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Abstract

For an almost complex structure J on U ⊂ R4 pseudo-holomorphically fibered
over C a J-holomorphic curve C ⊂ U can be described by a Weierstrass poly-
nomial. The J-holomorphicity equation descends to a perturbed ∂̄-operator on
the coefficients; the operator is typically (0, 2/m)-Hölder continuous if m is the
local degree of C over C. This sheds some light on the problem of parametrizing
pseudo-holomorphic deformations of J-holomorphic curve singularities.

Introduction

Many of the elementary properties of plane holomorphic curves have been established
also for pseudo-holomorphic curves. These include isolatedness of critical points and
of points of intersection, positivity of intersection indices, removable singularities, ex-
istence of (singular) limits under a volume bound, cf. [AuLa] and references therein.
Maybe even more strikingly, singularities of plane pseudo-holomorphic curves topo-
logically look quite the same as holomorphic curve singularities. In fact, there is a
local C1-diffeomorphism of the ambient space mapping the pseudo-holomorphic curve
singularity to a holomorphic one ([MiWh], Theorem 6.2).

Surprisingly the situation is unclear when it comes to deformations of plane pseudo-
holomorphic curve singularities. In the holomorphic world there is the notion of semi-
universal deformation. It consists of the germ of a holomorphic deformation over some
parameter space (S, 0), its base. Its characterizing property is that up to isomorphism
any deformation of (C, 0), with parameter space (T, 0) say, is obtained by pull-back via
a holomorphic “classifying” map (T, 0) → (S, 0). The classifying map is unique only
up to an isomorphism fixing the map on the tangent spaces TT,0 → TS,0. Explicitely,
let (C, 0) be the germ of a plane holomorphic curve given by F ∈ O

C2,0 ' C{z, w}.
Then (S, 0) = (Cτ , 0) is a smooth space of dimension equal to the Tyurina number

τ = dimCC{z, w}/(F, ∂zF, ∂wF ) .

The interest in a similar result for pseudo-holomorphic curves for us comes from a
possible analytic treatment of the isotopy problem for symplectic submanifolds of CP2

or the two S2-bundles over S2 [SiTi1]. There are some indications that on these spaces
symplectic submanifolds are isotopic iff they are homologous. One crucial obstacle
in proving this statement by the technique of J-holomorphic curves is the lack of
understanding that we have for deformations of singular J-holomorphic curves. One
question we should answer and which is related to the holomorphic deformation theory
discussed above runs as follows.
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Question I. Let J be an almost complex structure on the unit ball B ⊂ C2 and C ⊂ B
a J-holomorphic curve with 0 ∈ C. Does there exist an open neighbourhood U ⊂ B of
0 and an open subset M in a Banach space parameterizing J-holomorphic curves in
clU that are sufficiently close to C ∩ clU in the Hausdorff topology?

This is of course true holomorphically. For example, taking appropriate linear coordi-
nates z, w on C2 the defining equation of C can be taken in Weierstraß form

F (z, w) = wd − a1(z)wd−1 + . . .+ (−1)dad(z)

for (z, w) in a polycylinder ∆ × ∆ contained in B. Here d is the intersection multi-
plicity of the line z = 0 with C, and ai are holomorphic functions on cl ∆. Obviously,
deformations of C are in one-to-one correspondence with deformations of the coeffi-
cients ai. Introducing an appropriate Banach space completion of O(cl ∆) answers the
holomorphic analogue of Question I affirmatively.

A related question that is both relevant to the isotopy problem and interesting in
its own right is the local isotopy problem for plane pseudo-holomorphic curves. Let
U ⊂ C2 be an open set with piecewise smooth boundary. We call two submanifolds
with boundary (Σ, ∂Σ), (Σ′, ∂Σ′) in (clU, ∂U) isotopic if there is a continuous family
of submanifolds (Σt, ∂Σt) ⊂ (clU, ∂U), t ∈ [0, 1], connecting Σ and Σ′ (Σ = Σ0,
Σ′ = Σ1). Note that ∂Σt is then a tame isotopy of the links ∂Σ, ∂Σ′ ⊂ ∂U . In
case Σ,Σ′ are symplectic (or pseudo-holomorphic, J-holomorphic respectively) then
the isotopy will be called symplectic (pseudo-holomorphic, J-holomorphic) if Σt can
be chosen symplectic (pseudo-holomorphic, J-holomorphic) for all t. Here “pseudo-
holomorphic” means J-holomorphic for some J .

Question II. Let C ⊂ B be a J-holomorphic curve with singular locus Csing = {0}. If
{Σn} and {Σ′n} are two sequences of J-holomorphic curves in B with Hausdorff limit
C, then are Σn and Σ′n (symplectically, pseudo-holomorphically, J-holomorphically)
isotopic for n sufficiently large?

In the holomorphic category this again has a positive answer, for the set of tuples
(a1, . . . , ad) ∈ M parametrizing singular holomorphic curves in Weierstraß form does
not disconnect M. On a technical level this follows by a straightforward application
of the Sard-Smale theorem on an appropriate space of paths in M.

In the almost complex setting it is still possible to bring C and all small deforma-
tions of C into Weierstraß form. To do this we may assume by a real, linear change of
coordinates that J|0 is the standard complex structure on C2. Let (z, w) be the stan-
dard linear coordinates on C2. Possibly after another (now complex-) linear change of
coordinates we may assume the tangent lines of smooth irreducible components of C
at 0 to be disjoint from z = 0, and that the closed polycylinder |z| ≤ 1, |w| ≤ 1 maps
to the domain of definition of J and C. In [Tb], Lemma 5.4, it is shown that possibly
after shrinking the polycylinder there is a local diffeomorphism of the form

Θ : (z, w) 7−→ (z, w + ϕ(z, w))

such that w 7→ Θ(z, w) is an embedded J-holomorphic disk with Θ(z, 0) = (z, 0) for
every z. Moreover, ∇ϕ can be made arbitrarily small by considering a sufficiently
small polycylinder, that is by rescaling z and w. Changing coordinates by Θ we may
therefore assume that for every z ∈ cl ∆ the disk {z} × ∆ is J-holomorphic and not
contained in C. The antiholomorphic tangent space may now be written

T 0,1
C2,J

= 〈∂w̄, ∂z̄ − a∂z − b∂w〉 (1)
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for complex valued functions a and b. The point here is of course that ∂w is contained
in a J-holomorphic disk and hence lies in the holomorphic tangent space. Now let
d > 0 be the intersection index of the disk z = 0 with the disjoint J-holomorphic curve
C at 0. Then possibly after rescaling w and z, for every z ∈ ∆ there are exactly d
points of intersection of {z}×∆ with C, counted with multiplicities. We obtain a map
from the domain of z to the d-fold symmetric product Sd∆ of w, which is an open
subset of SdC ' Cd. Explicitely, to a zero cycle

∑d
i=1 λi we associate the complex

polynomial

(w − λ1) · . . . · (w − λd) = wd − a1w
d−1 + . . .+ (−1)dad

with ai = σi(λ1, . . . , λd) the i-th elementary symmetric polynomial. This yields d
complex functions a1(z), . . . , ad(z) with

C = {(z, w) ∈ ∆×∆ |wd − a1(z)wd−1 + . . .+ (−1)dad(z) = 0} .

The same argument holds for J-holomorphic curves that are sufficiently close to C in
the Hausdorff topology. Moreover, using local representatives as given in [MiWh] it
is not hard to check that the ai are continuous. In turn, the C0-topology on the ai
induces the Hausdorff topology on the space of J-holomorphic curves.

The crucial point is then to characterize those tuples a1, . . . , ad actually corre-
sponding to J-holomorphic curves. We will find that this can be done by a nonlinear
∂̄-equation provided the projection (z, w) 7→ z is holomorphic, in the almost complex
sense. This is the case iff a ≡ 0 in (1). In other words we require that J is given by
only one complex function b instead of two:

T 0,1
C2,J

= 〈∂w̄, ∂z̄ − b∂w〉 . (2)

For the precise statement we assume that b is extended to all of ∆×C with uniformly
bounded C1-norm. From b we will construct d complex functions b1, . . . , bd on ∆×SdC.
Let D ⊂ SdC be the discriminant locus. The br are smooth away from ∆ × D and
Hölder of some exponent 0 < α ≤ 1 depending only on d (Lemma 3). We are now
ready to state our first theorem.

Theorem I. There is a one-to-one correspondence between the sets{
J-holomorphic curves C ⊂ ∆× C that are proper of degree d over ∆

}
and {

a = (a1, . . . , ad) ∈W 1,p
loc (∆;Cd)

∣∣∣ δ(a) 6≡ 0 , ∂z̄ar = br(z,a) , r = 1, . . . , d
}

(any finite p > 2). The J-holomorphic curve belonging to (a1, . . . , ad) is

{(z, w) ∈ ∆× C |wd − a1(z)wd−1 + . . .+ (−1)dad(z) = 0} .

Moreover, the ar are even of class C1,α(∆;C) for some α = α(d) > 0.

Remark 1 By dropping the requirement δ(a) 6≡ 0, the correspondence extends to
any J-holomorphic cycles. Too see this we first observe that the map from the first set
to the second is still well-defined: Given a J-holomorphic cycle C =

∑
imiCi, where
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Ci is a branched cover over ∆ of degree di, let fi be the Weierstrass polynomial of
Ci constructed in Theorem I. Put f =

∏
i f

mi
i . Its coefficients aj define a map to

W 1,p
loc (∆;Cd). This map can be also regarded as a pseudo-holomorphic section of the

d-fold relative symmetric product of ∆×C over ∆. This latter symmetric product has
a pseudo-holomorphic stratification according to partitions of d. The section which
arises from C =

∑
imiCi belongs to the stratum associated to d =

∑
imidi. In order

to prove that the extension gives rise to a one-to-one correspondence, we need to show
that a pseudo-holomorphic section a stays in one stratum except at finitely many
points. This is true but a bit delicate. It follows from a unique continuation theorem
for pseudo-holomorphic sections of the above type, that is, if the interesection of a
pseudo-holomorphic curve with the closure of a stratum has an accumulation point,
then it lies in the closure of the stratum. By induction, one can reduce it to the case
that the stratum is a hypersurface. If the stratum is the hypersurface corresponding to
d = 2 + 1 + · · ·+ 1, then it amounts to check that the discriminant either is identically
zero or has only finitely many zeroes. In general, one can have a function which plays
the role of the discriminant.

If the br are Lipschitz we can easily proceed to parametrize solutions (a1, . . . , ar) of
the nonlinear PDE by a Banach space of d holomorphic functions on ∆, possibly after
shrinking the domain of z. Unfortunately this is not generally true. If one stratifies
the discriminant locus D according to partitions of d, then at a point of a stratum
indexed by d = d1 + . . . + dl, one expects br to be generally not better than Cα with
α = 2/max{d1, . . . , dl}. The exception is if b is indeed holomorphic in w, or for d = 2.

Theorem II. Let an almost complex structure J on ∆× C be given of the form (2).
Let C ⊂ ∆×C be a J-holomorphic curve mapping properly to ∆. Put d = deg(C → ∆).
Assume that

a) either d ≤ 2

b) or ∂̄wb ≡ 0.

Then for sufficiently small ε > 0 the space

Mε = {C ′ ⊂ Bε(0)× C J-holomorphic curve}

is a Banach manifold at C ∩ (Bε(0)× C). It is modelled on the Banach space

O1,p(∆;Cd) := W 1,p(∆;Cd) ∩ O(∆;Cd)

endowed with the W 1,p-norm, where d is the degree of the projection C → ∆.

While this is only a partial result we would like to point out that it includes
singularities of arbitrarily high Milnor number. Moreover, by computing the Nijenhuis
tensor one can check that the assumption ∂̄wb ≡ 0 is equivalent to integrability of the
almost complex structure. As we remarked before the parametrization by a Banach
manifold is no surprise in this case. However, this description is useful for the global
parametrization problem for pseudo-holomorphic curves on S2-bundles, see [SiTi2].

To describe our result in the general case, that is without the restrictive assumptions
(a) or (b), we remind the reader of the decomposition W 1,p(∆,Cd) = O1,p(∆,Cd) ⊕
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Lp(∆,Cd) provided by a right-inverse T , see (6) and the discussion following it below.
A pair (h , ξ) on the right yields the function h + Tξ of Sobolev class (1, p). Using a
Leray-Schauder fixed point theorem we obtain the following result.

Theorem III. Let an almost complex structure J on ∆ × C be given of the form
(2) and let d > 0. For every h ∈ O1,p(∆,Cd) there exists an ξ ∈ Lp(∆,Cd) with
a = h + Tξ corresponding to a (possibly non-reduced) J-holomorphic curve in the
Weierstrass picture. In other words, the projection map

Id −T ◦ ∂z̄ : {a ∈W 1,p(∆,Cd) | ∂z̄ar = br(z,a)} −→ O1,p(∆,Cd)

is surjective.

Note that there is no assumption on the smallness of b, so this last theorem is in
fact a global result.

The simplicity of the describing PDE also clearly exhibits the analytical difficulty
that parametrizing deformations of C poses. The Weierstraß picture provides a uniform
formulation for all deformations of C with only the non-linear, zero order term being
semsitive to the change of topology.

One note on conventions: Throughout the text, a J-holomorphic curve in an almost
complex manifold (M,J) is always understood as a closed subset of M . Viewed as a
2-cycle we therefore assume all components to have multiplicity one.

1 Proof of Theorem I

In this section we derive the PDE and prove Theorem I. For the equation we observe
first that in view of (2) the graph of a function λ : ∆ → C is a pseudo-holomorphic
curve with respect to J = J(b) iff

∂z̄λ = b(z, λ(z)) . (3)

Now if C ⊂ ∆×C is a J-holomorphic curve that maps properly to ∆ the special form
of J implies that the projection C → ∆ is a finite holomorphic map, hence a branched
covering, of covering degree d say. Away from the discrete critical set DC ⊂ ∆, locally
C is the union of the graphs of d functions λ1, . . . λd. As noted in the introduction C
is then given in Weierstraß form wd − a1(z)wd−1 + . . .+ (−1)dad(z) = 0 with

ar = σr(λ1, . . . , λd) .

Taking ∂z̄ of ar yields

∂z̄ar = ∂z̄
∑

{i1,...,ir}⊂{1,...,d}

λi1 . . . λir =
d∑

ν=1

σr−1(λ1, . . . , λ̂ν , . . . , λd) · b(z, λν) ,

where the entry with a hat is to be omitted. The right-hand side of this equation is a
function that is invariant under the action of the symmetric group on the branches, and
hence can be expressed as function br(z; a1, . . . , ad) in z and the ar. Conversely, the
union of the graphs of λ1, . . . , λd with λi(z) 6= λj(z) for i 6= j and all z is J-holomorphic
iff the functions ar := σr(λ1, . . . , λd) fulfill

∂z̄ar = br(z; a1, . . . , ad) , r = 1, . . . , d . (4)
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This follows by applying the linear map

A : (vr)r=1,...,d 7−→
( d∑
ν=1

σr−1(λ1, . . . , λ̂ν , . . . , λd) · vν
)
r=1,...,d

to vr = ∂z̄λr − b(z, λr) and noting the following elementary fact.

Lemma 2 If λi 6= λj for all i 6= j then A is invertible.

Proof. An explicit inverse can be seen by writing

(λr − λ1) . . . ̂(λr − λr) . . . (λr − λd) · vr
=

(∑
ν

(w − λ1) . . . ̂(w − λν) . . . (w − λd)vν
)∣∣∣
w=λr

=
∑
ν,µ

(−1)µσµ(λ1, . . . , λ̂ν , . . . , λd) · vν · λd−1−µ
r =

∑
µ

(−1)µλd−1−µ
r (A · v)µ .

�

To extend over the critical set DC ⊂ ∆ we interpret br as functions on ∆× SdC '
∆×Cd. Recall that the isomorphism SdC ' Cd is given by the elementary symmetric
functions σ1, . . . , σd, which in fact provide global holomorphic coordinates on SdC. We
henceforth endow SdC with the differentiable structure thus inherited.

Lemma 3 The functions on ∆× SdC induced by

br : ∆× Cd −→ C , (z, λ1, .., λd) 7−→
∑
ν

σr(λ1, . . . , λ̂ν , . . . , λd) · b(z, λν)

are of Hölder class Cα for some α = α(d) > 0. They are smooth away from ∆ times
the discriminant locus D ⊂ SdC. Moreover, if b depends holomorphically on w, or if
d = 2, then the br are Lipschitz. The Lipschitz constant tends to zero with ||∇b||∞.

Proof. It is clear by the definition of the topology on SdC = C
d/Sd that br and

all partial derivatives in z are continuous. For the Hölder property we consider∑d
ν=1 σr−1(λ1, . . . , λ̂ν , . . . , λd) · b(z, λν) as smooth function in (z;λ1, . . . , λd) ∈ ∆×Cd.

Now br equals 1/d! times the trace of this function under the branched cover ∆×Cd →
∆ × SdC. Functions of this type have been studied by Barlet. Among other things
he proved that after blowing up the base ∆× SdC to make the branch divisor simple
normal crossing, traces of smooth functions are locally of class Cα̃ with α̃ = 2/β with
β the maximal ramification index, see [Ba1], Theorem 3 together with Lemma 4, p.158
and [Ba2]. Now quite generally, if f is a function on some U ⊂ Cd and the pull-back
σ∗f under some blowing-up σ is Hölder, then f is also Hölder, but possibly of smaller
exponent.

The smoothness statement follows since D is the branch locus of the covering
C
d → SdC.

If b is holomorphic in w then also the br are holomorphic in w by the Riemann
Extension Theorem. Hence in this case the br are even smooth. Finally, for d = 2 the
discriminant locus is smooth and the Lipschitz property follows from Barlet’s results.
Alternatively, one can do a simple explicit computation. �

We are now ready to prove Theorem I.
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Proof of Theorem I. Given a tuple of functions a = (a1, . . . , ad) with ∂z̄ar = br(a)
and discriminant δ(a) 6≡ 0 let C ⊂ ∆ × C be the associated curve. We first discuss
regularity. The Sobolev embedding W 1,p(∆) ⊂ C

1− 2
p (∆) shows local boundedness of

the ar. Then under our hypothesis on b, by the preceding lemma br(a) is Hölder of
some exponent α > 0 too. Now for any smooth function ρ on ∆ with compact support
we can reconstruct ρar from

∂z̄(ρar) = ∂z̄ρ · ar + ρ · br(a) ∈ Cα(∆)

by application of the Cauchy integral operator. From the standard estimates for the
latter [Ve] we obtain ρar ∈ C1,α(∆) and hence ar ∈ C1,α

loc (∆).
Now let us assume we are given a fulfilling (4). Near any P ∈ ∆ \ DC there

exist λ1, . . . , λd with ar = σr(λ1, . . . , λd). From our discussion following Equation 4
it follows that C is indeed J-holomorphic over a neighbourhood of P . To investigate
J-holomorphicity near DC we need a lemma.

Lemma 4 The zero set of the discrimant δ(a) is discrete.

Proof. In a neighbourhood of some P ∈ ∆ \ DC we may write ar = σr(λ1, . . . , λd).
Using the equation ∂z̄λi = b(z, λi) we compute

∂z̄δ(a) = ∂z̄
∏
i<j

(λi − λj)2 = 2
∑
i<j

(λi − λj)(∂z̄λi − ∂z̄λj)
∏
k<l

(k,l)6=(i,j)

(λk − λl)2

= 2
∑
i<j

(λi − λj)(b(z, λi)− b(z, λj))
∏
k<l

(k,l) 6=(i,j)

(λk − λl)2 .

Therefore, the discriminant fulfills the linear ∂̄-equation ∂z̄δ(a) = f · δ(a) with coeffi-
cient

f = 2
∑
i<j

b(z, λi)− b(z, λj)
λi − λj

.

Because ∇wb is uniformly bounded f ∈ L∞. A standard trick now reduces to the
case of holomorphic functions [Ve]: Let g ∈W 1,p(∆) solve ∂z̄g = −f ; then eg · δ(a) is
holomorphic. Hence the claim. �

For any P ∈ ∆ we may thus choose a domain U ⊂ ∆ with U ∩ DC = {P}. By
J-holomorphicity of the projection p : ∆ × C → ∆, the map p : C ∩ p−1(U \ {P}) →
U \{P} is a holomorphic, finite, unbranched cover. The curve C thus decomposes over
U \ {P} into a finite disjoint union of pointed disks ∆∗ such that in appropriate local
holomorphic coordinates p|∆∗⊂C : t 7→ z = tm. On this branch C is thus the image of
a map of the form

∆∗ −→ C , t 7−→ (tm, λ(t))

for some smooth function λ. Pseudo-holomorphicity is expressed in terms of λ by

∂t̄λ(t) = ∂z̄λ · ∂t̄z̄ = mt̄m−1b(tm, λ(t)) . (5)

This shows that |∂t̄λ| is uniformly bounded. Moreover, properness of the map Cd →
SdC plus continuity of the ar show that λ has a continuous extension to ∆. It is a
well-known fact that this implies λ ∈ W 1,2(∆), cf. e.g. [Sk, Lemma 2.4.2]. By elliptic
bootstrapping λ is smooth and hence t 7→ (tk, λ(t)) is indeed J-holomorphic.
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Conversely, starting from a J-holomorphic curve C we checked at the beginning of
this section that on ∆ \ DC there are uniquely defined smooth functions ar fulfilling
equation (4). To extend over the branch points let ϕ : Σ→ ∆×C be the J-holomorphic
map with image C. So Σ is a union of Riemann surfaces with boundary, and the
composition of ϕ with the projection ∆ × C → ∆ exhibits Σ as a branched cover of
the unit disk. Properness of the projection C → ∆ implies boundedness of the ar. In
particular, ∂z̄ar = br(z,a) is bounded in Lp. Now elliptic regularity as above shows
ar ∈W 1,p

loc (∆) for every 2 < p <∞. �

Remark 5 While this was not a stimulus for this paper we would like to point out
that the use of symmetric polynomials in the study of pseudo-holomorphic curves is
not entirely new. It has been used by Taubes in a static picture (for just one curve)
to investigate the singularities of an almost everywhere pseudo-holomorphic current
([Tb], proof of Lemma 6.13).

2 Proof of Theorems II and III

In this section we give sufficient conditions under which the solution space to Equation 4
is a Banach manifold. As this PDE becomes singular near multiple points we certainly
want to restrict to tuples a with discriminant δ(a) not vanishing identically. Note that
rescaling z → ε−1z leads merely to a change b → εb in the describing equation (3).
Since we are only interested in the local behaviour we may thus work over the unit disk
and assume that the C1-norm of b is as small as we want. Notice also that rescaling
w does not have any effect in that regard. The cases we can treat are singularities of
multiplicity 2 (d = 2) and the more artificial case that b is holomorphic fiberwise (in
the w-direction).

Proof of Theorem II. We view (4) as nonlinear map

Φ : B −→ E , a = (a1, . . . , ad) 7−→ (∂z̄ar − br(z,a))r=1,...,d

between function spaces

B := {a ∈W 1,p(∆,Cd) | δ(a) 6≡ 0} , E := Lp(∆,Cd)

where we choose some 2 < p <∞. Let a fulfill Φ(a) = 0, δ(a) 6≡ 0. We want to apply
a fixed point method to find a bijection between small holomorphic perturbations
of a and solutions of Φ = 0. To this end we need an approximate right-inverse
to the linearization of Φ. The latter can easily been checked to exist and to be a
zero order perturbation of the ∂z̄-operator. We thus simply take the right-inverse T
to ∂z̄ : W 1,p(∆;C)d → Lp(∆;C)d provided by the Cauchy integral operator for our
approximate right inverse:

T : Lp(∆;C)d −→ W 1,p(∆;C)d , (Tξ)(z) =
( 1

2πi

∫
∆

ξr(ζ)
ζ − z

d ζ ∧ d ζ̄
)
r
. (6)

From T we obtain the decomposition W 1,p(∆)d = O1,p(∆)d ⊕ Lp(∆)d with O1,p(∆)
the space of holomorphic functions on the unit disk of Sobolev class (1, p). The corre-
spondence is

O1,p(∆)d ⊕ Lp(∆)d 3 (h , ξ) 7→ h + Tξ ∈W 1,p(∆)d ,
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with inverse f 7→ (f − T∂z̄f, ∂z̄f). We therefore want to find solutions of Equation 4
of the form

Φ(a + h + Tξ(h)) = 0 .

For any h we claim that the map

Kh(ξ) = ξ − Φ(a + h + Tξ)

is contractive. Expanding and using Φ(a) = 0 we obtain

Kh(ξ) = b(z,a + h + Tξ)− b(z,a) .

We therefore have to estimate

||Kh(ξ)−Kh(ζ)||p = ||b(z,a + h + Tξ)− b(z,a + h + Tζ)||p

by the Lp-distance of ξ and ζ. Under our hypothesis b is Lipschitz, with arbitrarily
small Lipschitz constant q = q(||∇b||∞) (Lemma 3). We obtain

||Kh(ξ)−Kh(ζ)||p ≤ a||T || · ||ξ − ζ||p .

Assuming q < 1/||T ||−1 we thus see that K is indeed contractive. Therefore, for any h
the equation Kh(ξ) = ξ has a unique solution ξ(h). Moreover, the norm of ξ tends to
zero with h . �

Proof of Theorem III. Without bounds on the linearization of the equation we need
to use stronger functional analytic methods. For our existence problem the following
version of the Leray-Schauder fixed point theorem is custom made.

Theorem 6 [Tl, Thm.14.B.5] Let B be a Banach space and let F : [0, 1]×B → B be a
continuous and compact map. Putting Fσ(ξ) = F (σ, ξ) for σ ∈ [0, 1], we assume that
F0 ≡ b0 for some b0 ∈ B, and that the fixed points of Fσ are uniformly bounded for all
σ ∈ [0, 1]:

Fσ(ξ) = ξ ⇒ ||ξ|| < M .

Then F1 has a fixed point.

With the notations of the proof of Theorem II above, we apply this theorem with
B = Lp(∆)d to

Fσ(ξ) := σb(z,h + Tξ) .

A point ξ ∈ B is a fixed point of F1 iff ξ = ∂z̄(h + Tξ) equals b(z,h + Tξ), so these
are in one-to-one correspondence with solutions of (3) of the form h + Tξ. Moreover,
F0 ≡ 0, and F is a compact map as composition of the compact operator Id ×T :
[0, 1]× Lp(∆)d → [0, 1]× C0(∆)d with the continuous map

[0, 1]× C0(∆)d −→ Lp(∆)d , (σ, v) 7−→ σb(z,h + v) .

Finally, the uniform estimate for fixed points ξ = Fσ(ξ):

||ξ||p = ||σb(z,h + Tξ)||p ≤ π1/p||b||∞ =: M .

�
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[Tb] C. H. Taubes: SW ⇒ Gr: from the Seiberg-Witten equations to pseudo-
holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845–918

[Tl] M. E. Taylor: Partial Differential Equations III. Nonlinear Equations, second
edition, Springer 1997

[Ve] I. N. Vekua: Generalized analytic functions, Pergamon 1962

Fakultät für Mathematik, Ruhr-Universität Bochum, D-44780 Bochum

bernd.siebert@ruhr-uni-bochum.de

Department of Mathematics, MIT, Cambridge, MA 02139–4307

tian@math.mit.edu

10


