Analysis II: Übungsblatt 13

Das vorliegende Blatt handelt von Taylorpolynomen und der Hesse-Matrix sowie der Bestimmung von lokalen Minima und Maxima. Die wesentlichen theoretischen Resultate zu letzterem sind auf diesem Blatt inkludiert (Aufgabe 2 und Hinweis zu Aufgabe 3).

Aufgabe 1 (5 Punkte). Bestimmen Sie — mit Hilfe der partiellen Ableitungen — für folgende Funktionen $f: D \subseteq X \to \mathbb{R}$ das Taylorpolynom

$$T_{k,\mathbf{x}}f:X\to\mathbb{R},(x,y)\mapsto T_{k,\mathbf{x}}f(x,y)$$

k-ter Ordnung um den angegebenen Punkt $\mathbf{x} \in D$. Untersuchen Sie weiters ob für den Fehler $R_{\mathbf{x},k,f}(\mathbf{h}) = f(\mathbf{x} + \mathbf{h}) - T_{k,\mathbf{x}}f(\mathbf{h})$ gilt, dass $\lim_{\mathbf{h}\to\mathbf{0}} \frac{R_{\mathbf{x},k,f}(\mathbf{h})}{\|\mathbf{h}\|_2^{k+1}} = 0$.

(a)
$$D = X = \mathbb{R}^2$$
, $f(x, y) = 1 - x^2 - y^2$, $\mathbf{x} = (x, y) = \mathbf{0} = (0, 0)$ und $k = 1$ sowie $k = 2$.

(b)
$$D = X = \mathbb{R}^2$$
, $f(x,y) = \frac{x^2y^2}{x^2+y^2}$, $k = 2$, für $\mathbf{x} = (1,1)$ und für $\mathbf{x} = \mathbf{0}$. (Hinweis: Nutzen Sie gegebenfalls Ihre Ergebnisse von Blatt 12)

(c)
$$X = \mathbb{R}^3$$
, $D = B_1(\mathbf{0})$, $f(\mathbf{x}) = e^{\|\mathbf{x}\|_2^2}$, $k = 1$.

Aufgabe 2. (1 Punkt) Sei $f: D \subseteq \mathbb{R}^p \to \mathbb{R}$ partiell differenzierbar und \mathbf{x} ein lokales Maximum oder Minimum von f^{-1} . Zeigen Sie, dass grad $f(\mathbf{x}) = \mathbf{0}$. Hinweis: "Ana I entlang Koordinatenachsen"

(2 Bonuspunkte): Zeigen Sie anhand eines Beispiels, dass dies keine hinreichende Bedingung ist, wobei f so gewählt sein soll, dass die Funktion entlang der Koordinatenachsen einen Extremwert an \mathbf{x} hat.

Aufgabe 3. (4 Punkte) Untersuchen Sie die folgenden Funktionen $f: \mathbb{R}^2 \to \mathbb{R}$ auf lokale Extremwerte:

(a)
$$f(x,y) = (x-1)^2 + 2(y-2)^2 + xy$$

(b)
$$f(x,y) = x^3 + y^3 + 3xy$$

(c)
$$f(x,y) = \sin x \cdot \sin y$$

Hinweis: Bestimmen Sie die Hesse-Matrix Hess $f(\mathbf{x})$ und überprüfen Sie diese auf Definitheit. Hierbei ist der folgende Satz wesentlich: Für eine zweimal stetig partiell differenzierbare Funktion $f: D \subseteq \mathbb{R}^p \to \mathbb{R}$ und $x \in D$ mit grad $f(\mathbf{x}) = 0$ gilt, dass f an \mathbf{x}

- \bullet ein striktes lokales Maximum besitzt, falls die Hesse-Matrix an \mathbf{x} negativ definit ist, bzw.
- \bullet ein striktes lokales Minimum besitzt, falls die Hesse-Matrix an \mathbf{x} positiv definit ist, bzw.
- ullet weder Maximum noch Minimum falls die Hesse-Matrix an ${f x}$ indefinit ist.

Wichtige Hinweise: Abgabe des Blattes bis Fr, 11.1.2019, 14:00 Uhr, Briefkasten 110. Bitte Tackern Sie Ihre Blätter und schreiben Namen und Matrikelnummer auf die erste Seite. Das Blatt sowie mögliche Korrekturen finden Sie unter

https://www.math.uni-hamburg.de/home/schwenninger/ana2.html.

f besitzt an \mathbf{x} ein lokales Maximum falls $\varepsilon > 0$ existiert mit $f(\mathbf{x}) \ge f(\mathbf{y})$ für alle $\mathbf{y} \in B_{\varepsilon}(\mathbf{x})$, bzw. f besitzt an \mathbf{x} ein lokales Minimum falls $\varepsilon > 0$ existiert mit $f(\mathbf{x}) \le f(\mathbf{y})$ für alle $\mathbf{y} \in B_{\varepsilon}(\mathbf{x})$. Falls die obigen Ungleichungen strikt sind, spricht man von einem strikten Maximum bzw. strikten Minimum