Einführung in die Mathematische Logik und Modelltheorie

Tabea Beese Prof. Dr. Benedikt Löwe Ilya Sharankou, Dipl.-Math.

Übungsblatt 2

Abgabe am 14. April 2015 am Anfang der Vorlesung.

Aufgabe 1 (Termableitung) (4 Punkte)

Wir arbeiten in der Sprache über dem Alphabet $\mathcal{A} = \{f, g, h, a, b, c\}$, wobei a, b, c Konstantensymbole, f ein 2-stelliges, g ein 1-stelliges und h ein 3-stelliges Funktionssymbol bezeichnen. Entscheiden Sie, ob im folgenden es sich um einen S-Term handelt oder nicht und geben Sie seine Ableitung an, falls es ein Term gegeben ist.

- 1. $f(v_0, g(v_1))$
- 2. $f(v_0, f(v_1, a))$
- 3. h(a, b, c)
- 4. $h(v_0, f(v_2, v_1), g(v_0))$

Aufgabe 2 (Nicht-Terme) (4 Punkte)

Zeigen Sie, dass folgende Zeichenketten keine S-Terme sind.

- 1. $f(v_0, g(v_1))$, wobei f, g beide 2-stellige Funktionssymbole sind;
- 2. $R(f(v_0, v_1), g(v_1), v_3)$, wobei f ein 2-stelliges und g ein 1-stelliges Funktionssymbol, R ein 3-stelliges Relationssymbol;
- 3. $af(v_0, b) c$, wobei f ein 2-stelliges Funktionssymbol und a, b, c Konstantensymbole sind;
- 4. $f(v_0v_1v_3) f(v_1)$, wobei f ein 1-stelliges Funktionssymbol ist.

Aufgabe 3 (Abzählbare Vereinigung) (4 Punkte)

Beweisen Sie, dass wenn M_0, M_1, \ldots alle höchstens abzählbar sind, so ist auch deren Vereinigung $\bigcup_{n\in\mathbb{N}} M_n$ auch höchstens abzählbar.

Aufgabe 4 (Zeichenkette von Termen) (4 Punkte)

Sei $n \geq 1$ und seien $t_1, \ldots, t_n \in T^S$ Terme. Betrachten Sie das Wort $w = (t_1, \ldots, t_n)$ und sei l die Länge von w. Man zeige, dass im Wort w an jeder Stelle, welche keine Klammer und kein Komma ist, genau ein Term beginnt. D.h. ist $1 \leq i \leq l$ so gibt es eindeutig bestimmte Wörter $\xi, \eta \in \mathcal{A}_S^*$ und $t \in T^S$ mit Länge von $\xi = i - 1$ und $t_1 \ldots t_n = \xi t \eta$.