be

computed by lifting a section of N to ϕ∗TM , applying

Dϕ,J = ∇ + J ◦ ∇j(.) + ∇J ◦Dj(.)ϕ

and reducing modulo Dϕ(TΣ[A]). The result of our variation is thus
(

∇J ′σ
)

(v) = (∇vJ
′) ◦Dϕ ◦ j,
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written in the form lifted to ϕ∗TM . Following the discussion above we now want
to look at the derivative of the induced section σ̄ of Hom(K,Q). Write h0 =
dim kernσx, h

1 = dim coker σx. For the construction of Q let W ⊂ M be an open
set such that ϕ−1(W ) ⊂ Σ is a unit disk and such that there are complex-valued
coordinates z,w on M with

ϕ(t) = (t, 0) for t ∈ ∆

in these coordinates. Note that Dϕ(TΣ[A]) = 〈∂z〉, so for the induced section of N
only the ∂w-part matters. Let χ be the characteristic function of ϕ−1(W ) in Σ, that
is, χ|ϕ−1(W ) = 1 and suppχ ⊂ clϕ−1(W ). Then

χ∂w ⊗ dt̄ ∈ Lp(Σ, ϕ∗TM ⊗ Λ0,1).

Because ϕ is injective open sets of the form ϕ−1(W ) span a base for the topology of
Σ away from the critical points. Now characteristic functions span a dense subspace
in Lp. We can therefore find pairwise disjoint W1, . . . ,Wh1 ⊂ M such that the
corresponding χj∂w ⊗ dt̄ span the desired complementary subspace Q of imσx.

To compute ∇J ′σ̄ ∈ Hom(Kx,Qx) = Hom(kern σx, Q) it suffices to restrict ∇J ′σ
to kern σx ⊂ Nx, and to compose with a projection

q : Fx −→ Rh1

that induces an isomorphism Q→ Rh1
. This follows from Diagram (7.2). For q we

take the map

Fx ∋ ξ 7−→
(

Im

∫

ϕ−1(Wj)
dt ∧ 〈dw, ξ〉

)

j=1,...,h1
.

This maps χj∂w ⊗ dt̄ to a non-zero multiple of the j-th unit vector. Hence q is
one-to-one on Q.

Now q ◦ ∇J ′σ maps v ∈ kernσx to
(

Im

∫

ϕ−1(Wj)
dt ∧ 〈dw,∇vJ

′ ◦Dϕ ◦ j〉
)

j=1,...,h1
.

Now consider variations of the form J ′ = gw dz̄ ⊗ ∂w in coordinates (z,w), that is,
(

0 0
gw 0

)

in matrix notation. If v is locally represented by f∂w then

∇vJ
′ ◦Dϕ ◦ j = (fgdz̄ ⊗ ∂w) ◦Dϕ ◦ j =

√
−1fgdt̄⊗ ∂w,

and
(

q ◦ ∇J ′σ
)

(v) =
(

Im

∫

ϕ−1(Wj)

√
−1fg dt ∧ dt̄

)

j=1,...,h1
.

By the identity theorem for pseudo-analytic functions the restriction map kernσx →
Lp(ϕ−1(Wj), N) is injective. Thus for each j there exist gj1, . . . , gjh0 with support
on Wj such that

kernσx −→ Rh0
, f∂w 7−→

(

Im

∫

ϕ−1(Wj)

√
−1fgjk dt ∧ dt̄

)

k=1,...,h0

is an isomorphism. The corresponding variations J ′
jk of σ̄x (with support on ϕ−1(Wj))

span Hom(kern σ̄x, Q). �
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Remark 7.5. The proof of the proposition in [Sh] has a gap for h1 > 1 pointed
out to us at the summer school by Jean-Yves Welschinger. In this reference Qx is
canonically embedded into Lp(Σ,N∗ ⊗ Λ1,0) as kernel of the adjoint operator. The
problem then is that the proof of surjectivity of the relevant linear map

TMµ,ν ,(j,ϕ,J) −→ Hom(Kx,Qx)

relies on the fact that 〈Kx,Qx〉 spans an h0 ·h1-dimensional subspace of Lp(Σ,Λ1,0).
Our proof shows that this is indeed the case.

Corollary 7.6. For a general path {Jt}t∈[0,1] of almost complex structures any crit-
ical point (j, ϕ, t) of the projection p : M{Jt} → [0, 1] is a pseudo-holomorphic map

with only ordinary cusps and such that dimcokerDN
ϕ,Jt

= 1.

Proof. This is a standard transversality argument together with dimension counting.
Note that each singular point of multiplicity µ causes dim(kernσ(j,ϕ,Jt)) to drop by
µ− 1. �

7.4. Second variation at ordinary cusps. Corollary 7.6 leaves us with the treat-
ment of pseudo-holomorphic maps with only ordinary cusps and such that DN

ϕ,Jt
has

one-dimensional cokernel. Then the projection p : M{Jt} → [0, 1] is not a submer-
sion. The maybe most intriguing aspect of Shevchishin’s work is that one can see
quite clearly how the presence of cusps causes these singularities. They turn out
to be quadratic, non-zero and indefinite. In particular, such a pseudo-holomorphic
map always possesses deformations with fixed almost complex structure Jt into non-
critical points of π.

Let us fit this situation into the abstract framework of §7.1. In the notation
employed there Z = (−ε, ε) is the local parameter space of the path {Jt}, X is a
neighborhood of the critical point P = (j, ϕ, t) in the pull-back (via Z = (−ε, ε) →
J ) of the ambient Banach manifold

B := Tg ×W 1,p(Σ,M) × J ,

and Y = Lp(Σ, ϕ∗TM⊗Λ0,1). The map Φ : X → Y is a local non-linear ∂̄J -operator
obtained from s via a local trivialization of the Banach bundle E , while Ψ : X → Z
is the projection and so Ψ̄ = p. The fiber of Φ through P is (an open set in) M{Jt},
and the fiber of Ψ through P is the ambient Banach manifold for MJt .

Because Z is one-dimensional and (j, ϕ, J) is a critical point of the projection
p : M{Jt} → [0, 1] it holds TM{Jt}

,P ⊂ TF ,P . Proposition 7.3 now says that we can

compute the second order approximation of p near P by looking at the second order
approximation of Φ restricted to F , composed with the projection to the cokernel
of the linearization. In §7.1 this symmetric bilinear form was denoted β1. We are
going to compute the associated quadratic form. We denote tangent vectors of the
relevant tangent space TM{Jt}

,P ∩ TF ,P = TM{Jt}
,P by pairs (j′, v) with j′ a tangent

vector to the space of complex structures on Σ and v ∈W 1,p(Σ, ϕ∗TM ).
Recall that the linearization of the ∂̄J -operator for fixed almost complex structure

J is

D∂̄J : (j′, v) 7−→ D(j,ϕ,J)(j
′, v) = Dϕ,Jv + J ◦Dϕ ◦ j′,

where

Dϕ,Jv = ∇v + J ◦ ∇ ◦ j(v) + ∇vJ ◦Dϕ ◦ j = 2∂̄ϕ,J +R.
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Near a cusp choose local coordinates z,w on M and t on Σ such that J|(0,0) equals

I, the standard complex structure on C2, and ϕ(t) = (t2, t3) + o(|t|3) in these coor-
dinates. Let 0 < ε < 1 and let ρ : ∆ → [0, 1] be a smooth function with support in
|t| < 3ε/4, identically 1 for |t| < ε/4 and with |dϕ| < 3/ε. Ultimately we will let ε
tend to 0, but for the rest of the computation ε is fixed. We consider the variation
of σ along (j′, v) with

v = Dϕ(ρ t−1∂t) = ρ t−1∂tϕ, j′ = j ◦ ∂̄(ρ t−1∂t) = it−1∂t̄ρ ∂t ⊗ dt̄.

Again we use complex notation for the complex vector bundle ϕ∗TM ⊗C TΣ. Taking
the real part reverts to real notation. Note that j′ is smooth and supported in the
annulus ε/4 < |t| < 3ε/4. For any µ ∈ C the multiple µ · (j′, v) is indeed a tangent
vector to MJt because

Dϕ,J ◦Dϕ = ∂̄ϕ,J ◦Dϕ = Dϕ ◦ ∂̄,
since R ◦Dϕ = 0 and by definition of the holomorphic structure on ϕ∗TM ; taking
into account pseudo-holomorphicity J ◦Dϕ ◦ j = −Dϕ of ϕ this implies

Dϕ,J(µv) + J ◦Dϕ ◦ (µj′) = (Dϕ ◦ ∂̄)(µρt−1∂t) + (J ◦Dϕ ◦ j)
(

∂̄(µρ t−1∂t)
)

= 0,

as needed.
At this point it is instructive to connect this variation to the discussion of the

normal ∂̄-operator DN
ϕ,J in §2.2. There we identified the tangent space of M relative

J with kernDN
ϕ,J ⊕ H0(N tor), see Sequence 2.4. Away from the node the vector

field v lies in Dϕ(W 1,p(TΣ)), and indeed v is a local frame for the complex line
bundle Dϕ(TΣ[A]). Thus we are dealing with a variation whose part in kernDN

ϕ,J

vanishes and which generates the skyscraper sheaf N tor locally at the cusp.
The variation (j′, v) is concentrated in Bε(0) ⊂ Σ and we can work in our local

coordinates t, z, w. Then

v = ρt−1∂t
(

(t2, t3) + o(|t|3)
)

= ρ · (2, 3t) + o(|t|),
which can be represented by the variation

ϕs = ϕ+ sρt−1∂tϕ = ϕ+ sρ ·
(

(2, 3t) + o(|t|)
)

.

Similarly, we represent j′ by a variation of holomorphic coordinate ts of t with
associated ∂̄-operator

∂t̄s = ∂t̄ + as∂t, as = sit−1∂t̄ρ.

The derivative with respect to s yields it−1∂t̄ρ∂t, and hence ∂̄s indeed represents j′.
The non-linear ∂̄-operator for (js, ϕs) applied to ϕs yields

∂̄sϕs =
1

2

(

Dϕs + J|ϕs
◦Dϕs ◦ js

)

= (∂t̄sϕs)dt̄s +
1

2
Ks,

with

Ks = (J|ϕs
− I) ◦Dϕs ◦ js.

Using dt̄s to trivialize E along the path (js, ϕs) we now compute for the second
variation

(7.3)

d2

ds2

∣

∣

s=0
∂t̄sϕs = d2

ds2

∣

∣

s=0
(∂t̄ + as∂t)

(

ϕ+ sρ ·
(

(2, 3t) + o(|t|)
))

= it−1∂t̄ρ ·
(

ρ · 3∂w + o(1)
)

=
3i

2
t−1∂t̄ρ

2 · ∂w + t−1 · o(1),
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and

K ′′ := d2

ds2

∣

∣

s=0
Ks = (J|ϕ − I) · d2

ds2

∣

∣

s=0
(Dϕs ◦ js) + ∇vJ ◦ ∇v ◦ j + ∇vJ ◦Dϕ ◦ j′.

This is non-zero only for |t| < ε, and the first two terms are bounded pointwise.
Here ∇ denotes the flat connection with respect to the coordinates z,w. For the
last term we have

|∇vJ ◦Dϕ ◦ j′| ≤ const · |t||t−1| · |∂t̄ρ| ≤ const · ε−1,

by the choice of ρ. Taken together this gives the pointwise bound

|K ′′| ≤ const · ε−1 · χε,
where χε is the characteristic function for Bε(0), that is, χε(t) = 1 for |t| < ε and 0
otherwise.

Lemma 7.7. Let λdt ∈ kern(DN
ϕ,j)

∗ ⊂W 1,p(N∗⊗Λ1,0) and denote by Λ : cokerDN
ϕ,j →

R the associated homomorphism with kernel imDN
ϕ,j induced by

Lp(ϕ∗TM ⊗ Λ0,1) → R, γ 7−→ Re

∫

Σ
〈λdt, γ〉.

Then for µ ∈ C it holds

(Λ ◦ β1)
(

µ · (j′, v), µ · (j′, v)
) ε→0−→ −3πRe(µ2)λ(∂w)(0).

Proof. The formal adjoint of DN
ϕ,j is, just as the operator itself, the sum of a ∂̄-

operator and an operator of order zero:

(D∂̄J )∗ = ∂̄N∗⊗Λ1,0 +R∗.

Thus

∂̄N∗⊗Λ1,0(λdt) = −R∗(λdt)(7.4)

is uniformly bounded pointwise. By the definition of β1 and the discussion above
we need to compute
∫

Σ
〈λdt, ( d2ds2

∣

∣

s=0
∂t̄sϕs)dt̄+ 1

2K
′′〉 =

3i

2

∫

Bε(0)
λ(∂w)∂t̄ρ

2t−1dt ∧ dt̄

+

∫

Bε(0)

(

o(1)t−1 + const · ε−1
)

dt ∧ dt̄.

The second integral tends to 0 with ε. Partial integration on the first integral leads
to a sum of

3i

2

∫

Bε(0)
t−1ρ2∂̄

(

λ(∂w)dt
)

,

again tending to zero with ε in view of (7.4), and

−3i

2

∫

Bε(0)
t−1∂̄

(

ρ2λ(∂w)dt
)

=
3i

2
· (2πi)

(

ρ2λ(∂w)
)

(0) = −3πλ(∂w)(0).

Here the first equality follows from the Cauchy integral formula.
Our computation is clearly quadratic in rescaling (j′, v) by µ. Thus replacing

(j′, v) by µ · (j′, v) and taking the real part gives the stated formula. �
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Proposition 7.8. Let {Jt}t∈[0,1] be a general path of almost complex structures on
a four-manifold M . Assume that P = (j, ϕ, t) is a critical point of the projection
p : M{Jt} → [0, 1] with ϕ not an immersion. Then there exists a locally closed,
two-dimensional submanifold Z ⊂ M{Jt} through P with coordinates x, y such that

p(x, y) = x2 − y2.

Moreover, Z can be chosen in such a way that the pseudo-holomorphic maps corre-
sponding to (x, y) 6= 0 are immersions.

Proof. By Corollary 7.6 the critical points of ϕ are ordinary cusps and dim cokerDN
ϕ,j =

1. Assume first that there is exactly one cusp. Another transversality argument
shows that for general paths {Jt} a generator λdt of kern(DN

ϕ,j)
∗ does not have a

zero at this cusp. Let (j′, v) be as in the discussion above with ε > 0 so small that
the quadratic form

C ∋ µ 7−→ (Λ ◦ β1)
(

µ · (j′, v), µ · (j′, v)
)

is non-degenerate and indefinite. This is possible by Lemma 7.7 and by what we just
said about generators of kern(DN

ϕ,j)
∗. Let Z ⊂ M{Jt} be a locally closed submanifold

through P with TZ,P spanned by Re(j′, v) and Im(j′, v). The result is then clear by
the Morse Lemma because β1|TZ,P

describes the second variation of the composition
Z → MJt → [0, 1].

In the general case of several cusps, for each cusp we have a tangent vector
(j′l , vl) with support close to it. Now run the same argument as before but with
(j′, v) =

∑

l(j
′
l , vl). For ε sufficiently small these variations are supported on disjoint

neighborhoods, and hence the only difference to the previous argument is that the
coefficient λ(∂w) for the quadratic form gets replaced by the sum λ

(
∑

l ∂wl

)

. Again,
for general paths, this expression is non-zero. �

Remark 7.9. We have chosen to use complex, local notation as much as possible
and to neglect terms getting small with ε. This point of view clearly exhibits the
holomorphic nature of the critical points in the moduli space near a cuspidal curve
and is also computationally much simpler than the full-featured computations in
[Sh]. In fact, in the integrable case coordinates can be chosen in such a way that all
error terms o(1) etc. disappear and the formula in Lemma 7.7 holds for ε > 0.

8. The isotopy theorem

8.1. Statement of theorem and discussion. In this section we discuss the cen-
tral result of these lectures. It deals with the classification of symplectic submani-
folds in certain rational surfaces. As a consequence the expected “stable range” for
this problem indeed exists. In this range there are no new symplectic phenomena
compared to complex geometry.

Theorem 8.1. 1) Let M be a Hirzebruch surface and Σ ⊂ M a connected surface
symplectic with respect to a Kähler form. If deg(p|σ) ≤ 7 then Σ is symplectically
isotopic to a holomorphic curve in M , for some choice of complex structure on M .

2) Any symplectic surface in CP2 of degree d ≤ 17 is symplectically isotopic to an
algebraic curve.

A Hirzebruch surface M is a holomorphic CP1-bundle over CP1. These all arise
as projectivizations of holomorphic 2-bundles over CP1. The latter are all split, so
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M = Fk := P(O⊕O(k)) for some k ∈ N. The k is determined uniquely as minus the
minimal self-intersection number of a section. If k = 0 we have M = CP1×CP1 and
there is a whole CP1 worth of such sections; otherwise it is holomorphically rigid
and it is in fact unique. Topologically Fk is the non-trivial S2-bundle over S2 for k
odd and Fk ≃ S2 ×S2 for k even. It is also worthwhile to keep in mind that for any
k, l with 2l ≤ k there is a holomorphic one-parameter deformation with central fiber
Fk and general fiber Fk−2l, but not conversely. So in a sense, CP1 ×CP1 and F1 are
the most basic Hirzebruch surfaces, those that are stable under small deformations
of the complex structure. Note also that F1 is nothing but the blow-up of CP2 in
one point.

The degree bounds in the theorem have to do with the method of proof and are
certainly not sharp. For example, it should be possible to treat the case of degree
18 in CP2 with present technology. We even believe that the theorem should hold
without any bounds on the degree.

In §5.4 we saw the importance of this result for genus-2 Lefschetz fibrations and
for Hurwitz-equivalence of tuples of half-twists in the braid group B(S2, d) with
d ≤ 7.

8.2. Pseudo-holomorphic techniques for the isotopy problem. Besides the
purely algebraic approach by looking at Hurwitz-equivalence for tuples of half-
twists, there exists only one other approach to the isotopy problem for symplectic
2-manifolds inside a symplectic manifold (M,ω), namely by the technique of pseudo-
holomorphic curves already discussed briefly in §1.4.3, as explained in §application
II. This works in three steps. (1) Classify pseudo-holomorphic curves up to isotopy
for one particular almost complex structure I on M ; typically I is integrable and
the moduli space of holomorphic curves can be explicitly controlled by projective
algebraic geometry; this step is quite simple. (2) Choose a general family of almost
complex structures {Jt}t∈[0,1] with (a) B is J0-holomorphic (b) J1 = I. By the re-
sults on the space of tamed almost complex structures this works without problems
as long as the symplectic form ω is isotopic to a Kähler form for I. (3) Try to deform
B as pseudo-holomorphic curve with the almost complex structure, that is, find a
smooth family {Bt} of submanifolds such that Bt is Jt-holomorphic.

The last step (3) is the hardest and most substantial obstruction for isotopy
results for two, not unrelated reasons. First, while for general paths of almost
complex structures the space of pseudo-holomorphic curves M{Jt} over the path is
a manifold, the projection to the parameter interval [0, 1] might have critical points.
If {Bt}t≤t0 happens to run into such a point it may not be possible to deform Bt0
to t > t0 and we are stuck. To avoid this problem one needs an unobstructedness
result for deformations of smooth pseudo-holomorphic curves. The known results
on this require some positivity of M , such as in Proposition 2.4. And second, even
if this is true, as in the cases of CP2 and Fk that we are interested in, there is no
reason that limt→t0 Bt is a submanifold at all. The Gromov compactness theorem
rather tells us that such a limit makes only sense as a stable Jt-holomorphic map or
as a Jt-holomorphic 2-cycle. In the sequel we prefer to use the embedded point of
view and stick to pseudo-holomorphic cycles. In any case, these are singular objects
that we are not allowed to use in the isotopy. So we need to be able to change the
already constructed path {Bt} to bypass such singular points. This is the central
problem for the proof of isotopy theorems in general.
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In view of unobstructedness of deformations of smooth curves it suffices to solve
the following:

(1) Find a Jt0-holomorphic smoothing of C = limt→t0 Bt.
(2) Show that any two pseudo-holomorphic smoothings of C are isotopic.

In our situation the smoothing problem (1) of a pseudo-holomorphic cycle C =
∑

amaCa = limt→t0 Bt has the following solution. For a general path {Jt} we know
by the results of Section 7 that each Jt0 -holomorphic curve has a deformation into a
nodal curve. Now for each a take ma copies Ca,1, . . . , Ca,ma of Ca. Deform each Ca,j
slightly in such a way that

∑

a,j Ca,j is a nodal curve. This is possible by positivity.

Finally apply the smoothing result for nodal curves (Proposition 2.5) to obtain a
smoothing of C.

Problem (2) concerns the isotopy of smoothings of singular pseudo-holomorphic
objects that boils down to a question about the local structure of the moduli space
of pseudo-holomorphic cycles as follows:

Let C =
∑

amaCa be a Jt0-holomorphic cycle. Looking at the space of
pairs (C ′, t) where t ∈ [0, 1] and C ′ is a Jt-holomorphic cycle, do the
points parametrizing singular cycles locally disconnect it?

So we ask if any point has a neighborhood that stays connected once we remove the
points parametrizing singular cycles. We believe this question has a positive answer
under the positivity assumption that c1(M) ·Ca > 0 for each irreducible component
Ca of C. In the integrable case this follows from the unobstructedness results of
Section 4, which say that there is a local complex parameter space for holomorphic
deformations of C; the subset of singular cycles is a proper analytic subset, and
hence its complement remains connected. However, as already discussed briefly in
§4.1 no such parametrization is known for general almost complex structures except
in the nodal case §2.4.

8.3. The Isotopy Lemma. Instead of solving the parametrization problem for
pseudo-holomorphic cycles we use a method to reduce the “badness” of singularities
of limt→t0 Bt by cleverly adding pointwise incidence conditions. This technique has
been introduced into symplectic topology by Shevchishin in his proof of the local
isotopy theorem for smoothings of a pseudo-holomorphic curve singularity [Sh].

How does this work? The pseudo-holomorphic cycle C consists of irreducible
components Ca. Write Ca as image of a pseudo-holomorphic map ϕa : Σa → M .
Pseudo-holomorphic deformations of Ca keeping the genus (equigeneric deforma-
tions) can be realized by deforming ϕa and the complex structure on Σa. The
moduli space of such maps has dimension

ka := c1(M) · Ca + g(Ca) − 1 ≥ 0.

Each imposing of an incidence with a point on M reduces this dimension by one,
provided the numbers of points added does not exceed c1(M) · Ca. Thus choosing ka
general points on Ca implies that there are no non-trivial equigeneric deformations
of Ca respecting the incidences. Doing this for all a we end up with a configuration
of
∑

a ka points such that any Jt0-holomorphic deformation of C containing all these
points must somehow have better singularities. This can happen either by dropping
∑

a(ma− 1), which measures how multiple C is, or, if this entity stays the same, by
the virtual number δ of double points of |C|. The latter is the sum over the maximal



SYMPLECTIC ISOTOPY 57

numbers of double points of local pseudo-holomorphic deformations of the map with
image |C| near the singular points. Pseudo-holomorphic deformations where the
pair (m, δ) gets smaller in the way just described are exactly the deformations that
can not be realized by deforming just the ϕa.

On the other hand, to have freedom to move Bt by keeping the incidence condi-
tions there is an upper bound on the number of points we can add by the excess
positivity that we have, which is c1(M) · C. In fact, each point condition decreases
this number in the proof of Proposition 2.4 by one. Thus this method works as long
as

∑

a

c1(M) · Ca + g(Ca) − 1 < c1(M) · C.(8.1)

If C is reduced (ma = 1 for all a) then this works only if all components have at most
genus one and at least one has genus zero. So this is quite useless for application to
the global isotopy problem.

The following idea comes to the rescue. Away from the multiple components
and from the singularities of the reduced components not much happens in the
convergence Bt → C: In a tubular neighborhood Bt is the graph of a function for
any t sufficiently close to t0 and this convergence is just a convergence of functions.
So we can safely replace this part by some other (part of a) pseudo-holomorphic
curve, for any t, and prove the isotopy lemma with this replacement made. By this
one can actually achieve that each reduced component is a sphere, see below. If
Ca is a sphere it contributes one less to the left-hand side than to the right-hand
side of (8.1). So reduced components do not matter! For multiple components the
right-hand side receives an additional (ma − 1)c1(M) · Ca that has to be balanced
with the genus contribution g(Ca) on the left-hand side.

Here is the precise formulation of the Isotopy Lemma from [SiTi3].

Lemma 8.2. [SiTi3] Let p : (M,J) → CP1 be a pseudo-holomorphic S2-bundle with
disjoint J-holomorphic sections H,S. Let {Jn} be a sequence of almost complex
structures making p pseudo-holomorphic. Suppose that Cn ⊂M , n ∈ N, is a smooth
Jn-holomorphic curve and that

Cn
n→∞−→ C∞ =

∑

a

maC∞,a

in the C 0-topology, with c1(M) ·C∞,a > 0 for every a and Jn → J in C 0,α
loc . We also

assume:

(∗) If C ′ =
∑

am
′
aC

′
a is a non-zero J ′-holomorphic cycle C 0-close to a subcycle

of
∑

ma>1maC∞,a, with J ′ ∈ J , then

∑

{a|m′
a>1}

(

c1(M) · C ′
a + g(C ′

a) − 1
)

< c1(M) · C ′ − 1.

Then any J-holomorphic smoothing C†
∞ of C∞ is symplectically isotopic to some

Cn. The isotopy from Cn to C†
∞ can be chosen to stay arbitrarily close to C∞ in the

C 0-topology, and to be pseudo-holomorphic for a path of almost complex structures
that stays arbitrarily close to J in C 0 everywhere, and in C 0,α

loc away from a finite
set.
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In the assumptions C 0-convergence Cn → C∞ is induced by C 0-convergence inside
the space of stable maps.

Using the genus formula one can show easily that the degree bounds in the theorem
imply Assumption (∗) in the Isotopy Lemma, see [SiTi3], Lemma 9.1.

8.4. Sketch of proof. We want to compare two different smoothings of the pseudo-
holomorphic cycle C∞, one given by Cn for large n and one given by some J-
holomorphic smoothing, for example constructed via first deforming to a nodal curve
and then smoothing the nodal curve, as suggested above. There is only one general
case where we know how to do this, namely if J is integrable locally around the
cycle, see Section 4. But J generally is not integrable and we seem stuck.

Step 1: Make J integrable around |C|. On the other hand, for the application of the
Isotopy Lemma to symplectic geometry we are free to change our almost complex
structures within a C 0-neighborhood of J . This class of almost complex structures
allows a lot of freedom! To understand why recall the local description of almost
complex structures with fixed fiberwise complex structure along w = const via one
complex-valued function b:

T 0,1
M = C · (∂z̄ + b∂w) + C · ∂w̄.

The graph Γf = {(z, f(z))} of a function f is pseudo-holomorphic with respect to
this almost complex structure iff

∂z̄f(z) = b(z, f(z)).

Conversely, the space of almost complex structures making Γf pseudo-holomorphic
is in one-to-one correspondence with functions b with prescribed values ∂z̄f along
Γf . On the other hand, the condition of integrability (vanishing of the Nijenhuis
tensor) turns out to be equivalent to

∂w̄b = 0.

Thus it is very simple to change an almost complex structure only slightly around
a smooth pseudo-holomorphic curve to make it locally integrable; for example, one
could take b constant in the w-direction locally around Γf .

It is then also clear that if we have a C 1-convergence of smooth Jn-holomorphic
curves Cn → C with Jn → J in C 0 it is possible to find J̃n integrable in a fixed
neigbourhood of C such that Cn is J̃n-holomorphic and J̃n → J̃ in C 1.

For the convergence near multiple components of C a little more care shows that
Hölder convergence Jn → J in C 0,α is enough to assure sufficient convergence of the
values of b on the various branches of Cn. Finally, near the singular points of |C|
one employs the local holomorphicity theorem of Micallef-White to derive:

Lemma 8.3. ([SiTi3], Lemma 5.4) Possibly after going over to a subsequence, there

exists a finite set Ã ⊂M , a C 1-diffeomorphism Φ that is smooth away from A, and
almost complex structures J̃n, J̃ on M with the following properties.

(1) p is J̃n-holomorphic.

(2) Φ(Cn) is J̃n-holomorphic.

(3) J̃n → J̃ in C 0 on M and in C 0,α
loc on M \ Ã.

(4) J̃ is integrable in a neighbourhood of |C|.
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Thus we can now assume that J is integrable in a neighbourhood of |C|, but the
convergence Jn → J is only C 0 at finitely many points.

Note that if the convergence Jn → J is still in C 0,α everywhere we are done at this
point! In fact, in the integrable situation we do have a smooth parametrization of
deformations of holomorphic cycles when endowing the space of complex structures
with the C 0,α-topology. So the whole difficulty in the Isotopy Problem stems from
the fact that the theorem of Micallef-White only gives a C 1-diffeomorphism rather
than one in C 1,α for some α > 0.

Step 2: Replace reduced components by spheres. The next ingredient, already dis-
cussed in connection with Condition 8.1, is to make all non-multiple components
rational. To this end we use the fact, derived in Proposition 1.8, that any J-
holomorphic curve singularity can be approximated by J-holomorphic spheres. Let
U ⊂M be a small neigbourhood of the multiple components of C union the singular
set of |C|. Then from Cn keep only Cn ∩ U , while the rest of the reduced part of
Cn gets replaced by large open parts of J-holomorphic approximations by spheres
of the reduced branches of C at the singular points. For this to be successful it is
important that the convergence Jn → J is in C 0,α rather than in C 0, for the former
implies C 1,α-convergence Cn → C∞ near smooth, reduced points of C∞. As this is
true in our case it is indeed possible to extend Cn ∩ U outside of U by open sets
inside J-holomorphic spheres.

There are two side-effects of this. First, the result C̃n of this process on Cn is not
a submanifold anymore, for the various added parts of spheres will intersect each
other, and they will also intersect Cn away from the interpolation region. There is,
however, enough freedom in the construction to make these intersections transverse.
Then the C̃n are nodal curves. Second, C̃n is neither Jn nor J-holomorphic. But
in view of the large freedom in choosing the almost complex structures that we saw
in Step 1 it is possible to perform the construction in such a way that C̃n is J̃n-
holomorphic with J̃n → J̃ in C 0 and J̃n, J̃ having the other properties formulated
above.

Now assume the Isotopy Lemma holds for these modified curves and almost com-
plex structures, so an isotopy exists between C̃n for large n and some smoothing of
C̃∞ = limn→∞Cn. Here “isotopy” means an isotopy of nodal, pseudo-holomorphic
curves, with the almost complex structure and the connecting family of pseudo-
holomorphic curves staying close to J , in C 0,α away from finitely many points where
this is only true in C 0. Then one can revert the process, thus replace the spheri-
cal parts by the original ones, and produce a similar isotopy of Cn with the given
smoothing of C∞.

Thus we can also suppose that the reduced parts of C are rational, at the expense
of working with nodal curves rather than smooth ones in the isotopy. As we can
mostly work with maps rather than subsets of M , the introduction of nodes is
essentially a matter of inconvenience rather than a substantial complication. We
therefore ignore this for the rest of the discussion and simply add the assumption
that the reduced components of C are rational.

Step 3: Break it! Now comes the heart of the proof. We want to change Cn
slightly, for sufficiently large n, such that we find a path of pseudo-holomorphic
cycles connecting Cn with a J-holomorphic smoothing of C∞. Recall the pair (m, δ)
introduced above as a measure of how singular a pseudo-holomorphic cycle is. By
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induction we can assume that the Isotopy Lemma holds for every convergence of
pseudo-holomorphic curves where the limit has smaller (m, δ). This implies that
whenever we have a path of pseudo-holomorphic cycles with smaller (m, δ) then
there is a close-by path of smooth curves, pseudo-holomorphic for the same almost
complex structure at each time. Thus in trying to connect Cn with a J-holomorphic
smoothing of Cn we have the luxury to work with pseudo-holomorphic cycles, as
long as they are less singular than labelled by (m, δ). We achieve this by moving Cn
along with appropriate point conditions that force an enhancement of singularities
throughout the path.

We start with choosing k ≤ c1(M) · C∞ − 1 points x1, . . . , xk on |C∞| such that
ka = c1(M) · C∞,a + g(C∞,a) − 1 of them are general points on the component
C∞,a. Then there is no non-trivial equigeneric J-holomorphic deformation of |C∞|
incident to these points provided J is general for this almost complex structure and
the chosen points. One can show that one can achieve this within the class of almost
complex structures that we took J from, e.g. integrable in a neighbourhood of |C∞|.
With such choices of points and of J any non-trivial J-holomorphic deformation of
C∞ decreases (m, δ). This enhancement of singularities even holds if we perturb J
in a general one-parameter family. By applying an appropriate diffeomorphism for
each n we may assume that the points also lie on Cn, for each n.

For the rest of the discussion in this step we now restrict to the most interesting
case m > 0, that is, C∞ does have multiple components. Then Condition (∗) in the
statement of the Isotopy Lemma implies that there even exists a multiple component
C∞,b of C∞ such that

c1(M) · C∞,b + g(C∞,b) − 1 < c1(M) · C∞,b − 1.

Thus we are free to ask for incidence with one more point x without spoiling gener-
icity. Now the idea is to use incidence with a deformation x(t) of x to move Cn away
from C∞, uniformly with n but keeping the incidence with the other k points. The
resulting C ′

n then converge to a J-holomorphic cycle C ′
∞ 6= C∞ incident to the k

chosen points and hence, by our choice of points, having smaller (m, δ) as wanted.
The process of deformation of Cn incident to x(t) and to the k fixed points works

well if we also allow a small change of almost complex structure along the path to
make everything generic — as long as (1) we stay sufficiently close to |C∞| and
(2) the deformation of Cn does not produce a singular pseudo-holomorphic cycle
with the k + 1 points unevenly distributed. This should be clear in view of what
we already know by induction on (m, δ) about deformations of pseudo-holomorphic
curves, smoothings and isotopy. Case (1) actually makes us happy because the
sole purpose was to move Cn away from C∞ slightly. In Case (2) we start all

over with the process of choosing points etc. but only for one component Ĉn of the
partial degeneration of Cn containing less than c1(M) · Ĉn − 1 points. To keep the
already constructed rest of the curve pseudo-holomorphic we also localize the small
perturbation of Jn away from the other components. Because each time c1(M) · Ĉn
decreases by an integral amount Case (2) can only occur finitely many times, and
the process of moving Cn away from C∞ will eventually succeed.

This finishes the proof of the Isotopy Lemma under the presence of multiple
components.

Step 4: The reduced case. In the reduced case we do not have the luxury to impose
one more point constraint. But along a general path of almost complex structures
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incident to the chosen points non-immersions have codimension one and can hence
be avoided. One can thus try to deform Cn along a general path Jn,t of almost
complex structures connecting Jn with J and integrable in a fixed neighbourhood of
|C∞|. This bridges the difference between C 0-convergence and C 0,α-convergence of
Jn to J . If successful it leads to a J ′-holomorphic smoothing of C∞ that falls within
the smoothings we have a good parametrization for, and which hence are unique
up to isotopy. The only problem is if for every n this process leads to pseudo-
holomorphic curves moving too far away from C∞. In this case we can again take
the limit n → ∞ and produce a J-holomorphic deformation of C∞ with smaller
(m, δ). As in the non-reduced case we are then done by induction.
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